To appear in the SCCG 2011 conference proceedings

Efficient Stack-less BVH Traversal for Ray Tracing

Michal Hapala! Tomas Davidovig?

Ingo Wald?

Vlastimil Havran' Philipp Slusallek?

!Czech Technical University in Prague, Faculty of Electrical Engineering
2Saarland University and DFKI GmbH
3Intel Corp.

Figure 1: The three test scenes used for evaluating our stack-less BVH traversal algorithm, all rendered with path tracing: Conference Room
(289.9k triangles), Fairy Forest (174.1k triangles), and Sibenik Cathedral (80.5k triangles).

Abstract

We propose a new, completely iterative traversal algorithm for ray
tracing bounding volume hierarchies that is based on storing a par-
ent pointer with each node, and on using simple state logic to infer
which node to traverse next. Though our traversal algorithm does
re-visit internal nodes, it intersects each visited node only once, and
in general performs exactly the same ray-box tests and ray-primitive
intersection tests—and in exactly the same order—as a traditional
stack-based variant. The proposed algorithm can be used for com-
puter architectures that need to minimize the use of local memory
for processing rays or those that need to minimize the data transport
such as distributed multi-CPU architectures.

CR Categories: 1.3.7 [Three-Dimensional Graphics and Realism]:
Raytracing

Keywords: ray tracing, bounding volume hierarchy, stack-based
and stack-less traversal algorithm.

1 Introduction

Traversing a ray through a hierarchical data structure such as a
bounding volume hierarchy (BVH) is usually carried out in a recur-
sive manner by maintaining a stack. Having to maintain a full stack
per ray can lead to problems, however, in particular on highly par-
allel architectures that process many rays in parallel (thus, needing
a lot of memory to store all those stacks), or in situations where one
needs to move (or suspend/resume) the ray’s state in mid-traversal.
This has recently prompted several authors to investigate stack-less
traversal algorithms that, however, so far either have to perform in-
frequent restarts of the traversal from the root and/or traverse and
intersect more nodes than their stack-based counterparts.

29

In this paper, we propose a new, completely iterative BVH traversal
algorithm that is based on two key ideas: First, we store a parent
pointer with each node, which enables us to ’go back upwards”
in the tree without having to maintain a stack. Second, we use a
simple deterministic automaton algorithm with three states to en-
code the traversal logic that determines which node to traversed
next. This is inferred based on one of three traversal states and
computes a new state for the next traversal step. The proposed al-
gorithm does re-visit internal nodes, but intersects each node only
once, and performs exactly the same ray-box intersection tests—
and in exactly the same order—as a traditional stack-based traversal
algorithm with an axis-based traversal order.

2 Previous work

Approaches to stack-less traversal algorithms fall into three cat-
egories: those that perform some sort of restart of the traversal,
those that use some sort of links between different nodes, and those
that exploit the regularity of the data structure to compute the next
node implicitly. Algorithms in the last category only work for
certain special cases (like volume data organized in implicit kd-
trees [Hughes and Lim 2009]) and will not be considered in this

paper.

Foley and Sugerman [2005] have proposed two variants of restart
algorithms in the context of kd-trees: kd-restart, and kd-backtrack.
Kd-restart tracks a point along the ray that marks the end-point of
the already-traversed ray segment. In each iteration, restart tra-
verses this point all the way from the root to its containing leaf, and
intersects those triangles. After processing this leaf it then advances
this point to right behind that leaf, and “re-starts” the next iteration
from the root. This algorithm corresponds to the original ray traver-
sal algorithm for kd-trees by Kaplan [1985]. To avoid having todo a
full re-start after every leaf, kd-backtrack adds bounding boxes and

To appear in the SCCG 2011 conference proceedings

parent-pointers to each node; the traversal algorithm still advances
the current traversal end-point, but, rather than starting all the way
from the root, finds the next node by starting at the leaf, and going
up to the first node that contains this end-point. This approach was
expanded to kd-push-down by Horn et al. [2007], who stores infor-
mation about the depth-wise lowest node that completely contains
the valid intersection interval. Instead of the root node, this node is
then used when a traversal is restarted.

