
Active Thread Compaction for GPU Path Tracing
Ingo Wald∗

Intel

Abstract

Modern GPUs like NVidia’s Fermi internally operate in a SIMD
manner by ganging multiple (32) scalar threads together into SIMD
warps; if a warp’s threads diverge, the warp serially executes
both branches, temporarily disabling threads that are not on that
path. In this paper, we explore and thoroughly analyze the con-
cept of active thread compaction—i.e., the process of taking multi-
ple partially-filled warps and compacting them to fewer but fully
utilized warps—in the context of a CUDA path tracer. Our re-
sults show that this technique can indeed lead to significant im-
provements in SIMD utilization, and corresponding savings in the
amount of work performed; however, they also show that certain
inadequacies of today’s hardware wipe out most of the achieved
gains, leaving bottom-up speed-ups of a mere 12–16%. We believe
our analysis of why this is the case will provide insight to other
researchers experimenting with this technique in different contexts.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

1 Introduction

Today’s programmable GPUs get their compute power by running
in the order of thousands of threads in parallel, and the “SIMT” pro-
gramming paradigm [NVidia b] used by CUDA and OpenCL allow
the programmer to treat these threads just as if they were scalar
threads. The underlying hardware, however, has strong SIMD
traits: each CUDA thread runs on its own scalar processor, but
scalar processors are ganged together into multiprocessors that ex-
ecute warps of (32) threads in SIMD fashion. If a warp’s threads
diverge in control flow, the warp serially executes both branches,
temporarily disabling threads that are not on that path, and re-
converging to the common execution path once both branches are
done. During each such divergence, part of the warp’s threads
are in-active, which means that the underlying (SIMD-)hardware
is but partially utilized for the duration of each divergent branch.
Thus, re-sorting threads into warps of similar control flow should
boost performance, and at least for shader executions Hoberock et
al. [2009] have shown that this is indeed the case.

One particular form of this SIMD divergence—that we will con-
centrate on in this paper—is when a warp’s threads leave a given
kernel (or a sub-routine of that kernel) at different points in time:
for example, by performing a varying number of traversal steps in
a ray tracing kernel, by tracing paths of different lengths in a path
tracer, or by needing different numbers of secondary or shadow rays
per pixel in a global illumination application. In this special but im-
portant case, the warps’ utilization drops every time another thread
leaves that kernel, and it should be relatively straightforward to,
from time to time, compact those threads that are still active at this

∗e-mail: Ingo.Wald@intel.com

point in time (hence the name active thread compaction), thereby
forming fewer, but now fully-utilized, warps.

In this paper, we concentrate on evaluating the effectiveness—and
pit-falls—of applying this concept to a global-illumination path
tracer in which different paths need to compute different numbers of
ray segments until the respective path is terminated. As our exper-
iments will show, applying active path compaction to this problem
is rather simple, and, at least for suitable scene, can indeed lead to
significant gains in average warp utilization, as well as in savings
of more then 2.3× in the number of executions of the respective
path extension kernel. However, our experiments also show that
certain limitations of today’s hardware lead to sources of overhead
that significantly affect the final outcome, eventually leading to dis-
appointingly small speed-ups of only 12–16% for even the best-
performing of our kernels. In particular, our experiments show that
for the most time-consuming part of our kernel—tracing the rays—
on today’s hardware the cost of a fully-utilized warp is significantly
higher than for a partly-utilized kernel, in which case producing
better-utilized warps has a much smaller benefit than theory sug-
gests. We believe that our results vindicate the validity of the under-
lying concept, and that, assuming improvements in future hardware
architectures, it will eventually be a useful tool in writing efficient
GPU programs. We also hope that our analysis will provide insight
for other researchers experimenting with this idea.

2 Previous Work
We assume basic familiarity with path tracing (see, e.g., [Pharr
and Humphreys 2004]), and with how to implement it. Improv-
ing SIMD efficiency in a ray tracing/path tracing context has been
addressed by multiple authors on both explicit (CPU) and implicit
(GPU) SIMD architectures.

On CPUs, several authors have investigated the use of active thread
compaction in ray traversal, by compacting active rays at the be-
ginning of each traversal step [Wald 2007; Gribble and Ramani
2008; Tsakok 2009], or whenever SIMD utilization falls below
some threshold [Boulos et al. 2008]. Some of these authors have
already pointed out that the same concept could also be applied to
higher-level kernels such as shading, but have, so far, investigated
them only in the context of ray traversal.

On GPUs, stream compaction is a major component in many
GPGPU applications, but is usually used as a higher-level parallel
programming primitive rather than merely a method to raise SIMD
utilization. Several fast compaction kernels exist; for our applica-
tion, we use the one that is part of the CUDA Performance Primi-
tives (CUDPP) [Harris et al. ; Harris et al. 2007].

Several authors have addressed SIMD utilization in the implemen-
tation (e.g., Aila et al.’s speculative traversal steps [2009], or Kalo-
janov et al.’s special case handling of large cells in grid traver-
sal [Kalojanov et al. 2011]), but usually with special-case solu-
tions. Far closer to our approach, Hoberock at al. [2009] investi-
gated the impact of sorting CUDA shader calls by shader type, and
have shown that doing so can boost shader evaluation performance
in a path tracer by up to 35%. They did, however, only consider
shader execution time, and did not include traversal time. In the
context of path tracing, Novak et al. [2010] proposed to re-generate
new paths in lanes that got deactivated through Russian-Roulette
termination. A similar approach using compaction of still-active
paths was also concurrently proposed by van Antwerpen [2011].

