
The Visual Computer manuscript No.
(will be inserted by the editor)

Aaron M. Knoll · Ingo Wald · Charles D. Hansen

Coherent Multiresolution Isosurface Ray Tracing

the date of receipt and acceptance should be inserted later

Abstract We implement and evaluate a fast ray tracing
method for rendering large structured volumes. Input data
is losslessly compressed into an octree, enabling residency
in CPU main memory. We cast packets of coherent rays
through a min/max acceleration structure within the octree,
employing a slice-based technique to amortize the higher
cost of compressed data access. By employing a multires-
olution level of detail (LOD) scheme in conjunction with
packets, coherent ray tracing can efficiently render inher-
ently incoherent scenes of complex data. We achieve higher
performance with lesser footprint than previous isosurface
ray tracers, and deliver large frame buffers, smooth gradient
normals and shadows at relatively lesser cost. In this con-
text, we weigh the strengths of coherent ray tracing against
those of the conventional single-ray approach, and present a
system that visualizes large volumes at full data resolution
on commodity computers.

Keywords ray tracing · isosurfaces · volume data ·
compression · level of detail

1 Introduction

Interactive rendering of large volumes is an ongoing prob-
lem in visualization. Adaptive isosurface extraction tech-
niques are CPU-bound, and render a piecewise linear mesh
that locally differs from the implicit interpolating surface on
the source data. GPU direct volume rendering (DVR) deliv-
ers consistently real-time frame rates for moderate-size data;
but GPU memory imposes a limit on the volume size. Al-
though large data can be accessed asynchronously through
out-of-core methods and progressive rendering, rasterization
algorithms nonetheless have object-order complexity, which
breaks down for sufficiently large data. Given a limited
number of slices sampling a high-resolution volume, GPU
DVR methods have difficulty rendering a precise surface,
which is often desirable in scientific and medical analysis.

Scientific Computing and Imaging Institute,
University of Utah,
Salt Lake City, Utah 84112,
Tel.: (801)585-1867 Fax: (801)585-6513
E-mail: : {knolla|hansen|wald}@sci.utah.edu

Isosurface ray tracing of large volume data overcomes
many of these issues. As it is not limited to polygonal ge-
ometry, it can directly render implicit surface patches as
base primitives, and render exact piecewise-smooth isosur-
faces in this manner. More significantly, ray tracing scales
well to large data, particularly when scene complexity is
high relative to the number of rays that must be cast to fill
a frame. Although ray tracing is increasingly feasible on
the GPU, rendering on the CPU allows for direct access to
expandable mainboard memory, and greater control over hi-
erarchical data structures than with current GPU hardware.
This flexibility enables use of an adaptive-resolution octree,
which we can use as both a natively compressed data format
and an acceleration structure for rendering. Previous work
ray-traced large octree volumes interactively, but required
substantial workstation hardware [13]. In this paper, we op-
timize isosurface ray tracing with a coherent octree traversal
technique, then employ a multiresolution level of detail
(LOD) scheme to ensure coherence and hence performance.
The resulting system allows for faster and improved-quality
rendering on modest CPU hardware, and retains overall scal-
ability to large data for which single-ray tracing methods
have proven effective. Our paper is organized as follows: the
next section reviews related work; Section 3 discusses mo-
tivation for the proposed system, and a technical overview.
Section 4 illustrates octree volume construction. Section 5
details the coherent octree traversal algorithm and related
optimizations for large volume data. Section 6 discusses
the traversal-time multiresolution scheme. Section 7 covers
shading modalities; and Section 8 analyzes our results.

2 Related Work
Mesh Extraction and Direct Volume Rendering
The conventional method for isosurface rendering has been
extraction via marching cubes [20] or some variant; paired
with rasterization of the resulting mesh. Wilhelms and Van
Gelder [31] proposed a min/max octree hierarchy that al-
lowed the extraction process to only consider cells con-
taining the surface. This concept has been extended with
frustum and per-ray visibility culling [18,17] and multires-
olution volume data [30]. Livnat & Tricoche [19] effec-

2

tively combined mesh extraction with point-based splatting
for efficient isosurface rendering. Direct volume rendering
(DVR) [16] is a popular alternative to isosurfacing, and
efficient for moderate-size data on GPU’s [3]. LaMar et
al. [15] proposed a multiresolution sampling of octree tile
blocks according to view-dependent criteria. Boada et al. [2]
proposed a coarse octree built upon uniform sub-blocks of
the volume, and a memory paging scheme. Large data has
been addressed via block-based adaptive texture schemes
(e.g. Kraus & Ertl [14]), and an octree hierarchy of wavelet-
compressed blocks (e.g. Guthe et al. [9]).

Volumetric Isosurface Ray Tracing
Interactive isosurfacing of large volumes was first realized
in a ray tracer by Parker et al. [23], using a hierarchical grid
of macrocells as an acceleration structure. A single ray was
tested for intersection inside a cell of eight voxel vertices,
solving a cubic polynomial to find where the ray intersects
the interpolant surface in that local cell. DeMarle et al. [5]
extended this approach to clusters, allowing arbitrarily large
data to be accessed via distributed shared memory. Coher-
ent ray tracing [24,26,28] combined highly-optimized co-
herent traversal with SIMD primitive intersection to deliver
up to two orders of magnitude increase in frame rate, al-
lowing interactive ray tracing on a single processor. Marmitt
et al. [21] adapted the trilinear interpolant path intersection
test to a SIMD SSE architecture. Wald et al. [27] imple-
mented a coherent SIMD isosurface ray tracer employing
implicit kd-trees. This system was extended by Friedrich et
al. [7] with an multiresolution volume hierarchy for efficient
out-of-core progressive rendering. Knoll et al. [13] imple-
mented a single-ray traversal scheme for rendering octree-
compressed volume data. By employing one structure for
both the min/max acceleration tree and the voxel data itself,
this system rendered large volumes given limited main mem-
ory. While octree volume traversal incurred some penalty
from looking up compressed data within the octree, it per-
formed competitively with the best-known techniques em-
ploying either single rays or packets.

LOD Ray Tracing
Level of detail methods have already been employed in
ray tracing. Igehy et al. [10] proposed ray differentials as
a LOD metric for improved mipmap texture filtering. Yoon
et al. [32] explored hierarchical splatting as a method of
rendering massive mesh models. Djeu et al. [6] employed
ray differentials in conjunction with subdivision surfaces for
ray tracing LOD geometry.

3 Coherent Ray Tracing of Volume Data using LOD

The primary goal of this work is to optimize ray tracing of
octree volumes, and ideally to deliver interactivity on com-
modity CPU’s. Our main vehicle for such performance gains
is coherence. The general premise is to assemble neighbor-
ing rays into groups, or packets, with common characteris-
tics. Then, rather than computing traversal and intersection

per ray, we perform these computations per packet. High co-
herence occurs when rays in a packet behave similarly, inter-
secting common nodes in the efficiency structure or common
cells in the volume. Thus, coherence depends on scene com-
plexity as defined by the dataset and camera position.