These algorithms are not directly applicable to BVHs because BVH
nodes can overlap, meaning that each “end-point” could be in mul-
tiple leaf nodes. Laine [2010] explains this, and offers an alternative
approach to a BVH restart algorithm by using a 32- or 64-bit vari-
able to track which levels of the tree do not need to be traversed any
more. Every time a restart occurs the next node is found using this
“trail”. This in principle works the same as the shortening of the
ray, except that the information is saved in a different way. Laine
also provides pointers for an efficient implementation that handles
the using and updating of the trail with simple bit-wise operations.

The second category of stack-less traversal algorithms utilizes addi-
tional information regarding the internal structure of the tree. Mac-
Donald and Booth [1990] (and later, Havran et al. [1998]) have in-
vestigates neighbor-links (or “ropes”) that store, for each leaf node
in a kd-tree, a pointer to the subtree that is spatially adjacent to
that side (this again works only for kd-trees, in which nodes do not
overlap). Whenever the traversal algorithm leaves a leaf node, it
determines which of the six sides the ray leaves that node, and fol-
lows the respective link. Following neighbor-links means no stack
is ever needed; however, adding all those pointers implies a signif-
icant memory overhead. The method was also used for GPU based
algorithm by Popov et al. [2007].

For BVHs, Smits [1998] proposed an approach in which each node
contained a so-called “skip node pointer” that specified which node
to traverse next if the ray missed the current node. This approach
was later used for a GPU implementation by Torres et al. [2009].
While elegant, this method imposes the same traversal order for
all rays, leading to some rays traversing the hierarchy “back-to-
front” (which in turn can lead to a significant increase in box and
primitive tests). This can be avoided by having each node store
a different skip pointer for different ray orientations [Boulos and
Haines 2006], but the amount of additional storage required for this
traversal algorithm makes this approach impractical.

Our approach basically follows a link-based traversal algorithm, but
guarantees the same traversal order as a stack-based variant. It re-
quires only one additional pointer (the parent pointer) per node,
and, for commonly used node layouts as the one used by Aila et
al., this pointer can squeezed into the existing node layout without
increasing total memory consumption.

3 Algorithm outline

Before deriving the logic of a new traversal algorithm, we first spec-
ify some assumptions we need for our algorithm. In particular, we
assume that:

e we are using a binary BVH, in which all primitives are stored
in leaf nodes, and in which each inner node n has exactly two
children ¢z ppr (n) and cgigpT (n) (also called “siblings™),

e for each node n there is an efficient way to determine its parent
parent(n) and sibling sibling(n),

e for each inner node n there is a unique traversal order
(nearChild(n), farChild(n)) in which its children are tra-

30

left

7
\

e 2
1

Figure 2: Traversal order example. Ray 1 will first traverse ¢ prr
and then cg;gyT node, c prr for him is nearChild and cgrigyr is
farChild. Ray 2 will traverse the children in the opposite order.

right

vd

versed. This order varies from ray to ray, but for any given
ray may not change during traversal (see Figure 2).

Since we do not want to assume an implicit hierarchy, the only
way we can determine a node’s parent is to store an explicit parent
pointer for this node. This can be done either by storing a separate
array of parent pointers, or by squeezing this parent pointer into
unused parts of an existing BVH node layout.

For the traversal order there are various different alternatives. One
often-used option is to store, for each node, the coordinate axis
along which the builder split the parent node, and to use the ray’s di-
rection sign in this dimension to determine the two nodes’ traversal
order. If the split axis information is not available from the builder,
one can also use the dimension in which the two child nodes’ cen-
troids are widest apart. This separation dimension can be computed
on the fly, or stored with each node. In our approach, we use the
maximum separation axis, and store this with each node.

Another alternative to determine two sibling’s traversal order is to
compute the actual distance to the siblings’ bounding boxes, and
sort them based on distance. This, however, would require to re-
intersect both nodes every time we want to determine two siblings’
traversal order.