3 Active Path Compaction

A path tracer works by tracing paths into a scene, randomly bounc-
ing them on the surfaces they hit, and computing how much light
gets transported along each path. Each surface interaction is a node
in its respective path. A path is created by iteratively extending it
segment by segment, where each additional ray segment involves
tracing a ray to find the next path node, evaluating incident light-
ing at this node, and sampling a new outgoing direction at this path
node. During each extension, a path can get terminated for a variety
of reasons: it may not hit any geometry, it may reach a hard-coded
maximum path depth, it may get absorbed, or it may get (stochasti-
cally) terminated because of having too low a pixel contribution.

If we extend many paths in parallel the number of paths active after
each bounce will typically drop, with the rate of droppage depend-
ing on whether the scene (i.e., open or closed?), the surface prop-
erties, and various algorithmic parameters (Russian Roulette?). In
that process, there are multiple opportunities for active path com-
paction: We could perform compaction at the beginning of each
bounce (to eliminate paths that did not hit a surface), or at the
end (to eliminate those rays that got absorbed or terminated at this
node); we could possibly also perform compaction before tracing
the shadow rays (not every node will find a valid light sample), or
after this (some shadow rays will be occluded); etc.

For the sake of simplicity we will not consider compaction of
shadow rays, and only compact once at each bounce. Since ray
traversal is significantly more expensive than all of light sampling,
BRDF evaluation, BRDF sampling, etc, taken together, we perform
compaction right after a given path node is fully evaluated, and this
respective path node’s outgoing ray (and activity status) is known.

3.1 Path Data

Compacting the set of active paths requires moving a path’s en-
tire state from one CUDA thread to another, which in turns re-
quires temporarily storing, and later, resuming this path. To keep
path state small we do not store all of a path’s previous path seg-
ments, and instead only track each path’s most recent end-point
node. This path node contains information about the current surface
sample (position, normals, derivatives, BRDF type, etc), the cur-
rent path’s direction (incoming direction during light sampling and
BRDF evaluation, and outgoing direction after BRDF sampling).
Each path keeps track of its accumulated weight (pixel contribution)
and depth, the state of its (quasi-)random number generator (to en-
sure consistent sampling even if the path moves between threads),
pixel ID (to know where to write the result to), material index, etc.

To keep the memory footprint (and thus, the bandwidth required
for storing/loading paths) low, we actually store only the data that
has to be maintained among bounces: For example, the state of the
random number generator, accumulated path weight and radiance,
etc do have to be maintained, but all local surface data, material
data, reciprocals of ray direction, etc, do not, and are thus used
as temporary variables in the Path::extend() kernel, not part of
the path node. We also compress memory where possible, e.g., by
storing pixel coordinates as 16-bit shorts, bools as bits, etc.

3.2 Path Tracer Infrastructure

For random numbers we use padded replication sampling [Keller
2003], which works by scrambling a low-discrepancy sequence (we
use Halton) using a scramble value obtained from a secondary ran-
dom number generator—in our case, a linear congruence generator
seeded based on pixel coordinates, and advanced for every bounce.

This method ensures good samples across multiple paths per pixel,
yet requires only a single state variable (for the LCG).

Our path tracer supports a variety of BRDFs including Lambertian
diffuse, Blinn, Glass, Chrome, and Car Paint, and contains special-
ized evaluation and sampling code for each of those. Since CUDA
does not yet support virtual functions sampling and evaluation of
BRDFs is done through a Uberkernel that switches based on BRDF
type. If a warp hits surfaces with different BRDFs this obviously
leads to significant SIMD divergence. This would be an ideal appli-
cation for Hoberock et al.’s shader sorting [2009]; however, BRDF
sampling and evaluation are so cheap compared to tracing the rays
that we currently simply ignore this cost (most of our experiments
use all-diffuse scenes, anyway).

At each bounce, we first evaluate incident illumination by generat-
ing a light sample, testing it for visibility (if found), and accumulat-
ing its pixel contribution (if unoccluded). We then check if the path
has reached its maximum depth, and terminate it if this is the case.
If not, we sample the BRDF to get a new outgoing path segment,
and compute this new segment’s accumulated pixel contribution. If
this pixel contribution falls below a threshold (we use 5%) we per-
form Russian-Roulette termination with a termination probability
proportional to “weight/5%”.

Illumination in our path tracer comes from an HDRI environment
light source, which is sampled by (solid-angle weighted) pixel con-
tribution. Many better HDRI light sampling techniques exist, and
could be integrated without influencing the rest of our system or
measurements. For the frame buffer, we use a floating point accu-
mulation buffer, which allows for tracing multiple paths per pixel
as well as progressively accumulating frames when the camera re-
mains where it was in the previous frame. The ray tracing back-end
uses a binary BVH with an Aila et al.-like (but not identical) traver-
sal kernel and pre-gathered triangle data, but without spatial splits.
Contrary to Aila et al [2009] for our ray distributions while-while
variant has shown to be slightly faster than the speculative version.

Given these building blocks, the entire path tracer is as simple as
initializing a path node (→init() and iterating over Path::extend()
until the path terminates; upon termination, the path’s accumulated
pixel contribution is then written to the frame buffer.