Coherence via Level of Detail
Successful coherent systems have been optimized for rela-
tively small dynamic polygonal data [28,26] in which many
rays intersect common primitives. In contrast, large vol-
ume data exhibit low spatial coherence, particularly from
far-away camera positions. Isosurface ray tracing of large
data using conservative 2x2 ray packets [27] has suggested
performance generally on par with a single-ray system [13].
Coherent traversal may induce more intersection tests than
a single-ray traversal; and without optimizations, actually
perform worse than a single-ray tracer. To remedy this, we
employ a multiresolution level of detail scheme: when data
is sufficiently complex to hamper coherence, we render
a coarser-resolution representation with higher coherence.
The octree volume is inherently suited as a multiresolution
LOD structure; coarser-resolution voxel data can be stored
in interior nodes, allowing the original data, acceleration
structure and all LOD’s to be stored for a fraction of the
original uncompressed data footprint. To render a coarser
LOD, one simply specifies a cut of octree at a specified
depth. The ray tracer then omits traversal and intersection
of subtrees below that depth, and instead intersects coarser,
larger cells at termination depth. As more rays intersect a
common cell, coherence, and thus speedup, is achieved.
Overview
As shown in Fig. 1, our system consists of offline construc-
tion of the multiresolution octree structure from the original
data (A); followed by rendering of this octree using a thread-
parallel SSE-optimized packet ray tracer (B), e.g. [27]. The
latter distributes ray packets to worker threads (C), which
then perform per-packet coherent traversal, SSE isosurface
intersection, and shading in that order. Our main contribu-
tions involve extending the static-resolution octree volume
to multiresolution (Section 4); devising a coherent traver-
sal technique for the octree (Section 5); and leveraging the

Fig. 1 System overview.

3

traversal technique to reduce the cost of compressed data
access (Section 6). Ultimately, our system delivers interac-
tive ray tracing on a desktop CPU while preserving image
quality, and enables shading techniques that would be ex-
pensive in a conventional non-coherent octree volume ray
tracer. Moreover, it allows for scalable rendering of large
data that would be difficult for object-order volume render-
ing on single-GPU systems.

4 Multiresolution Octree Volume Construction

An octree volume is an hierarchically compressed scalar
field. Scalar values are stored at leaf nodes. At maximum
octree depth, these correspond to the finest available data
resolution. Scalars at less than maximum depth store coarser
resolutions, by factors of 8 per depth level. Interior nodes
maintain pointers from parents to children. In our multireso-
lution LOD application, they also contain coarser-resolution
representations of each of their children.

Fig. 2 Octree volume format illustrated, showing examples of an in-
terior node, a cap node, and scalar leaves.

4.1 Construction Algorithm
Volume data can be natively computed and stored in the
adaptive octree format. Alternately, the octree can be built
from a scalar field in a 3D array. Such a construction is de-
tailed by Knoll et al. [13]; this paper only discusses exten-
sions to the construction technique that allow for multires-
olution. In brief, construction is a bottom-up procedure in
which identical or similar voxels are merged together into
a single voxel within a parent node. Voxels are logically
leaves of the octree. However, rather than store each voxel
in a separate memory structure, we store every voxel within
its immediate parent. This yields two distinct structures: cap
nodes consisting of eight voxels at the finest resolution; and
interior nodes consisting of pointers to other nodes, which
can optionally be single scalar leaf voxels of a coarser res-
olution. As shown in Fig. 2, A scalar leaf is not a sepa-
rate structure, but a value embedded inside its parent inte-
rior node. Similarly, cap nodes are not leaves themselves but
contain eight scalars at the maximal depth of the octree.

Extension to multiresolution
In multiresolution octree volume construction, coarser-
resolution consolidated voxels are always computed and
stored in interior nodes, regardless of whether or not they

are leaves. Theoretically, a static-resolution octree volume
could use a single array to contain either a pointer to a child
subtree or a coarser-resolution scalar leaf. In practice how-
ever, the memory savings of this approach were too small to
justify the added computation. Multiresolution octree vol-
umes are thus constructed exactly as in the static-resolution
implementation [13]: nodes store eight-value arrays for
child pointers and scalar leaves. The only difference is that
multiresolution rendering actually uses non-leaf scalar data.

Min/Max tree computation
The only significant difference between multiresolution and
static-resolution construction lies in computing the min/max
tree. Static-resolution data requires the min/max pair of a
given voxel to reflect the minimum and maximum of eight
scalar vertices constituting the cell that maps to this voxel
(Fig. 3). We do not store a min/max pair for each finest-
level voxel due to the prohibitive 3x footprint. Instead, we
compute them for the immediate parents of the finest voxels
(cap nodes in Fig. 2). As shown in Fig. 4 (top), each leaf
node must compute the minimum and maximum of its cell,
hence account for the values of neighbors in the positive X
and Y dimensions (left). This yields a min/max pair for the
leaf node (right). Neighbors can potentially exist at different
depths of the octree, as is the case for at the blue leaf node..
For multiresolution data, cells may have any power-of-two
width, and we accordingly consider forward-neighbors at
each depth of the min/max tree (Fig. 4, bottom). As a re-
sult, the min/max tree for a multiresolution octree volume
is looser than that of static-resolution data. In practice, the
impact on performance is negligible for the data we test.

Fig. 3 Voxel-cell mapping. Given a scalar-centered voxel, we con-
struct its dual cell by mapping the scalar to the lower-most vertex, and
assigning forward-neighboring scalars to the remaining vertices.

Fig. 4 Min/max tree construction from forward neighbors.

4

5 Coherent Octree Volume Ray Tracing

Having constructed a compact octree volume with an em-
bedded min/max acceleration structure, we now turn to the
task of building a coherent ray tracing system. In general, we
seek to optimize for coherence as aggressively as possible,
namely by implementing a vertical SSE packet architecture
and a frustum-based octree traversal similar to the coherent
grid traversal of Wald et al. [28].

5.1 SSE Packet Architecture

A coherent ray tracer achieves its performance by operat-
ing on groups of neighboring or similar rays in packets. To
exploit coherence during primitive intersection, we perform
computations on SIMD groups of four rays (frequently re-
ferred to as packlets) and mask differing hit results as nec-
essary. Performing these SIMD computations requires that
we store ray information vertically within a packet. For ex-
ample, ray directions are stored as separate arrays of X,Y,Z
components, as opposed to a single horizontal array of 3-
vectors. These vertical arrays are 16-byte-aligned, permit-
ting us to access a packlet of four rays at a time in a single
SSE register. Similarly, the packet structure stores aligned
SSE arrays of hit results, such as hit position and normals.

5.2 Coherent Traversal Background

As an efficiency structure for ray tracing, the octree affords
several different styles of traversal. With coherent ray trac-
ing, we are given the choice between depth-first traversal
similar to a kd-tree [29] or BVH [26]; or a breadth-first co-
herent grid traversal (CGT) approach [28]. We choose the
latter for several reasons. Our primitives are regular, non-
overlapping cells, similar to large spherical particle data sets
for which CGT has proven effective by Gribble et al. [8].
More significantly, the breadth-first nature of the CGT al-
gorithm allows for a clever slice-based technique that amor-
tizes voxel look-up from the octree when reconstructing the
vertices of multiple cells.

Fig. 5 Coherent Grid Traversal. The CGT algorithm [28] traverses a
packet of rays through a grid slice by slice along a major march axis K,
iteratively incrementing slice extents by the differential of the bound-
ing frustum along the non-major axis U (and a third axis V in 3D).