3.1 State logic

Rather than using a stack, our traversal algorithm uses a simple state
machine to infer which node to traverse next. To better understand
this approach, let us consider a single “parent-plus-two-siblings”
configuration. Without loss of generality, let’s assume that a ray
regards that cygrr (n) is nearChild and cgigyr (n) is farChild.

First, let us iterate exactly how any recursive traversal algorithm
works in general: After having successfully intersected the parent
node, traversal first goes to nearChild, and does a ray-box test for
this node. If this node is missed, traversal immediately proceeds
to farChild; if not, the node is “processed”, either by intersecting
its primitives (in case it is a leaf), or by recursively entering this
node’s subtree (in case it is an inner node). Once nearChild is fully
processed, traversal resumes with farChild in the same way as if
the node had been missed. For farChild, exactly the same sequence
of events takes place (test the node, and either skip or process it)
except that the next node after farChild is parent.

From this we can observe that there are only three ways (“states”)
of how any given node can be reached during recursive traversal:
from its parent (on the way down, when entering parent’s subtree);
from its sibling (when going from nearChild to farChild); or from

To appear in the SCCG 2011 conference proceedings

one its own children (after having traversed its own subtree). Let us
call these cases fromParent, fromSibling, and fromChild. Now, we
can formulate the above traversal logic depending on exactly these
three states (see Figure 3).

In the fromChild case the current node was already tested when go-
ing down, and does not have to be re-tested. The next node to tra-
verse is either current’s sibling farChild (if current is nearChild),
or its parent (if current was farChild).

In the fromSibling case, we know that we are entering farChild (it
cannot be reached in any other way), and that we are traversing this
node for the first time (i.e. a box test has to be done). If the node
is missed, we back-track to its parent; otherwise, the current node
has to be processed: if it is a leaf node, we intersect its primitives
against the ray, and proceed to parent. Otherwise (i.e. if the node
was hit but is not a leaf), we enter current’s subtree by performing
a fromParent step to current’s first child.

Finally, in the fromParent case, we know that we are entering
nearChild and we do exactly the same as in the previous case,
except that every time we would have gone to parent we go to
farChild child.

The corresponding pseudo-code is in Listing 1. In that code, every
line with a state change includes a commentary associating it with
an image in Figure 3.

void traverse (ray, node)
int current=nearChild (root);
char state=fromParent; // we
while (true) {

switch (state) {

case fromChild:

if (current==root) return; // finished

if (current==nearChild (parent(current))) {

start by going down

current=sibling (current); state=fromSibling; //(la)
}
else {
current=parent(current); state=fromChild; //(1b)
}
break
case fromSibling:
if (boxtest(ray, current)==MISSED) {
current=parent(current); state=fromChild; //(2a)
else if (isLeaf(current)) {
// ray—primitive intersections
processLeaf(ray, current);
current=parent(current); state=fromChild; //(2b)
}
else {
current=nearChild (current); state=fromParent; //(2a)
}
break;
case fromParent:
if (boxtest(ray, current)==MISSED) {
current=sibling (current); state=fromSibling; //(3a)
else if (isLeaf(current)) {
// ray—primitive intersections
processLeaf(current);
current=sibling (current); state=fromSibling; //(3b)
}
else {
current=nearChild (current); state=fromParent; //(3a)
}
break
}

}

Listing 1: Basic state-based traversal. Also see Figure 3.

31

It is relatively straightforward to show that the proposed traversal
algorithm is correct by considering all the cases that can occur when
visiting a node, either an interior node or leaf. We have to consider
the state in which we process a node to make the proof on correct-
ness complete.

3.2 Comparison to Stack-Based Traversal

Compared to a stack-based traversal algorithm with the same axis-
based traversal order heuristic the above code performs exactly the
same box tests and triangle tests as the stack-based one (except that
it never tests the root node), and also performs those in exactly the
same order. Statistically, the biggest difference is that some inner
nodes are “accessed” (i.e. read from memory) twice—once on the
way down, and once on the way up, and that the traversal order
heuristic (nearChild/farChild) may be executed twice. As long as
this heuristic is cheap, however, the latter is not an issue, and appar-
ently roughly as expensive as performing stack operations instead
(though in a clever implementation a stack-pop can skip multiple
levels at once). Reading some nodes twice, however, does increase
bandwidth, in particular when caches are so small that this node is
not found in cache.