3.3 Naı̈ve Kernel

The naı̈ve kernel does exactly that: we create exactly one CUDA
thread per pixel, and each such thread traces exactly one path, trac-
ing it all the way until it terminates (see Appendix B.1). The ad-
vantage of this kernel is that it is trivially simple to code, and that it
does not require any compaction or multiple kernel calls at all. In
particular, it does not require any suspension/resumption of paths
at all, meaning rays never have to be written out to, or read from,
memory, saving both memory footprint and bandwidth.

On the downside, this kernel is exactly the showcase for the origi-
nal problem, where each additional bounce kills some more of each
warp’s threads: If we assume the probability of a path to be termi-
nating in any given bounce to be roughly 50% then SIMD utiliza-
tion drops by half after every bounce.

3.4 Whole-Frame Compaction

In the whole-frame compaction kernel, we have the CUDA kernel
perform only exactly one bounce (i.e., one path extension) for each
path: the kernel first reads, for each pixel, the respective path node
from a separate memory array (for the 0’th bounce it creates a new
primary path rather than reading one from memory); it then—if the

path is still active—computes one bounce, accumulates the incre-
mental radiance in the frame buffer, and writes the updated path
node back to this array. Whether the path is still active is stored in a
separate array. To render a whole frame the host then first allocates
the two arrays that store one path node and active flag per pixel, and
calls this kernel N times.

In-between two calls to the path extension kernel we can now use
the active-flag array to perform a compaction step that extracts a
list of those rays that are still active, as well as the total number
of active rays(see Appendix B.2). The compaction itself is done
using the stream compaction kernel in the CUDPP (CUDA Perfor-
mance Primitives) Library [Harris et al. 2007; Harris et al.]. In the
bounce kernel the ith thread then simply picks the ith active ray (or
immediately terminates if i ≥ numActive), ensuring that except for
the single warp that straddles the end of the active index array, all
warps will either have all active, or all inactive, threads.

On the upside, this should virtually eliminate partially inactive
warps—and thus, have the same work performed by significantly
fewer warps. On the downside, this kernel requires to manually
split the path tracer into multiple kernels, and to move part of the
control flow from the device to the host. On the performance side,
we can also expect some overhead: Rather than keeping a path’s
state in registers over all bounces, each path not gets stored to, and
read from, memory after each bounce. In particular, since com-
paction is done globally across all rays, there is no locality at all,
since a path node written by one multiprocessor in one step will
likely be handled by a completely different multiprocessor in the
next step. As we cannot start compacting before even the last de-
vice thread is done bouncing we also have to perform device-wide
barriers after each kernel invocation; and the CUDPP compact ker-
nel will do the same (including a device-readback for the number
of still-active path) after each compaction.

3.5 Tiled Compaction

To avoid these issues we also added a variant where we perform
active thread compaction only among the threads a thread block:
without having to synchronize threads from different thread blocks
we can then once again do all bounces in a single kernel, without
having to change the host code, and without any global synchro-
nization (see Appendix B.3). This is particularly important in that a
compiler could do this intra-thread block code transformation fully
automatically, whereas the same is not so easy for transformations
that go across different thread blocks and kernel invocations.

While we still need a global array to temporarily store path states
we can keep both active bit and active index arrays in shared mem-
ory, and perform thread compaction locally in shared memory;
without any global synchronization at all. Each path node is pro-
cessed by only one thread block, and only by the single multipro-
cessor executing this thread block. In particular, because differ-
ent thread blocks operate completely independent of each other we
never have to perform a single global synchronization.

Multiple Paths Per Thread. One issue with this approach is
that the actual number of CUDA threads per thread block would be
far too low to find enough active paths: Because the bounce kernel
is complex, CUDA requires 64 registers for this kernel, and best
performance is achieved with only 64 threads (i.e., 2 warps) per
thread block—which is clearly too few for our purposes. We solve
this by having each thread operate on several paths at the same time:
each thread block is created with dimensions 64× 1, but actually
operates on a tile of 64×M pixels, where M is a user-controllable
parameter that specifies how many paths per thread we have for
compaction: if too few, we will not find enough active paths to fill

(a) fairy (174K triangles) (b) dragon (922K triangles)

(c) troll (622K triangles) (d) dream home (2.63M triangles)

(e) moto (519K triangles) (f) refinery (297K triangles)

Figure 1: Test scenes used for our experiments (all materials set to
gray). All models are path traced with lighting from an HDRI envi-
ronment map, depth of field, up to 8 diffuse bounces, and Russian-
Roulette termination for paths with weight less than 5%.

our two warps; if too many, we might not have enough screen tiles
(i.e., thread blocks) to provide work for all multiprocessors. For the
intra-tile compaction we our own code that computes a prefix sum
over the active-flag array, and then writes a new list of active ray
indices, all in shared memory.

As a side note, this way of having a smaller number of actual hard-
ware threads processing a larger number of “logical threads” is very
similar to persistent threads [Aila and Laine 2009] (except that we
do this only inside one tile, not across the entire frame), as well as
to how one would implement the same strategy on CPU.

Tiled Compaction in Shared Memory. So far our tiled com-
paction has each tile processed by exactly one multiprocessor, but
it still spills path nodes to global memory after each bounce. The
obvious next step is to move those rays into the respective multipro-
cessor’s shared memory, too (see Appendix B.3), at least in theory
elimination any global memory I/O for path state (in practice, we
have to take special care to prevent the compiler from spilling each
path right after it got read from shared memory!).