Coherent Grid Traversal Algorithm

The original CGT algorithm departs from single-ray grid
traversal in that it considers full slices of cells contained
within a ray packet’s bounding frustum, as opposed to
marching across individual cells. The algorithm first deter-
mines the dominant X,Y,Z axis component of the first ray
in each packet. This is denoted K, and the remaining axes
are denoted U and V. Then, we consider the minimum and
maximum u and v coordinates at the k = 0 slice, and note
that the increment du,dv for a single unit along the march
axis K is constant. We store this increment in a single SSE
packed floating point unit, duv = [dumin,dvmin,dumax,dvmax].
Next, we determine the first and last k slice where the packet
frustum intersects the volume. We begin at the u,v extents,
euv = [umin,vmin,umax,vmax], the minimum and maximum of
enter and exit points on that slice of cells. To intersect primi-
tives, we truncate these values to integers and iterate over all
cells in that given U,V range. To march to the next slice, we
add the constant increment. Thus, a non-hierarchical grid
march is accomplished with a single SIMD addition and a
SIMD float-to-integer truncation. Unlike a single-ray DDA
grid algorithm [1], cells may be traversed in arbitrary U,V
order; however the K order is invariably front to back, per-
mitting early termination. The 2D analog of this algorithm
is illustrated in Fig. 5.

Macrocell Hierarchical CGT

The original CGT paper [28] implemented a two-level hier-
archy, with a single layer of macrocells each corresponding
to 6 grid cells. For small polygonal data, this was generally
sufficient. As the smallest volume we test is 3023, a more
robust hierarchy could be desirable for our application. We
extended the CGT algorithm to arbitrary number of macro-
cell layers similarly to Parker et al. [22], and found that a
recursive 23 macrocell hierarchy – equivalent to a full oc-
tree – consistently yielded the best performance for volumes
larger than 2563. The macrocell traversal employs an array
stack structure to avoid recursive function calls: this stores
the u,v slice and increment for all macrocell levels, the cur-
rent slice within the current macrocell level, and the next
slice at which to return to parent macrocell traversal. When
all rays in a packet have intersected or the packet exits the
root macrocell level, traversal terminates. The approach is
that of a recursive grid sharing common coordinate space
on the given volume dimensions, in which each macrocell
block is a multiple M of its children. Thus, child coordi-
nates are always an M-multiple of parent macrocell coor-
dinates. Child macrocells, or the volume cells themselves,
are traversed when any macrocell in a given slice is non-
empty – specifically, when our desired isovalue is within
that macrocell’s min, max range. Then, the packet frustum
traverses full slices of that macrocell level’s children. As
shown in Fig. 6, our hierarchical grid employs recursively
superimposed macrocell blocks, with each parent containing
23 children, for alignment with the octree volume. We de-
pict a 3-deep hierarchy, with blue, yellow and green extents
corresponding to macrocell layers from coarsest to finest.

5

Macrocells are only traversed when they contain our desired
isovalue, as illustrated by the “surface” at the dotted line.
With an octree, macrocells are implicit; min/max pairs are
retrieved from the octree nodes via hashing.

Fig. 6 Coherent Octree Traversal via Implicit Macrocells.

5.3 Implicit Macrocell Grid Traversal of Octree Volumes.

Our octree volume traversal is effectively coherent grid
traversal of an implicit macrocell hierarchy, in which
min/max pairs are retrieved from octree interior nodes in-
stead of macrocells. Rather than repeatedly multiplying grid
coordinates by the macrocell width M, octree nodes at all
depths share a common coordinate space [0,2dmax], where
dmax is the maximum depth of the tree. Some macrocell
traversal computation can be optimized for the binary sub-
division of the octree. When recursing from a parent to
traversing children, the macrocell grid multiplies the k-slice
by the macrocell width M; in the octree M = 2, a bitwise
left-shift. Computing the next macrocell slice requires a
simple +2 addition.

Mapping Macrocells to Octree Nodes

Traversing implicit macrocells over an octree requires par-
ticular attention, as a single coarse scalar leaf node in the oc-
tree may may cover multiple finer-level implicit macrocells.
Given an implicit macrocell coordinate, we seek the deepest
octree child that maps to it. We then use the min/max pair
in the parent node, corresponding to that child, to perform
the isovalue culling test. As lookup is costly, we store the
path from the octree root to the current node along the u,v-
minimal ray of the frustum. We then use neighbor-finding
as detailed in [13] to inexpensively traverse from one node
to the next. Hierarchically recursing from a parent node to a
child requires a single lookup step in the octree.

Default Slice-Based Traversal

At shallow levels of the octree, the packet frustum typically
traverses a single common macrocell. At deeper levels, the
u,v extents encompass multiple macrocells, so we must
neighbor-find numerous octree nodes. By default, macrocell
CGT stops iterating over a slice when any node is non-
empty, and proceeds to traverse slices of children nodes.

This ensures that traversal is performed purely based on
the packet frustum as opposed to individual rays, and pre-
serves the breadth-first coherent nature of the algorithm.
Unchecked, it also causes numerous unnecessary octree
lookups and ray-cell intersection tests. To mitigate this, we
implement the two following optimizations.

Fig. 7 Culling empty macrocells from cap-node slices.

Culling empty cap-level macrocells. To avoid unneces-
sary intersections and octree hashing, we clip the u,v slice
corresponding to the deepest-level macrocells, one level
above actual cell primitives. To do this, we iterate over the
min/max pairs corresponding to the finest available octree
depth. When traversing at maximum resolution, the deepest
macrocells correspond to cap nodes (Fig. 2). Within this
iteration, if a macrocell contains our isovalue, we compute
new slice extents based on the minimum and maximum
u,v coordinates. If the macrocell is empty, we omit it from
extent computation. The effect is to clamp the u,v slice so
that it more tightly encloses nodes with the desired isovalue.
Fig. 7 illustrates this where we first clip slices of deepest
macrocells, corresponding to cap nodes of the octree at
depth dmax − 1. We narrow the u,v slice extents by omitting
macrocells with ranges outside our value; only the shaded
cells containing our isovalue are considered.

Fig. 8 Clipping cell slices to fit active rays.

Clipping the cell-level slice to active rays. To further re-
duce the number of cell primitives in a slice, we intersect
individual rays with the world-space bounding box formed
by the current u,v slice. When rays have already successfully

6

hit a cell, they are “inactive” and can be safely ignored even
if they intersect the slice bounding box. As shown in Fig. 8,
this enables us to considerably shrink the u,v extents before
intersecting a K-slice of cells by simply by computing the
minimum and maximum of the enter and exit hit coordinates
of active rays.

5.4 Cell Reconstruction from Cached Voxel Slices

Having clipped the primitive-level slice to as small a u,v ex-
tent as possible, we are ready to perform ray-cell intersec-
tion. Our ray-tracing primitive is a cell with eight scalar val-
ues; one at each vertex. However, the data primitives in our
octree volume are voxels. Using the same duality employed
by min/max tree construction, we map octree voxels to the
lower-most vertex of each cell (Fig. 3). Our task now is to
reconstruct cells efficiently from the octree, exploiting co-
herence whenever possible.

Fig. 9 Slice-based cell reconstruction algorithm.