4 CUDA Implementation

While the previous section’s naive state machine code can be taken
almost literally on a traditional CPU, implementing the traversal al-
gorithm in a CUDA or OpenCL requires some changes. If enough
rays in warp are in different states of their traversal, the warp will
eventually execute all three traversal cases in each iteration. For a
more efficient implementation we realize that many of the traver-
sal cases actually perform very similar work (e.g. fromParent and
fromSibling differ only in which node to traverse next). By reorder-
ing the code such that different cases’ operations are performed in
the same basic block we can essentially “share” these operations
among threads that are nominally in different states.

We have integrated this algorithm in the freely available CUDA
ray tracer by Aila et al. [Aila and Laine 2009; Karras et al. 2009].

near =

nearChild (current);
far = farChild (current);
/! already returned from far child — traverse up
if (last == far) {
last = current; current = parent(current);
continue ;
¥
// if coming from parent, try near child, else far child
tryChild = (last == parent(current))?near:far;

if (boxtest(ray, current) {

// if box was hit, descend

last = current; current = tryChild;
¥

else {

/1 if missed

if (tryChild == near) {
/!l next is far
last = near;

}

else {
// go up instead
last = current;
}

}

current = parent(current);

Listing 2: CUDA state-based traversal.

To appear in the SCCG 2011 conference proceedings

(1b)

Figure 3: Traversal states: (1a) and (1b) fromChild, (2a) and (2b) fromSibling, and (3a) and (3b) fromParent. Legend: C is the current node, P
is parent of C, N and F signify near and far nodes with regard to the orientation of the current ray and the parent of N or F. Dotted lines show
the traversal we have taken into the current node whereas thick lines show next traversal step (either one or two possible nodes). The cases
(2b) and (3b) are the cases where current node is a leaf. Doubled rings signify where a ray-box test is needed to decide where to traverse next.

For alignment reasons this implementation used a node layout with
two un-used 32-bit data words, which we can use to store parent
pointer and separation axis without increasing the memory foot-
print. We implemented two separate CUDA kernels, one optimized
for Tesla [NVIDIA 2007], one for Fermi [NVIDIA 2009]. There
were no major differences concerning those two implementations,
except for the ones already present in the original Aila code (i.e.
the Tesla version uses persistent threads, and stores BVH nodes in
texture cache).

A (slightly simplified) version of our CUDA implementation’s
traversal code is given in Listing 2.

5 Results

To evaluate our algorithm we have implemented it on two dif-
ferent architectures—NVidia Tesla (GT260), and NVidia Fermi
(GT470)—using CUDA Toolkit 3.2 [NVIDIA 2011]. The refer-
ence implementation is from [Karras et al. 2009].

For our measurements we use three test scenes (Conference Room,
Fairy Forest, and Sibenik Cathedral, see Figure 1); each scene is
rendered at 512 x 512 pixels, using a Monte Carlo path tracer [Ka-
jiya 1986] performing a fixed number of bounces (no Russian
Roulette termination is used). At each bounce, if the path did not
leave the scene we shoot one visibility ray to the light source. For
the sake of simplicity, we only report results for for two different
path length settings (4 and 8); other path length settings produce
comparable results. Each frame shoots one path per pixel, with con-
vergence happening through accumulation of successive frames.

In Table 1 we report, for both 4 and 8 bounces, some architecture
independent statistics for the reference stack-based algorithm: the
number of ray-triangle intersections per ray N7, the number of
traversal steps per ray Nrg, and the number of visited leaves per
ray Np. In the reference algorithm, each traversal step performs
exactly two box tests (stack operations are not included).