Though we have tried to keep the state stored per path node to a
minimum, we still need 88 bytes per path node (plus 16 bytes for
accumulated radiance). To fit as many rays into shared memory
as possible (and thus, allow a larger M), we configure our Fermi
to prefer shared memory over cache, but even then can only fit a
maximum tiles size of 64×8 when using shared memory.

4 Evaluation and Analysis

Given these kernels we can now evaluate their respective perfor-
mance. If not stated otherwise, all experiments use a GTX480
card with 1.5GB memory, running under Linux (CUDA Toolkit 3.2,
CUDPP version 1.1.1). Extensive experiments with different block

sizes and different compiler settings (in particular, max number of
registers per thread) have shown that all kernels performed best for
64 threads per thread block, and 64 registers per thread.

Screen resolution is set to 1280×768 pixels. Our test scenes are de-
picted in Figure 1; since our path tracer does not currently support
(transparency-)textures we disabled all textures and use lambertian
diffuse (Kd=.7) for all originally textured surfaces (which, except
some glass the DreamHome, applies to almost every surface). Our
scenes are mostly “open”, with many paths getting quickly lost into
the environment. We also ran our path tracer on a highly realistic
4.3 million triangle car model with various different BRDFs, but
cannot include pictures into this paper.

Table 1 gives the absolute performance as well as relative perfor-
mance (with respect to the reference naı̈ve kernel) for the naive, the
whole-frame compaction, and the tiled shared-memory kernels (the
tiled global-memory kernel performs almost identical to the com-
paction kernel). We include data for both two and eight bounces (2
bounces correspond to a path of three segments, plus shadow rays);
other bounce counts behave similarly. From Table 1, two facts im-
mediately catch the eye: First, that the achieved speedups—even
in the best of cases—are surprisingly low across the board; sec-
ond, that the kernel we had believed to hold the most promise (the
shared-memory version) is actually the slowest—in fact, it is con-
sistently 3× slower than the reference naı̈ve kernel.

scene naı̈ve whole-frame comp. tiled (shared mem)
Path Tracing, max. path length=8

fairy 3.13 3.54 +13% 1.08 -66%
moto 2.03 2.29 +13% 0.74 -64%
troll 3.19 3.63 +14% 1.10 -66%
dragon 3.61 4.06 +12% 1.21 -66%
dreamhome 3.42 3.88 +13% 1.23 -64%
refinery 4.17 4.84 +16% 1.42 -66%

Table 1: Comparison of absolute performance (in frames per sec-
ond) and relative performance (compared to the monolithic kernel)
for our two kernels. Results are disappointing: Not only are even
the best achieved speedups rather low, the shared-memory version
is actually more than 3× slower than the reference naı̈ve kernel.

4.1 Tiled Shared-Memory Kernel

In particular for the tiled shared-memory kernel we initially be-
lieved that such bad results could only be explained by an imple-
mentation artifact; this however turned out not to be the case: as
NVidia’s CUDA Occupancy Calculator [NVidia a] reveals, the oc-
cupancy of the G80 and GF100 (Fermi) architectures not only de-
pends on how many registers a kernel needs (more registers per
thread means fewer threads per multiprocessor for latency hiding),
but also on how much shared memory that kernel uses. As can be
seen in Figure 2, for a complex kernel that uses 64 registers (such
as ours) the occupancy calculator predicts a maximum 33% device
occupancy even if the kernel uses no shared memory at all; once
the kernel uses shared memory, too, device occupancy drops even
more, to as few as 8% for the 24KB of shared memory required
with M = 4 (and 4% for M = 8). Clearly, our compaction scheme
cannot hope to make up for a 4× drop in device occupancy—in
fact, it is even a good sign that performance dropped by “only” 3×.

Note however that this effect is not specific to our particular ker-
nel, as exactly the same would happen for any other complex (64-
register-)kernel that tried to use shared memory—essentially, it
means that shared memory should be off limits for any but triv-
ially simple kernels. This raises the hope that this performance
bottleneck will eventually get fixed in future hardware revisions,
in which case this kernel would again get interesting.

Figure 2: Left: Measured performance of our tiled shared-memory
kernel as a function of active paths per thread M. Right: Warp occu-
pancy (as predicted by NVidia’s CUDA Occupancy Calculator) of a
GTX480 device as a function of a kernel’s shared memory use, for a
complex kernel requiring 64 registers per thread (device occupancy
is roughly 2× that since the HW run two blocks in parallel).

4.2 Full-Frame Compaction Performance

While device occupancy can explain the low performance of the
tiled/shared kernel, occupancy for all other kernels is exactly the
same. This leaves one of two explanations for the disappointingly
low performance of the other two kernels: either the compaction
kernels carry some significant source of overhead that mask any
algorithmic savings from thread compaction; or there simply aren’t
enough algorithmic savings to start with.

4.2.1 Algorithmic Efficiency

Before any elaborate performance analysis, we decided to first iden-
tify the maximum algorithmic savings we could expect: In Table 2
we list, for each bounce, the number of active paths as well as the
number of active warps for both the naive and the whole-frame
compaction kernel (a warp is active if either one of its paths is ac-
tive). Since both kernels use the same random number generators
the number of active path is exactly the same for both; the num-
ber of active warps obviously is not. As Table 2 shows, by the 8th
bounce the number of active paths has dropped by over 16x, but for
the naive kernel still over half the warps (19k out of 31k) are still
active—which corresponds each active warp having, on average, a
mere 3.2 active paths (or a mere 10% warp utilization). Though
earlier bounces are less extreme, even averaged across all bounces
the average warp utilization is 13.8 out of 32, or 43%. In contrast,
the compaction kernel always operates on full warps, and conse-
quently has, across all bounces, 2.3× fewer active warps entering
the bounce kernel.