U,V Voxel Slice Filling

In single-ray and depth-first traversals, cells are constructed
independently, given a lower-most voxel from traversal, and
using neighbor-finding to look up the remaining seven vox-
els. However, adjacent cells share vertices – much neighbor-
finding effort is duplicated. With our octree CGT, we can
iterate over an entire slice of adjacent u,v cells, access each
voxel once, and store the results in a 2D array buffer. We
add 1 to the maximal u,v slice extent to account for forward
cell vertices in those directions. Then, we iterate over the u
and v components of the slice, performing neighbor-finding
from one coordinate to the next. By iterating in a scanline,
the neighbor-finding algorithm need only find a common an-
cestor along one axis, and is slightly cheaper. We store the
voxel results for this slice in a 2D array buffer, and look up
values from this buffer to reconstruct four vertices of each
cell in the slice. The remaining four vertices can be recon-
structed in the same fashion by filling in a second buffer
for the k+1 slice. Thus, to find the eight vertices of each
cell, rather than neighbor-find seven forward-neighbors per
voxel, we exploit our slice-based traversal to look up and

cache K-slices of voxels, amortizing and reducing the cost of
data access. Fig. 9 illustrates filling of five successive slices,
with like colors representing where cached voxels are used
to avoid repeat neighbor-finding.

Copying the Previous-Step K-Slice

In cell reconstruction, we also exploit voxel coherence along
the K axis. For this, we note that vertices on either the front
(k) or back (k+1) slice of each cell are shared from one
traversal step to the next, depending on whether the K march
direction is positive or negative. In either case, we can copy
an advancing slice buffer from the previous traversal step
into a posterior buffer of the current traversal step (Fig. 9).
We must account for the traversal offset in the minimum u,v
coordinates between the two buffers; and perform neighbor-
finding for voxels not buffered from the previous step, due
either to that offset or different maximal u,v extents.

5.5 Ray-Cell Intersection

With our cached slice buffers, we can iterate over cell
primitives and reconstruct cell vertices. To compute the ray-
isosurface intersection, we iterate over all SIMD packlets,
discarding packlets that are inactive (have already inter-
sected) according to the per-packlet hit mask. For each
packlet, we first check that each at least one actually in-
tersects the bounding box of the cell in question, and then
proceed to compute the ray intersection with the implicit
isosurface.

For ray-cell intersection, we seek a surface inside a
three-dimensional cell with given corner values (Fig. 3),
such that trilinear interpolation of the corners yields our
desired isovalue. This entails solving a cubic polynomial for
each ray; the hit position is given at the first positive root.
Our implementation uses the Neubauer iterative root finder
proposed by Marmitt et al. [21]. Computation is performed
per-packlet. If any ray in the packet intersects successfully,
we compute the gradient normals for that packlet. We do
not defer normal computation due to the prohibitive cost of
reconstructing cell vertices twice.

6 Multiresolution Level of Detail System

Our optimized coherent traversal algorithm significantly
outperforms single-ray traversal on simple scenes; and due
to the lower data lookup cost even exhibits a factor-of-two
speedup moderately incoherent scenes in which more than
one ray per packlet seldom intersects the same cell (Ta-
ble 2). However, coherence breaks down on highly complex
scenes, where rays are separated by multiple cells that are
never intersected. This pathological case is common with far
views of large data sets. (Table 3). This behavior is detailed
more fully in Section 8. The purpose of the multiresolution
system is to manage pathological cases posed by large data,
and preserve coherence with only minor sacrifice in quality.

7

6.1 Resolution Heuristic

Stop depth. The general vehicle for the multiresolution
scheme is determining an effective depth at which to stop
traversing children, and instead reconstruct cells to inter-
sect. Coarser-resolution voxels are explicitly stored in the
scalar leaf fields of interior nodes, regardless of whether a
finer-resolution subtree exists. When the traversal algorithm
stops, cell reconstruction proceeds exactly as it would at the
finest resolution, except given a stop depth dstop it incre-
ments the u,v coordinates by 2dstop instead of simply 1 at the
finest resolution. Thus, the octree hash scheme operates on
canonical octree space [0,2dmax], regardless of LOD depth.

Pixel-to-voxel width ratio. A more difficult problem in for-
mulating the multiresolution scheme is determining which
parts of the scene should be rendered at which resolution.
Generally, we note that when multiple voxels project to the
same pixel, a coarser level of resolution is desirable. LOD
techniques for volume rendering often use a view-dependent
heuristic to perform some projection of voxels to screen-
space pixels, and identify distinct regions of differing resolu-
tions [15]. In the case of ray-casting with a pinhole camera,
the number of voxels that project to one pixel varies quadrat-
ically with the distance from the camera. As aspect ratio is
constant, we may simply consider the linear relation along
one axis U, namely the increment between each primary ray
along U, du. Then, we can render the coarser resolution at
dstop when du = Qstop ∗ dV , where dV is the U-width of a
voxel, and Qstop is some constant threshold. As the U-width
of a single pixel, dP, is simply a multiple of du, we can sim-
ply reformulate our constant as a ratio of pixel width to voxel
width dP/dV , where Qstop = (du/dP)∗ (dP/dV).

Packet extents metric. Ideally, our LOD metric should be
evaluated per packet. An obvious choice would be the du
width of the packet, given by the aforementioned u,v slice
extents. One could render a coarser resolution whenever the
number of cells in a slice at the current resolution surpassed
some threshold. Unfortunately, at the same k-slice, the
dupacket could vary between packets, causing neighboring
rays to intersect different-resolution cells, hence resulting in
seams. We desire a similar scheme that allows us to perform
transitions consistently between packets.

LOD Mapping via K Transition Slices. To ensure consistent
transitions from one resolution to the next, we compute a
view-dependent map from resolution levels to world-space
regions along the major traversal axis K. We note that the
width of a pixel corresponds to the distance between primary
rays along the U and V axes, which increases with greater t,
as we move farther from the camera origin. If we consider
a major march direction K, we can find the exact k slice
coordinate where any given number of voxels corresponds
to exactly one pixel. This is similar to the per-ray metric
approach, except it solves where du = Qstop∗dV at a discrete
K-slice, k. As packets traverse the octree one K-slice at a
time, we have a constant world-space LOD function that can
be computed on a per-packet basis.

We multiply the ratio of pixel width to voxel width,
dP/dV , by the power-of-two unit width corresponding to
each depth d of the octree. Then, we solve for the t param-
eter where this voxel width is equal to the distance between
viewing rays, ducamera. Finally, we evaluate K-component
of the direction ray to compute the K-slice where our fixed
dP/dV ratio occurs, ktransition[d]. These mark the transition
slices from each resolution to its coarser parent. The array is
computed once per frame, using Algorithm 1. The dP/dV
constant is thus our base quality metric; Fig. 13 shows the
same scene rendered using varying dP/dV .

Algorithm 1 Transition Array Computation
Require: Pixel-width to voxel-width ratio, dP/dV

Per-ray camera offset along U axis, ducamera
Ensure: Array of K-transition slices, ktransition[]

for all octree depths d ∈ {0..dmax−1} do
voxelWidth[d]⇐ 2dmax−d ∗dP/dV
ttransition[d]⇐ voxelWidth[d] / ducamera
ktransition[d]⇐ korigin + ttransitionkdirection

end for

6.2 Multiresolution Traversal

Rather than determining the major march axis K per packet,
we decide it once per frame based on the direction vector of
the camera. While this causes some packets to perform CGT
on a non-dominant axis, in practice there is no appreciable
loss in performance with a typical 60-degree field of view.

The traversal algorithm determines the initial transition
slice when it computes the first k-slice of a packet, by finding
the first ktransition[d] < k. Then, before recursively travers-
ing a child slice at the current resolution depth, we check if
kchild >= kd−1, the slice corresponding to transition to the
next coarser resolution. When that occurs, we omit traversal
of the child and perform cell reconstruction. The current res-
olution depth is then decremented, so the traverser seeks the
subsequent coarser-resolution transition slice. This process
is illustrated in Fig. 10 (left).