In Table 2 we report the differences between the stack-based algo-
rithm and the proposed stack-less algorithm. Since the reference

32

algorithm actually uses a slightly different traversal order (rather
than using the separation axis, Aila [2009] computes the intersec-
tion with bounding boxes of both children when visiting interior
nodes, and picks the closer of both) the number of box tests is dif-
ferent by a small amount. In this metric our algorithm is, in fact,
even slightly better than the reference algorithm.

The stack-less algorithm does, however, visit more than twice the
number of nodes than the stack-based algorithm does. To some
degree, this is due to a different way of counting traversal steps
(we process individual nodes, while for inner nodes the reference
algorithm processes two children at once); but at least partially, it
is because we visit some nodes twice. These re-visits are cheaper
than the first visit, but nevertheless require more memory access
as well as more evaluations of the traversal logic, neither of which
comes for free. Because of these increased node visits, the stack-
based reference algorithm is roughly 30% faster for our path tracing
application, independent of the maximum path length used (though
we only report numbers for 4 and 8 we tested other path lengths as
well).

Discussion

Stack-based approaches are natural for commodity CPU based sys-
tems where caches are large, and where the architecture is opti-
mized for high spatial and temporal locality of data access; and for
architectures and applications where a stack can be realized effi-
ciently the stack-based traversal still performs best.

For scenarios where storing a complete stack per ray is a problem,
however, the stack-less variant provides an interesting option: The
stack-less algorithm requires only the description of the ray (ray ori-
gin and direction of 3 floats each), the distance along the ray to the
nearest object so far (1 float), the pointer to the currently traversed
node, and the traversal state (2 bits). This is an interesting feature
for architectures where the number of rays is high (and where keep-
ing the stack along with the ray is expensive), such as special hard-
ware architectures for ray tracing [Woop et al. 2005; Caustic Graph-
ics, Inc. 2009]. Another interesting option for stack-less algorithms
are distributed memory architectures with many CPUs, where the

To appear in the SCCG 2011 conference proceedings

Scene GPU architecture | trav.alg Path Tracing 4 Path Tracing 8
Nir Nrs Nip NL | Nir Nrs Nip NL
[-] [-] [-] [-] [-] [-] [-] [-]
Conference Room | Tesla/Fermi stack based | 7.01 | 21.16 | 42.33 | 2.52 | 6.78 | 21.10 | 42.20 | 2.45
Fairy Forest Tesla/Fermi stack based | 8.41 | 2539 | 50.78 | 1.84 | 8.62 | 26.82 | 53.64 | 1.92
Sibenik Cathedral | Tesla/Fermi stack based | 5.24 | 26.69 | 53.38 | 1.63 | 5.53 | 26.82 | 53.64 | 1.69
Table 1: Platform independent statistics for the reference stack-based GPU traversal algorithm.
Scene GPU arch. | trav.alg Path Tracing 4 Path Tracing 8
ratio active ANts | AN | APerf | ratio active ANrs | AN | APerf
threads|%| [%] [%] [%] | threads|%] [%] [%] [%]
Conference Room | Tesla stack based 99.01 0 0 0 97.80 0 0 0
Conference Room | Tesla stack-less 99.01 +134.8 | -5.39 | -28.53 97.80 +134.8 | -5.36 | -28.94
Conference Room | Fermi stack based 99.01 0 0 0 97.80 0 0 0
Conference Room | Fermi stack-less 99.01 +134.8 | -5.39 -30.3 97.80 +134.8 | -5.36 | -28.97
Fairy Forest Tesla stack based 46.87 0 0 0 28.32 0 0 0
Fairy Forest Tesla stack-less 46.87 | +138.61 | -3.54 | -31.24 28.32 | +135.67 | -3.65 | -29.01
Fairy Forest Fermi stack based 46.87 0 0 0 28.32 0 0 0
Fairy Forest Fermi stack-less 46.87 | +138.61 | -3.54 -35.7 28.32 | +135.67 | -3.65 | -35.58
Sibenik Cathedral | Tesla stack based 97.67 0 0 0 96.30 0 0 0
Sibenik Cathedral | Tesla stack-less 97.67 | +132.94 | -5.12 | -31.96 96.30 | +133.32 | -5.08 | -33.62
Sibenik Cathedral | Fermi stack based 97.67 0 0 0 96.30 0 0 0
Sibenik Cathedral | Fermi stack-less 97.67 | +132.94 | -5.12 | -27.99 96.30 | +133.32 | -5.08 | -29.06

Table 2: Performance results for stack-based and stack-less GPU traversal algorithm, respectively, for both Tesla and Fermi.

scene data is distributed over the whole system, and where the rays
are passed from one CPU to another during traversal. Such a system
was suggested for example by Kato et al. [2002].