Table 2 clearly demonstrates that conceptually the method works
as well as expected (savings obviously vary by scene, but our other
scenes produce similar results). It does, however, raise the question
how this algorithmic benefit of 2.3× can dwindle to a real-world
speedup of a mere 16%.

active naive compact
paths #warps paths/warp #warps saved

0 983 (983) 30,720 (31k) 32 (32) 31k (31k) 1×
1 983 (1,966) 30,720 (61k) 32 (32) 31k (61k) 1×
2 528 (2,494) 30,717 (92k) 17 (27) 17k (38k) 1.2×
3 352 (2,846) 30,698 (123k) 11 (23) 11k (89k) 1.4×
4 225 (3,071) 30,144 (153k) 7.5 (20) 7k (96k) 1.6×
5 155 (3,226) 28,655 (182k) 5.4 (17.8) 4.8k (101k) 1.8×
6 108 (3,334) 26,383 (208k) 4.1 (16) 3.4k (104k) 2×
7 80 (3,414) 23,450 (231k) 3.4 (14.7) 2.5k (107k) 2.2×
8 60 (3,474) 16,651 (250k) 3.2 (13.8) 1.9k (108k) 2.3×

Table 2: Number of active paths (in 1,000’s) and active warps for
the naive and full-frame compaction kernels, respectively, across
all 8 bounces, for the fairy scene (bold numbers in brackets are
cumulative). The compaction kernel needs a total of 2.3× fewer
kernel executions (in #times a warp executes the bounce kernel).

0 1 2 3 4 5 6 7 8
compaction disabled

paths/warp 32 32 17 11 7.5 5.4 4.1 3.4 3.2
time/warp 1.6 2.3 1.9 1.4 1.1 1.0 0.9 0.8 0.9

compaction enabled
paths/warp 32 32 32 32 32 32 32 32 32
time/warp 1.6 2.3 3.1 3.2 3.4 3.6 3.8 4 4.3

Table 3: Execution time (in us) per active warp for the path ex-
tension kernel and average utilization of active warps, respectively,
once with compaction, once without. Contrary to expectations the
time per warp execution—on a GTX480, and for our ray tracing
heavy kernel—is not independent of warp utilization; in fact, fully
utilized warps are about 5× slower than low-utilized ones.

4.2.2 Stream Compaction Overhead

One obvious suspect to explain this discrepancy in real-world vs al-
gorithmic savings is the cost for performing the stream compaction.
After measuring the time spent in the bounce and compact kernels,
however, it turned out that even less than 1% of total runtime is
spent in compaction. This is far less than expected, and negligible.

4.2.3 Path Store/Load Overhead

The next-biggest suspect is the cost for suspending and resuming
paths: in theory, the naive kernel keeps all path data in registers all
the time, but the compaction kernel must, in each bounce, first load
a path from device memory, and write it back after the bounce. In
practice, a look at the PTX code shows that even the naı̈ve kernel
seems to be spilling path state to device memory; but there are still a
few additional memory accesses to the index and active-flag arrays
that may produce some overhead.

To measure this overhead we took the compaction kernel, temporar-
ily disabled the compaction step, measured—for the fairy model—
the time per kernel execution, and compared this to the render time
of the naive kernel. Independent of the number of bounces, this
overhead was fairly constant at 7–8%. This is overhead is already
significant, but still far from explaining where how a 2.3× algorith-
mic savings could almost completely vanish.

4.2.4 Impact of Warp Utilization

With both major sources of overhead ruled out, the final—and
biggest—piece of the puzzle only fell into place after taking the
full-frame compaction kernel, and measuring—once with, and once
without active thread compaction between bounces—the time per
active warp spent in each bounce (Table 3).

In theory, on a SIMD device this cost should be roughly constant:
the multiprocessor executes this kernel even if only a single thread
is active, and whether it’s 4 or 32 threads at least in first approxima-
tion should not matter—after all, that was the rationale behind the
entire idea of compacting the same number of threads into fewer
warps. In Table 3 however, we see that this is not the case: As ex-
pected, thanks to a significant loss in ray coherence we see the time
per warp to go up significantly from bounce 0 to bounce 1—and
since all primary rays in this scene do find a hit point these numbers
are the same for both variants. For the variant where compaction is
enabled the time per warp continues to rise for future bounces: to
some degree this is because the kernel call overhead can be amor-
tized over fewer active warps (for higher resolutions the effect is
less pronounced), but primarily it is due to increasing incoherence
of the rays—after all, even in bounce #1 rays have coherent origins,
in bounce #2 almost all rays start at the (cheap) walls, etc.

For the variant with compaction disabled, in contrast, we see that
the time per warp actually falls (and significantly!) the fewer
threads are active per warp. In fact, by bounce #8 the time per
warp for the low-utilized kernel is almost 5× lower than for the
compacted version where all threads are active.