Fig. 10 Left: multiresolution transition slices along the K axis. Right:
transitions are smoothed by substituting coarse-LOD values at fine-
level cell vertices at the transition slice.

6.3 Smooth Transitions

Isosurfaces are piecewise patches over their respective cells,
and can vary both topologically and locally from one res-

8

olution to the next. As such, discontinuities arise at tran-
sition slices between finer and coarser isosurfaces. While
these discontinuous surfaces are technically “correct” with
respect to each resolution, it is frequently desirable to mask
the multiresolution transition and render a single smooth sur-
face. To accomplish this, our slice-based reconstruction al-
gorithm checks if each K-slice is equal to the next kd tran-
sition slice. If it is, we look up voxel data from the octree at
coarser depth d − 1 as opposed to the current default depth
d. This guarantees identical voxel values on either side of
the transition, and thus continuous surfaces (Fig. 10, right).
Exceptions may occur in cases of gross disparity between
each resolution of the scalar field, where topological dif-
ferences cause a surface to exist at one resolution but not
the other This is common in highly entropic regions of the
Richtmyer-Meshkov data. In these cases, it is desirable to
omit smooth transitions and expose levels of detail via color-
coding (Figs. 13, 16).

7 Shading

Our technique affords better flexibility in shading the iso-
surface. One limitation of the octree volume is that data ac-
cess for cell reconstruction is expensive, discouraging tech-
niques such as central-differences gradients that require ad-
ditional neighbor-finding. With slice-based coherent traver-
sal, we are able to amortize the cost of cell reconstruction as
shown previously. Multiresolution allows us to simplify the
casting of shadow rays and illustrate depth cues with less
performance sacrifice.

Fig. 11 Gradient normals, computed on a forward differences stencil
yielding 5.5 FPS (left), and a central differences stencil at 4.7 FPS
(right) on an Intel Core Duo 2.16 GHz with a 5122 frame buffer.
7.1 Smooth Gradient Normals

By default, normals are computed using the forward-
differences gradient at the intersection point within the given
cell. The disadvantage of this method is that such gradients
are continuous only within each cell. The isosurface itself is
formed from piecewise trilinear patches with C0 continuity
at cell edges. For a more continuous normal vector field, and
better visual quality, we can compute gradients on a central
differences stencil to ensure C1 continuity along cell edges.

To compute the central differences gradient, we use
a stencil of three cells along each axis; thus 64 cell ver-
tices (voxels) must be found during reconstruction. Re-
constructing a 43 voxel neighborhood per-ray is costly in

non-coherent octree volume isosurface ray tracing [13]. Co-
herent reconstruction with cached slices allows for smooth
normals with far lesser penalty. In a non-coherent ray tracer
this entails eight times the lookup cost of forward dif-
ferences, causing worse than half the forward-differences
performance. In our coherent system, we return to the slice-
based cell reconstruction technique to amortize that cost of
neighbor-finding. We simply retrieve two additional rows
and columns of voxels, corresponding to umin − 1,vmin − 1
and umin +2,vmin +2 coordinates. In addition to our existing
2D array buffers for the k and k +1 slices, we store two ad-
ditional buffers corresponding to the k− 1 and k + 2 slices.
We then use this four-wide kernel with a central-differences
stencil to compute the gradient: 1

2 (VX−1,Y,Z) −V(X+1,Y,Z))
along the X axis, and similarly for the Y and Z axes. Perfor-
mance with central differences is typically 15%-30% slower
than with forward differences. Given the improvement in
visual quality, smooth normals are arguably worth the trade
(Fig. 11).

Fig. 12 Shadows. With centrally-differenced gradient normals, the
above shadowed scene renders at 3.9 FPS on an Intel Core Duo 2.16
GHz with a 5122 framebuffer, as opposed to 5.1 FPS without shadows.

7.2 Shadows

An oft-cited advantage of ray tracing is that shadows can be
computed trivially without adding geometric complexity or
implementing sophisticated multi-pass texturing techniques.
In practice, tracing shadows doubles the cost of casting each
ray that successfully hits an object. Computing shadow rays
in a coherent packet system is more complicated than for
a single-ray tracer, as individual rays must be masked and
shadow packets generated based on the hit results of the
primary rays. Fortunately, point-light shadows may be cast
from the light to the primary hit point, thus they share a com-
mon origin and benefit from coherent optimizations. Our
primary goal being interactivity, we are interested in hard
shadows that may not appear photorealistic, but adequately
provide depth cues to the viewer. As such, we can exploit
the LOD system to cast faster coherent shadow rays through
a coarser-resolution representation of our volume – for ex-
ample, using a shadow ray dP/dV of twice the viewing ray
dP/dV. By coherently casting shadow rays through a coarser
resolution, we can achieve higher performance and provide

9

similar depth cues. This yields framerates only 20%-30%
slower with shadows than without (Fig. 12).

8 Results

We first note the impact of octree volumes on compression
and render-time memory footprint. We then evaluate perfor-
mance of our system by first considering coherent octree
traversal alone, and then analyzing the performance of the
multiresolution system.

8.1 Octree Construction Results

Octree volumes are remarkable not in the overall com-
pression ratios they achieve, but in their ability to provide
respectable lossless compression, spatial hashing, and ef-
fective ray traversal in a single structure. Table 1 shows
compression achieved for various structured data. Gener-
ally, a factor of 4:1 is common with lossless consolidation,
but actual compression depends enormously on the overall
entropy of the volume. Fluid dynamics simulations such
as the Richtmyer-Meshkov and heptane compress well, but
noisy medical data can actually occupy more space in an
octree. Segmentation allows us to meet memory constraints,
and isolate data ranges of interest.

DATA ISO- TIME SIZE %
RANGE STEP original octree

heptane full 70 27.5M 3.96M 14
full 152 27.5M 9.5M 33
full 0-152 4.11G 678M 16

RM full 50 8.0G 687M 8.5
full 150 8.0G 1.89G 25
full 270 8.0G 2.48G 30

64-127 270 8.0G 1.81G 22
CThead full 14.8M 12.4M 84
femur full 162M 163M 101

100-163 162M 9.0M 5.5

Table 1 Compression achieved for various structured data when con-
verted to octree volumes. The second column represents iso-ranges.
Clamping all values outside a given range delivers additional octree
compression, and preserves lossless compression for values within that
range. “Full” indicates the full 0-255 range for 8-bit quantized scalars.
Data sizes are in bytes, and include all features of the octree, including
overhead of the embedded min/max tree.

Further Compression

Generally, our goal is simply to compress a single data
timestep into a manageable footprint for limited main mem-
ory. Sometimes losslessly compressed data will be slightly
too large to meet this constraint. One option is lossy com-
pression via a non-zero variance threshold, which behaves
similarly to quantization. A more attractive method, for
our purposes, is segmenting data into interesting ranges
of isovalues, and clamping scalars outside those values to
the minimum and maximum of the range. This allows for
lossless-quality rendering of isovalues within that range.
For example, compressing only the 64-127 value range of
timestep 270 of the Richtmyer-Meshkov data allows us to

render that range on a machine with 2 GB RAM (Table 1).
This method is even better suited for medical data such as
the visible female femur, when the user is specifically in-
terested in bone or skin ranges. The full original CT scan
has highly-variant, homogeneous data for soft tissue iso-
values from 0-100, causing the octree volume to actually
exceed the original data in footprint. However, considering
only the bone isovalues 100-163, we achieve nearly 20:1
compression (Table 1). Not coincidentally, such “solid” data
segments are best suited for visualization via isosurfacing
(Fig. 15).