Finally, having only a small amount of state per ray is interesting
for algorithm that work by re-ordering rays, which usually requires
temporarily saving a ray’s state, and re-storing it at a later time.
Such algorithms have recently been proposed by a variety of au-
thors [Navratil et al. 2007; Gribble and Ramani 2008; Moon et al.
2010], and would be particularly interesting for special hardware
solutions [Ramani et al. 2009].

6 Conclusion

We have presented a traversal algorithm for BVH that does not need
a stack and hence minimizes the memory needed for a ray. It is
based on a three-state logic and keeping the pointer to the parent
for all nodes. The proposed algorithm can be used efficiently in ap-
proaches where we process many rays in parallel. In these cases we
need to minimize the book-keeping data for individual rays either
locally or for data transfer among processing units.

The recently published BVH stack-less algorithm by Laine [2010]
traverses approximately the same number of additional nodes, but
also does ray-box intersection for every of these visited nodes. The
proposed algorithm, on the other hand, does only the necessary
minimum of ray-box intersections, as would a stack-based algo-
rithm do.

We have shown the results when the traversal algorithm imple-
mented in CUDA for Tesla and Fermi architecture as the most com-
monly accessible highly parallel architectures. We show that for
the contemporary GPU architectures the traversal algorithm with

33

local stack is more efficient than stack-less algorithm that needs
twice as many traversal steps. Although employing a stack de-
mands frequent access to memory, modern GPUs can run thousands
of threads at once and effectively hide memory latencies.

There are however architectures or applications where having min-
imal memory per ray is paramount. These are e.g. special hard-
ware units, memory distributed CPU/GPU architectures designed
for tracing rays, where the scene is distributed among different pro-
cessing units or ray-reordering traversal schemes.

In future work, we would like to test the proposed algorithm on
highly parallel CPU based architecture with distributed memory
and for the schemes that use ray-reordering to optimize for the per-
formance of ray tracing.

7 Acknowledgment

We want to thank the authors of the scenes we have used in our
work: Fairy Forest is from the Utah Animation Repository (http:
//www.sci.utah.edu/~wald/animrep/), Conference Room is
from Greg Ward’s Radiance rendering package (http://
radsite.lbl.gov/radiance/); and Sibenik Cathedral has been
modeled by Marko Dabrovic (http://hdri.cgtechniques.
com/~sibenik2/). We would also like to thank Tero Karras, Timo
Aila and Samuli Laine for releasing their CUDA ray tracer source
codes into the public domain.

This work has been partially supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic under research pro-
grams MSM 6840770014, LC-06008 (Center for Computer Graph-
ics) and MEB-060906 (Kontakt OE/CZ), the Grant Agency of the
Czech Republic under research program P202/11/1883, the Grant

To appear in the SCCG 2011 conference proceedings

Agency of the Czech Technical University in Prague, grant No.
SGS10/289/0HK3/3T/13, German Research Foundation (Excel-
lence Cluster "Multimodal Computing and Interaction’) and Intel
Visual Computing Institute.

References

AILA, T., AND LAINE, S. 2009. Understanding the Efficiency of
Ray Traversal on GPUs. In Proc. High-Performance Graphics
2009, 145-149.

BouLos, S., AND HAINES, E. 2006. Notes on Efficient Ray
Tracing. Ray Tracing News 19.

CAUSTIC GRAPHICS, INC. 2009.

http://www.caustic.com/.