Some of this slowdown could be expected: incoherent rays have
a significantly higher potential for SIMD divergence than coherent
ones, first because two random rays may have very different run-
times (leading to low SIMD utilization once the fast ones have ter-
minated), and second because two different rays have a high prob-
ability of diverging into separate leaf- and inner-node code paths in
each traversal step. Consequently, Aila et al. [2010] report inco-
herent rays to be up to twice as expensive as primary ones. How-
ever, while SIMD utilization can lead us to some increase in cost
per warp for incoherent rays—32 threads have more potential for
SIMD divergence in the ray traversal and bounce kernels than 3
threads do—this 5× cost difference between warps that are fully
utilized and those that are only to 10% filled can hardly be ex-
plained by mere SIMD divergence alone. Instead, the most likely
explanation is that for as incoherent memory accesses the underly-
ing hardware is far less capable of hiding memory latencies than
expected, in which case a full warp with 32 memory accesses per
iteration would suffer significantly more than a low-utilized warp
with only 3. In other words: this effect, too, is likely, at least to
a significant degree, a side effect of the actual hardware used—if
the hardware were better able to hide the ray traverser’s memory
latencies, our actual speedups should be much higher.

4.2.5 Impact of Shading vs Traversal Costs

If the previous section’s explanation was true, a kernel that spent
a significantly higher portion of its time in shading computations
should produce bigger benefits. Indeed, once we add (dummy)
arithmetic computations to the BRDF evaluation we do see signifi-
cantly higher savings. For instance, if we add enough computations
to roughly double the render time of the reference naive kernel, the
full-frame compaction kernel’s speedup increases to ∼80%.

This, of course, could also be explained by mere SIMD divergence
in the traversal kernel (the traversal kernel does have significant
SIMD divergence, the dummy shader does not). If, however, we
change our shader to importance-sample a 2000× 1000 pixel en-
vironment map light source—which, for inverting the incoming il-
lumination’s cumulative density function, requires a 21-step binary
search with random memory accesses but with absolutely no SIMD
divergence at all—we again observe that absolute shading (and ren-
der) time increases significantly, yet the relative speedup through
compaction remains unchanged.

4.2.6 Impact of Traversal Kernel

We also experimented with a different traversal kernel, and replaced
our while-while kernel with a speculative variant as proposed
by Aila et al. [2009]. This traverser gets slightly better speedups
through path compaction, but since the speculative traversal does
perform more memory accesses its bottom-line performance is ac-
tually slightly worse. We therefore did not include these results.

That this traverser does get a—small, but measurably—better
speedup than the non-speculative traverser is a indicator that mem-
ory effects are not the only explanation, and that SIMD divergence
inside the traverser does indeed play some role, too. Disentangling
the relative importance of SIMD divergence and memory effects
would be a highly interesting avenue of future work.

4.2.7 Influence of Geometry and BRDF Types

How well active thread compaction works also depends on how
likely it is that some, but not all, of a warp’s threads terminate at any
point in time. For example, closed scenes will lose far less paths
to the environment, and most paths would go all bounces. Also,
for less-scattering BRDFs like specular reflection/refraction paths
would diverge significantly less, and often all threads in a warp
would either all terminate or all survive. On the other hand, scenes
with lots of transparency textures (e.g., foliage), materials with dif-
ferent scattering components (e.g., glass), and materials with high
variation in albedo (i.e., not all diffuse gray), or a more aggressive
use of Russian-Roulette termination [Novak et al. 2010] all increase
the likelihood of individual paths dying at different times.

Consequently the algorithmic benefits of our approach depend very
much on the actual scene, and even on the viewpoint in this scene.
For example, when running our ray tracer on a realistic car model
we see hardly any speedups for outside views (where most paths
are immediately reflected off into the environment), while seeing
savings similar to the ones above for interior views.

5 Summary and Conclusion

We have evaluated the concept of active thread compaction in the
context of a path tracer. Active thread compaction improves the
underlying hardware’s SIMD utilization by compacting partially-
active warps’ threads into fewer but fully utilized warps, thus re-
ducing the number of times the respective kernel is executed. Sta-
tistical side, our experiments show that active path compaction can
result in algorithmic savings of, for path tracing, up to 3× fewer
executions of the core path extension kernel (which includes trac-
ing a ray, plus possibly tracing a shadow ray, and evaluating and
sampling the BRDF).

Unfortunately, thanks to some other-than-expected behavior of the
underlying hardware those algorithmic gains eventually dwindled
into a mere 12–16% speedup even for our best kernel, and even
into a 3× slowdown for the shared memory-based kernel. We have
investigated this somewhat surprising outcome, and identified that
it is not because of some intrinsic overheads of our method (e.g.,
having to suspend and resume logical threads), but rather because
of certain hardware limitation when running non-trivial kernels: in
particular, for non-trivial kernels needing all 64 registers the device
no longer has effective latency hiding for incoherent memory ac-
cesses (making memory access, rather than SIMD efficiency, the
true limiting factor for such kernels), and the device’s shared mem-
ory is virtually off limits if a 4× drop in occupancy is to be avoided.

We particularly hope that this analysis of why these algorithmic
benefits disappeared will prove helpful to other researchers inves-
tigating similar ideas. We also hope that those results will help
hardware vendors identify where the true bottlenecks for non-trivial
kernels lie: for example, in our application it is the memory system
and lack of (effective) local “spilling” space that is limiting per-
formance; actual flops and SIMD efficiency apparently are not an
issue at all. This is particularly interesting in that both these issues
are not specific to our particular kernel, and would apply similarly
to any other “complex” kernel (our kernel is not, in fact, all that
complex) that uses 64 registers while doing incoherent memory ac-
cesses and/or using shared memory.