Construction Performance and Filtering

The bottom-up octree build algorithm is O(N) with regard to
the total number of voxels; nonetheless N can be quite large.
On a single core of a 16-core 2.4 GHz Opteron workstation,
building a single timestep of the 3023 heptane volume re-
quires a mere 8 seconds and negligable memory footprint;
whereas a timestep of the Richtmyer-Meshkov data requires
45 minutes and a footprint of nearly 40 GB. The build it-
self creates an expanded full octree structure that occupies a
footprint of four times the raw volume size. Thus, building
octree volumes from large data requires a 64-bit workstation.
Although an offline process, parallelizing and optimizing the
build would be both desirable and feasible as future work.
In addition, the current construction algorithm effectively
samples coarser resolutions via recursive clustered averag-
ing. Superior LOD quality could be achieved with bilinear
or higher-order filtering.

Memory Footprint Comparison

Octrees generally occupy 20%-30% the memory footprint
of the uncompressed grid data, including both the multires-
olution LOD structure and min/max acceleration tree. Con-
versely, storing a full 3D array for each power-of-two LOD
volume would approach twice the footprint of the original
uncompressed volume. Other ray-tracing efficiency struc-
tures such as implicit kd-trees [27] could require up to twice
the full data footprint, often with an additional overhead of
around 15% for cache-efficient bricking [22]. Thus, octrees
compare favorably to other volume ray tracing structures.

8.2 Coherent Traversal Analysis

The main purpose of our slice-based algorithmic enhance-
ments, and indeed of traversal itself, is to minimize the num-
ber of cells that must be intersected. By employing packets
and the breadth-first CGT frustum algorithm, we are able
to dramatically reduce both the computational and memory
access costs of traversal. Finally, when multiple rays in a
SSE packlet intersect the same object, we may effectively
perform up to four intersections for the price of one. For
these reasons, we are able to achieve significant speedups on
highly coherent simple scenes. Even with moderately com-
plex scenes where a pixel seldom contains more than one
voxel, and SIMD intersection yields little speedup, slice-
based reconstruction effectively doubles performance (Ta-
ble 2). Moreover, rendering time is strongly correlated with

10

the number of ray-cell intersections. Performance profiling
reveals that only 5%-15% of CPU time is spent in traversal,
compared to over 70% in reconstruction and intersection.

TRAV. LOOKUPS ISECS L/RAY I/RAY FPS
single 314707 166719 1.2 0.64 2.3
packet 1187798 469560 4.5 1.8 .78
+slice 1187798 469560 4.5 1.8 2.2
+mcell 561889 124221 2.14 0.47 3.9
+cell 270123 120514 1.0 0.47 4.6
+mulres 98055 44419 0.37 0.17 7.6

Table 2 Results from clipping optimizations when ray-casting a mod-
erately complex scene with low primitive-level coherence, from the
heptane fire dataset (HEP302, Table 3). We compare single-ray traver-
sal and 8x8 octree-CGT packet traversal with and without optimiza-
tions. +slice: use slice-based cell reconstruction. +mcell: clip the deep-
est macrocell slice extents to discard nodes not containing the isovalue.
+cell: clip the cell slice extents to the set of active rays. +mulres: mul-
tiresolution scheme, with dP/dV = 1. Tests at 5122 using one core of
an Intel Core Duo 2.16 GHz.

SCENE HEP64 HEP302 RM
I/RAY FPS I/RAY FPS I/RAY FPS

single 0.70 1.9 0.64 2.3 3.58 0.57
coherent
2x2 0.26 4.3 0.5 2.84 5.65 0.38
4x4 0.11 9.7 0.45 4.54 7.94 0.33
8x8 0.058 14.4 0.47 4.6 12.4 0.22
16x16 0.041 14.5 0.50 2.81 20.5 0.08

Table 3 Results with coherent packets, showing the net number of
intersections per ray and frames per second with a single-ray tracer,
and our coherent system with varying packet sizes. We examine three
scenes of increasing complexity. Leftmost (HEP64) is the 643 down-
sampled heptane data, which has high intersection-level coherence.
The full 3023 heptane data (HEP302) has low intersection-level coher-
ence, but benefits from coherent traversal. The 20483 RM data yields
even less coherence, and is a pathological case for packet traversal.
Benchmarks on a single core of an Intel Core Duo 2.16 GHz, with a
5122 frame buffer and multiresolution disabled.

Packet size
For performance reasons, our implementation chooses a
static packet size for traversal. This is appropriate for our
application, as we seek to render isosurfaces with constant
complexity. Later, we enforce this via the pixel to voxel
width ratio in the LOD scheme. Empirically, we find that
packets of 8x8 work best for scenes where one to 4 rays
intersect a common cell. 16x16 packets yield little benefit
even for simple data, and perform poorly on complex scenes
of large data (Table 3).

Incoherent behavior without multiresolution
Complex scenes reveal the shortcoming of coherent traver-
sal. Because traversal is not computed on a per-ray basis, but

solely from the packet frustum corners, it frequently looks
up cells that would have been correctly ignored by a more
expensive single-ray traverser. Our clipping optimizations
(Figs. 7, 8) noticeably alleviate this, as we can see in Table 2.
However, for complex scenes such as far views of large data,
rendering cost is totally bound by intersection (Table 3). Ul-
timately, frustum-based traversal causes large numbers of
cells to be looked up, though no rays in the packet actually
intersect them. This in turn causes many unnecessary inter-
section tests to be performed. Successful intersection tests
are no less expensive, as packlet-cell intersection degener-
ates to single-ray performance without primitive-level co-
herence. These higher costs eventually overwhelm any gains
made by more efficient traversal, and cause the coherent
ray tracer, without multiresolution, to perform worse than
a single-ray algorithm on sufficiently complex scenes.

8.3 Multiresolution Results

The combination of multiresolution level of detail and co-
herence enables frame rates up to an order of magnitude
faster for coherent scenes. With large volume data and small
frame buffers, coherence is less common; but in general it is
possible to decrease dP/dV to achieve interactive frame rates
and interesting, albeit coarser-quality, representations of the
data. For highly entropic large volume data, this behavior
is frequently useful as coarser LODs inherently possess less
variance, thus manifest less aliasing. However, coarser LOD
rendering are also less correct with respect to the original
resolution, as shown in Fig. 13.

Fig. 13 Qualitative impact of multiresolution on the Richtmyer-
Meshkov data at t=270, isovalue 20. Top left to bottom right: single-
ray, then coherent multiresolution with dP/dV of 1,2 and 4. On an Intel
Core Duo 2.16 GHz with a 5122 frame buffer, these render at 0.92, 1.0,
1.9, and 3.6 FPS respectively. To illustrate LOD transitions, like colors
indicate the same resolution.

11

Quality Comparison
Fig. 16 in the Appendix compares quality with and without
multiresolution at dP/dV = 1, with forward and central
differences gradients. The bottom images show per-pixel
differences (computed using 1 − abs(re f erence − image)
per color channel), comparing multiresolution and non-
multiresolution results, both rendered as white surfaces on
black background. In reproducing major features, renderings
with and without multiresolution look essentially identical.
However, the difference images reveal that though most
features remain intact, actual isosurfaces are slightly offset
when rendered at varying resolution – this accounts for the
black pixels (shown in closeup) where the surface exists at
one resolution but not another. Otherwise, most differences
lie in the intensity of the gradient at different resolutions, as
evidenced by grayscale pixels in the difference images.