CausticRT platform.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration struc-
tures for a GPU raytracer. In Proceedings of Graphics Hardware,
15-22.

GRIBBLE, C., AND RAMANI, K. 2008. Coherent ray tracing
via stream filtering. In Interactive Ray Tracing, 2008. RT 2008.
IEEE Symposium on, 59 —66.

HAVRAN, V., BITTNER, J., AND ZARA, J. 1998. Ray Tracing with
Rope Trees. In Proceedings of SCCG’98 (Spring Conference on
Computer Graphics), 130-139.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN,
P. 2007. Interactive k-d tree GPU raytracing. In SI3D, 167-174.

HUGHES, D. M., AND LiM, I. S. 2009. Kd-jump: a path-
preserving stackless traversal for faster isosurface raytracing on

gpus. IEEE Transactions on Visualization and Computer Graph-
ics 15 (November), 1555-1562.

KAIrYA, J. T. 1986. The rendering equation. In Computer Graph-
ics, 143-150.

KAPLAN, M. 1985. Space-Tracing: A Constant Time Ray-Tracer.
In SIGGRAPH ’85 State of the Art in Image Synthesis seminar
notes, 149-158.

KARRAS, T., AILA, T., AND LAINE, S., 2009. Un-
derstanding the Efficiency of Ray Traversal on GPUs;
Google Code. [online] http://code.google.com/p/

bandwidth utilization. In Proceedings of the 2007 IEEE Sympo-
sium on Interactive Ray Tracing, IEEE Computer Society, Wash-
ington, DC, USA, 95-104.

NVIDIA, C., 2007. Tesla technical brief.
http://wuw.nvidia.com/docs/I0/43395/tesla_
technical_brief.pdf.

NVIDIA, C., 2009. Whitepaper nvidia, next genera-
tion cuda compute architecture: Fermi. [online] http:
//www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

NVIDIA, C., 2011. NVIDIA CUDA Compute Unified De-
vice Architecture - Programming Guide, Jan. Version 3.2,
[online] http://developer.nvidia.com/object/cuda_3_
2_downloads.html.

[online]

Poprov, S., GUNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2007. Stackless kd-tree traversal for high performance GPU ray
tracing. Computer Graphics Forum 26, 3 (Sept.), 415-424. (Pro-
ceedings of Eurographics).

RAMANI, K., GRIBBLE, C. P., AND DAVIS, A. 2009. Streamray:
a stream filtering architecture for coherent ray tracing. SIGPLAN
Not. 44 (March), 325-336.

SMITs, B. 1998. Efficiency issues for ray tracing. J. Graph. Tools
3 (February), 1-14.

TORRES, R., MARTIN, P. J., AND GAVILANES, A. 2009. Ray
Casting using a Roped BVH with CUDA. In 25th Spring Con-
ference on Computer Graphics (SCCG 2009), 107-114.

WooP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. Rpu: a
programmable ray processing unit for realtime ray tracing. In
ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA,
SIGGRAPH °05, 434-444.

understanding-the-efficiency-of-ray-traversal-on-gpus/.

KATO, T., AND SAITO, J. 2002. “kilauea™: parallel global illu-
mination renderer. In Proceedings of the Fourth Eurographics
Workshop on Parallel Graphics and Visualization, Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, EGPGV
’02, 7-16.

LAINE, S. 2010. Restart trail for stackless bvh traversal. In Pro-
ceedings of the Conference on High Performance Graphics, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
HPG 10, 107-111.

MACDONALD, J. D., AND BOOTH, K. S. 1990. Heuristics for Ray
Tracing Using Space Subdivision. Visual Computer 6, 153-65.

MooN, B., BYUN, Y., KM, T.-J., CLAUDIO, P., KiM, H.-S.,
BAN, Y.-J., NAM, S. W., AND YOON, S.-E. 2010. Cache-
oblivious ray reordering. ACM Trans. Graph. 29, 3, 1-10.

NAVRATIL, P. A., FUSSELL, D. S., LIN, C., AND MARK, W. R.
2007. Dynamic ray scheduling to improve ray coherence and

34