Future Work

In terms of future work, it would be very interesting to do a far
deeper investigation into the relative influence of insufficient mem-

ory/latency hiding on one side, and SIMD divergence on the other,
on the performance observed for our kernels—the better these is-
sues (and their interplay) are understood, the easier it is to find
remedies. It would also be interesting to re-do our experiments
on other hardware with more readily available “shared” memo-
ry/caches, and possibly on future hardware with hopefully im-
proved memory latency hiding for fewer but high-register-count
threads. Encouraged by a potential 3× savings for our applica-
tion, it also seems worthwhile to evaluate this concept for other
applications like bidirectional path tracing, photon mapping, and
even non-graphics applications (also see [van Antwerpen 2011]).
To simplify such experiments, it also looks appealing to experiment
with a compactThreads()-like language primitive in a CUDA- or
OpenCL-like vectorizing compiler (e.g., [Karrenberg et al. 2010]).

Acknowledgements

Our traversal code was adapted from earlier code written by Sven
Woop, and also influenced by Timo Aila’s downloadable ray tracing
code; the path tracer’s light source and BRDF sampling/evaluation
code was adapted from earlier code written by Manfred Ernst. Fi-
nally, the author would like to explicitly thank the anonymous HPG
reviewers for their very detailed and helpful comments, as well as
all those that have provided feedback for earlier drafts of this paper.

References

AILA, T., AND KARRAS, T. 2010. Architecture Considerations for
Tracing Incoherent Rays. In Proc. High-Performance Graphics
2010.

AILA, T., AND LAINE, S. 2009. Understanding the Efficiency of
Ray Traversal on GPUs. In Proceedings of High Performance
Graphics 2009.

BOULOS, S., WALD, I., AND BENTHIN, C. 2008. Adaptive Ray
Packet Reordering. In Proceedings of the 2008 IEEE/EG Sym-
posium on Interactive Ray Tracing, 131–138.

GRIBBLE, C. P., AND RAMANI, K. 2008. Coherent Ray Trac-
ing via Stream Filtering. In Proceedings of the 2008 IEEE/EG
Symposium on Interactive Ray Tracing, 59–66.

HARRIS, M., OWENS, J. D., SENGUPTA, S., TZENG, S., ZHANG,
Y., AND DAVIDSON, A. CUDA Data Parallel Primitives Library
(v1.1.1). available from http://cudpp.googlecode.com.

HARRIS, M., SENGUPTA, S., AND OWENS, J. D. 2007. Parallel
Prefix Sum (Scan) with CUDA. In GPU Gems 3. Aug.

HOBEROCK, J., LU, V., JIA, Y., AND HART, J. 2009. Stream
compaction for deferred shading. In Proceedings of the Confer-
ence on High Performance Graphics 2009, ACM, 173–180.

KALOJANOV, J., BILLETER, M., AND SLUSALLEK, P. 2011.
Two-Level Grids for Ray Tracing on GPUs. Computer Graphics
Forum (Proceedings of Eurographics ’11).

KARRENBERG, R., RUBINSTEIN, D., SLUSALLEK, P., AND
HACK, S. 2010. AnySL: Efficient and Portable Shading for
Ray Tracing. In High Performance Graphics.

KELLER, A. 2003. Monte Carlo & Beyond - Course Material.
Tech. Rep. 320/02, University of Kaiserslautern. Published in
Eurographics 2003 Tutorial Notes.

NOVAK, J., HAVRAN, V., AND DACHSBACHER, C. 2010. Path
Regeneration for Interactive Path Tracing. In Proc. EURO-
GRAPHICS Short Papers, 61–64.

NVIDIA. CUDA Occupancy Calculator. Available from
http://developer.nvidia.com.

NVIDIA. CUDA Programming Guide (V3.0). Available from
http://developer.nvidia.com.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering : From Theory to Implementation. Morgan Kaufman.

TSAKOK, J. 2009. Faster Incoherent Rays: Multi-BVH Ray Stream
Tracing. In Proceedings of High Performance Graphics 2009,
151–158.

VAN ANTWERPEN, D. 2011. Improving SIMD Efficiency for Par-
allel Monte Carlo Light Transport on the GPU. In Proceedings
of High Performance Graphics 2011. (to appear).

WALD, I. 2007. SIMD Stream Tracing — SIMD Ray Traversal
with Generalized Ray Packets and On-the-fly Reordering. Tech.
rep., SCI Institute, University of Utah.

A Path Tracer Infrastructure

A.1 Path::illuminate()

void i l l u m i n a t e (Pa th pa th , Scene s c e n e) {
Ray lRay ;
Sample<vec3f> Li ; /∗ i n c i d e n t r a d i a n c e ∗ /
i f (s c e n e . s a m p l e l i g h t (lRay , Li , p a t h)))

i f (! s c e n e . o c c l u d e d (shadow)) {
v e c 3 f b r d f =evalBRDF (pa th , lRay) ;
p a t h . r a d += p a t h . wght∗ b r d f / Li . pdf ; }

}

A.2 Path::extend()

boo l Pa th : : e x t e n d (pa th , s c e n e) {
i f (p a t h . t r a c e () == f a l s e) {

p a t h . r a d += p a t h . wght∗ envShade (∗ t h i s) ;
re turn ; }

i l l u m i n a t e (pa th , s c e n e) ;
re turn p a t h . bounce (s c e n e) ;