Overall Performance
In best-case scenarios, our system significantly outperforms
the single-ray tracer. With close camera views of the RM
data and dP/dV = 1, we see order-of-magnitude improve-
ment (Table 4). The coherent technique usually yields mod-
est improvements even for scenes with generally poor co-
herence. For sufficiently far camera angles viewing complex
data, the single-ray system may actually outperform the co-
herent method, when using a LOD dP/dV = 1. For these
pathological cases, we recommend relaxing dP/dV for ex-
ploration, or resorting to single-ray traversal for quality.

Coherent traversal handles a difficult scenario for the
single-ray system: a close-up scene deep within the volume,
with an isovalue for which the min/max tree is particularly
loose. Such is the case in the last example of Table 4. While
single-ray suffers from data access demand, coherent traver-
sal largely amortizes these costs and performs comparably
to other scenes with similar complexity.

Another substantial advantage of coherence is that large
frame buffers can be rendered relatively faster. Doubling
the frame buffer dimensions generally causes a factor of
four slowdown in a single-ray tracer; by comparison the
packet system frequently experiences a factor of two or
better performance decrease, particularly when higher res-
olution leads to improved intersection-level coherence. For
the dataset in Fig. 15, coherent ray tracing scales well to
large frame buffers. This dataset renders at 6.0 FPS at 5122,
versus 3.1 FPS at 10242 on an Intel Core Duo 2.16 GHz,
with central differences and shadows.

8.4 Comparison to Existing Systems

Table 4 shows performance for the Richtmyer Meshkov
dataset with our coherent multiresolution system with
dP/dV = 1; and the single-ray implementation [13] with no
multiresolution scheme. In the best-case scenario we achieve
a factor of 23 faster than single-ray performance, and even
in worst cases the coherent multiresolution implementation
does not exhibit substantially inferior performance. These
numbers compare favorably to other implementatations.

SCENE C.Duo,5122 Xeon,5122 Xeon,10242

single 8x8 single 8x8 single 8x8
50, far 2.5 3.5 14.5 19.5 4.5 6.5
150, far 1.9 2.5 11.1 15.0 3.4 4.9
270, far 1.1 1.1 7.2 12.4 2.2 2.2
50, close 2.0 6.9 12.1 39.8 3.6 14.2
150, close 1.7 8.1 12.0 44.2 3.5 14.6
270, close 0.2 4.7 1.4 38.6 0.4 9.2

Table 4 Framerates of various time steps of the Richtmyer-Meshkov
data, on an 2-core Intel Core Duo 2.16 GHz laptop (2 GB RAM) and an
8-core dual 3 GHz Intel Xeon (Clovertown) with 4 GB RAM; with our
coherent multiresolution method with 8x8 packets and dP/dV = 1, and
single-ray without multiresolution [13]. Refer to Fig. 14 for images.

Fig. 14 Richtmyer-Meshkov results. From left to right, timesteps 50,
150 (isovalue 20), and 270 (isovalue 160). Top: various close-up cam-
era views, illustrating highly coherent scenes. Bottom: far views ex-
hibiting generally poor coherence. We use dP/dV = 1.

For similar camera positions, we achieve the same 2 FPS
RM data performance on an two-core Intel Core Duo as
DeMarle et al. [5] report on a 64-processor cluster with a
distributed shared memory layer. We are competitive with
Wald et al. [27] for far views, and perhaps faster for close-
up scenes, while generally requiring an order of magnitude
lesser memory footprint. The performance of our system is
also on par with that of Friedrich et al. [7]; however such
comparison is not completely fair as that system employs
LOD for progressive as opposed to dynamic rendering.

Comparison with state-of-the-art GPU methods is more
difficult. Clearly, slice-based direct-volume rasterization on
the GPU outperforms our method by well over an order
of magnitude for small data (less than 5123). For larger
data, this gap is less pronounced, but GPU DVR methods
can equally employ multiresolution compression schemes
on blocks [9] and space-skipping and culling optimiza-
tions [25]. These techniques are still limited by bus la-
tency, and to our knowledge data the size of the Richtmyer-
Meshkov has yet to be visualized at original data resolution
on a GPU. Out-of-core streaming and progressive render-
ing, as well as multi-GPU distributed systems, are clearly
valid approaches to large-scale volume visualization [4].
However, multicore workstations are increasingly inexpen-
sive commodities, and share a more straightforward and
scalable programming model. Ultimately in rendering large

12

data, performance is bound more by memory access than
by computation. To that end, multicore CPU’s, with hier-
archical caches that directly access expandable mainboard
memory, are increasingly attractive. Ray tracing algorithms
are well-suited for both this application and platform.

Fig. 15 The visible female femur.

9 Conclusions

We have presented a method for coherent ray tracing of large
octree volume data using a multiresolution level of detail
scheme to improve performance. Octree volume ray tracing
allows for interactive exploration of large structured data on
multicore computers using a fraction of the original mem-
ory footprint. While other spatial structures might deliver
greater compression or faster traversal, the octree strikes a
particularly good balance of these goals. With multiresolu-
tion and coherent traversal, we are able to trade quality for
performance and render at interactive rates. Coherent traver-
sal amortizes the cost of cell lookup, which allows for faster
intersection and improved shading techniques.

As future work, the multiresolution octree could trivially
be employed for out-of-core progressive rendering similar
to Friedrich et al. [7], using the same compressed struc-
ture for LOD. Equally intriguing would be adapting the
slice-caching reconstruction algorithm to perform volume
rendering. Though computationally demanding, it could be
implemented to take advantage of SIMD vector instruc-
tions [11], and would exhibit similar overall complexity to
isosurfacing if the transfer function were sufficiently sparse.
Also of interest would be employing generalized higher-
order implicit surfaces [12] as intersection primitives, which
could yield higher-quality reconstructions. Finally, gener-
ating coarser LOD’s with improved filtering, as well as
smoothly blending between LOD levels as opposed to only
interpolating at transitions, could improve visual quality.

An overarching concern is that LOD may not be an ideal
solution for high-quality rendering, and ultimately perfor-
mance gains from improved coherence may not justify the
increase in code complexity and loss in visual quality. One
of the major advantages of ray tracing, when compared to

rasterization, is that performance depends logarithmically,
not linearly, on geometric complexity. The single-ray tracer
renders both simple and complex data at roughly equal,
though slow, frame rates. Coherent multiresolution essen-
tially forfeits this advantage; it instead opts to improve
best-case performance of simple scenes, while attempting
to simplify complex scenes to mitigate worst-case perfor-
mance. In a way, coherent ray tracing behaves similary to
rasterization in that its performance depends on LOD.

Nonetheless, for the purposes of large volume visual-
ization, multiresolution isosurface ray tracing presents clear
benefits. The main goal of our optimizations was to over-
come limitations single-ray octree volume ray tracing [13]
and to ensure general interactivity. Overall, we accom-
plish that: our system is generally faster than single-ray
non-coherent methods, allows for improved shading at re-
duced cost, and permits the user to trade visual quality for
speed when interactivity is marginal. Moreover, as multicore
CPU’s increase in power and availibility, techniques such as
these become increasingly interactive, while retaining their
scalability to large data and more cores in the long term.