}

B Path Tracing Kernels

B.1 Naı̈ve

Device-side kernel code:

g l o b a l n a i v e (Scene scene , F rameBuf fe r fb) {
Pa th p a t h ;
p a t h . i n i t (s c e n e . camera , pixeLID , . . .) ;
whi le (p a t h . e x t e n d ())

/∗ i t e r a t e ∗ / ;
f b . a c c u m u l a t e (p a t h . p i x e l I D , p a t h . L) ;

}

Host-side kernel invocation:

void n a i v e (Scene scene , F rameBuf fe r fb) {
dim3 b l o c k (8 , 8 , 1) ;
dim3 g r i d (fb . s i z e . x / 8 , fb . s i z e . y / 8 , 1) ;

n a i v e<<<g r i d , b lock>>>(scene , fb) ;
}

B.2 Path-Front Compaction

Device-side kernel code:

g l o b a l oneBounce (. . . , Pa th pathMem [] , i n t bounce ,
i n t i s A c t i v e [] , i n t numActive) {

i n t t h r e a d I D = p i x e l I D . x+ p i x e l I D . y∗ fb . s i z e . x ;
i f (t h r e a d I D >= numActive) re turn ;
Pa th p a t h ; i n t p a t h ;
i f (bounce ==0) {

pa th ID = t h r e a d I D ;
p a t h . i n i t (. . .) ; }

e l s e {
pa th ID = a c t i v e I D [t h r e a d I D] ;
p a t h = pathMem [pa th ID] ; }

boo l a l i v e = i s A c t i v e [pa th ID] = p a t h . e x t e n d () ;
i f (a l i v e) p a t h [pa th ID] = p a t h ;
e l s e

fb . a c c u m u l a t e (p a t h . p i x e l , p a t h . L) ;
}

Host-side kernel invocation:

void w a v e f r o n t (Scene scene , F rameBuf fe r fb) {
dim3 b l o c k (8 , 8 , 1) ;
dim3 g r i d (fb . s i z e . x / 8 , fb . s i z e . y / 8 , 1) ;
i n t numPixe l s = fb . s i z e . x∗ fb . s i z e . y ;
i n t ∗ a c t i v e B i t = new i n t [numPixe l s] ;
i n t ∗ a c t i v e I D = new i n t [numPixe l s]
Pa th ∗ p a t h s = new Pa th [numPixe l s] ;
i n t numActive = numPixe l s ;
whi le (numActive != 0) {

w a v e f r o n t<<<g r i d , b lock >>>(. . . , numActive) ;
numActive = doCompact ion (a c t i v e I D , a c t i v e B i t) ; }

. . . /∗ f r e e memory ∗ /
}

B.3 Tiled Wave-Front (global memory)

Shared-memory version identical except for pathMem being a local array
with shared storage specifiers.

Device-side kernel code:

d e f i n e TILE X 64
d e f i n e TILE Y 8 /∗ # i n i t l p a t h s / t h r e a d ∗ /

g l o b a l t i l e d (. . . , Pa th pathMem [] , i n t bounce ,
i n t i s A c t i v e [] , i n t numActive) {

i n t t i l e I D = b l o c k I d x . x+ b l o c k I d x . y∗blockDim . x ;
Pa th ∗ t i leMem=&pathMem [t i l e I D ∗TILE X∗TILE Y] ;

s h a r e d u i n t a c t i v e I D [TILE X∗TILE Y] ;
s h a r e d boo l a c t i v e B i t [TILE X∗TILE Y] ;
s h a r e d h e l p e r S t u f f F o r P r e f i x S u m ;

/ / f i r s t pas s : i n i t i a l i z e a l l r a y s
f o r (i n t y = 0 . . TILE Y) {

i n t pa th ID = y∗TILE Y+ t h r e a d I d x . x ;
v e c 2 i r e a l p i x e l I D = . . . ;
t i leMem [pa th ID] . i n i t (. . .) ;
a c t i v e I D [pa th ID]= pa th ID ;
a c t i v e B i t [pa th ID]= i s A v a l i d P i x e l I D (. . .) ; }

/ / a l l r a y s i n i t i a l i z e d : bounce and compact
whi le (any a c t i v e) {

f o r (i n t y = 0 . . TILE Y) {
i n t pa th ID = pa th ID [y∗TILE Y ;
i t (! a c t i v e B i t [pa th ID]) c o n t in u e ;
p a t h = t i leMem [pa th ID] ;
boo l a l i v e = p a t h . doOneBounce (. . .) ;
i f (a l i v e) {

t i leMem [pa th ID]= p a t h ; }
e l s e {

fb . a c c u m u l a t e (. . .) ;
a c t i v e B i t [pa th ID]= f a l s e ; }}

s y n c t h r e a d s () ;
d o l o c a l c o m p a c t i o n (a c t i v e B i t , a c t i v e I D) ;

s y n c t h r e a d s () ; }
}

Host-side kernel invocation:

void w a v e f r o n t (Scene scene , F rameBuf fe r fb) {
dim3 b l o c k (TILE X , 1 , 1) ;
dim3 g r i d (fb . s i z e . x / TILE X , fb . s i z e . y / TILE Y , 1) ;
Pa th ∗ p a t h s = new Pa th [fb . s i z e . x∗ fb . s i z e . y] ;

t i l e d <<<g r i d , b lock >>>(. . . , numActive) ;
. . . /∗ f r e e memory ∗ /

}