10 Acknowledgments

This work was supported by the U.S. Department of Energy
through CSAFE grant W-7405-ENG-48, and by the Na-
tional Science Foundation under CISE grants CRI-0513212,
CCF-0541113, and SEII-0513212. It was also supported by
the US Deparment of Energy SciDAC VACET, Contract
No. DE-FC02-06ER25781 (SciDAC VACET), and a visit-
ing professorship sponsored by Intel Corp. Thanks to Mark
Duchaineau at Lawrence Livermore National Laboratory for
use of the Richtmyer-Meshkov dataset, and to Steve Parker
and Heiko Friedrich for their support and insights.

References

1. Amanatides, J., Woo, A.: A Fast Voxel Traversal Algorithm for
Ray Tracing. In: Proceedings of Eurographics, pp. 3–10. Euro-
graphics Association (1987)

2. Boada, I., Navazo, I., Scopigno, R.: Multiresolution Volume Vi-
sualization with a Texture-Based Octree. The Visual Computer
17(3) (2001)

3. Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In:
VVS ’94: Proceedings of the 1994 symposium on Volume visu-
alization, pp. 91–98. ACM Press, New York, NY, USA (1994).
DOI http://doi.acm.org/10.1145/197938.197972

4. Castanie, L., Mion, C., Cavin, X., Levy, B.: Distributed shared
memory for roaming large volumes. IEEE Transactions on Visu-
alization and Computer Graphics 12(5), 1299–1306 (2006). DOI
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.135.
Proc. IEEE Visualization 2006

5. DeMarle, D.E., Parker, S., Hartner, M., Gribble, C., Hansen, C.:
Distributed Interactive Ray Tracing for Large Volume Visualiza-
tion. In: Proceedings of the IEEE Symposium on Parallel and
Large-Data Visualization and Graphics (PVG), pp. 87–94 (2003)

6. Djeu, P., Hunt, W., Wang, R., Elhassan, I., Stoll, G., Mark, W.R.:
Razor: An architecture for dynamic multiresolution ray tracing.
Tech. rep., The University of Texas at Austin (2007). (Cond. ac-
cepted to ACM Transactions on Graphics)

13

7. Friedrich, H., Wald, I., Slusallek, P.: Interactive Iso-Surface Ray
Tracing of Massive Volumetric Data Sets. In: Proceedings of the
2007 Eurographics Symposium on Parallel Graphics and Visual-
ization (2007)

8. Gribble, C., Ize, T., Kensler, A., Wald, I., Parker, S.G.: A coher-
ent grid traversal approach to visualizing particle-based simulation
data. Tech. Rep. UUSCI-2006-024, SCI Institute, University of
Utah (conditionally accepted at ACM Transactions on Graphics,
2006) (2006)

9. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive Render-
ing of Large Volume Data Sets. In: Proceedings of the conference
on Visualization ’02, pp. 53–60. IEEE Computer Society (2002)

10. Igehy, H.: Tracing Ray Differentials. In: Computer Graphics (Pro-
ceedings of ACM SIGGRAPH), pp. 179–186 (1999)

11. Knittel, G.: The ULTRAVIS System. In: Proceedings of the 2000
IEEE symposium on Volume visualization, pp. 71–79. ACM Press
(2000). DOI http://doi.acm.org/10.1145/353888.353901

12. Knoll, A., Hijazi, Y., Wald, I., Hansen, C., Hagen, H.: Interactive
Ray Tracing of Arbitrary Implicit Functions with SIMD Interval
Arithmetic. In: Proceedings of the 2007 Eurographics/IEEE Sym-
posium on Interactive Ray Tracing (2007)

13. Knoll, A., Wald, I., Parker, S., Hansen, C.: Interactive Isosurface
Ray Tracing of Large Octree Volumes. In: Proceedings of the
IEEE Symposium on Interactive Ray Tracing (2006)

14. Kraus, M., Ertl, T.: Adaptive Texture Maps. Proceedings of
ACM SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware (2002)

15. LaMar, E., Hamann, B., Joy, K.I.: Multiresolution Techniques for
Interactive Texture-based VolumeVisualization. In: Proceedings
IEEE Visualization 1999 (1999)

16. Levoy, M.: Efficient Ray Tracing for Volume Data. ACM Trans-
actions on Graphics 9(3), 245–261 (1990)

17. Liu, Z., Finkelstein, A., Li, K.: Improving Progressive View-
Dependent Isosurface Propagation. Computers & Graphics 26(2),
209–218 (2002)

18. Livnat, Y., Hansen, C.D.: View Dependent Isosurface Extraction.
In: Proceedings of IEEE Visualization ’98, pp. 175–180. IEEE
Computer Society (1998)

19. Livnat, Y., Tricoche, X.: Interactive Point-based Isosurface Ex-
traction. In: Proceedings of IEEE Visualization 2004, pp. 457–464
(2004)

20. Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution
3D Surface Construction Algorithm. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH) 21(4), 163–169 (1987)

21. Marmitt, G., Friedrich, H., Kleer, A., Wald, I., Slusallek, P.: Fast
and Accurate Ray-Voxel Intersection Techniques for Iso-Surface
Ray Tracing. In: Proceedings of Vision, Modeling, and Visualiza-
tion (VMV), pp. 429–435 (2004)

22. Parker, S., Parker, M., Livnat, Y., Sloan, P.P., Hansen, C., Shirley,
P.: Interactive Ray Tracing for Volume Visualization. IEEE Trans-
actions on Computer Graphics and Visualization 5(3), 238–250
(1999)

23. Parker, S., Shirley, P., Livnat, Y., Hansen, C., Sloan, P.P.: Interac-
tive Ray Tracing for Isosurface Rendering. In: IEEE Visualization,
pp. 233–238 (1998)

24. Reshetov, A., Soupikov, A., Hurley, J.: Multi-Level Ray Trac-
ing Algorithm. ACM Transaction of Graphics 24(3), 1176–1185
(2005). (Proceedings of ACM SIGGRAPH)

25. Ruijters, D., Vilanova, A.: Optimizing GPU Volume Rendering.
Winter School of Computer Graphics, Pilzen (2006)

26. Wald, I., Boulos, S., Shirley, P.: Ray tracing deformable scenes us-
ing dynamic bounding volume hierarchices. Tech. Rep. UUSCI-
2006-023, SCI Institute, University of Utah (conditionally ac-
cepted at ACM Transactions on Graphics, 2006) (2006)

27. Wald, I., Friedrich, H., Marmitt, G., Slusallek, P., Seidel, H.P.:
Faster Isosurface Ray Tracing using Implicit KD-Trees. IEEE
Transactions on Visualization and Computer Graphics 11(5), 562–
573 (2005)

28. Wald, I., Ize, T., Kensler, A., Knoll, A., Parker, S.: Ray tracing
animated scenes using coherent grid traversal. In: Proceedings of
ACM SIGGRAPH 2006) (2006)

29. Wald, I., Slusallek, P., Benthin, C., Wagner, M.: Interactive Ren-
dering with Coherent Ray Tracing. Computer Graphics Forum
20(3), 153–164 (2001). (Proceedings of Eurographics)

30. Westermann, R., Kobbelt, L., Ertl, T.: Real-time Exploration of
Regular Volume Data by Adaptive Reconstruction of Iso-Surfaces.
The Visual Computer 15(2), 100–111 (1999)

31. Wilhelms, J., Gelder, A.V.: Octrees For Faster Isosurface Genera-
tion. ACM Transactions on Graphics 11(3), 201–227 (1992)

32. Yoon, S.E., Lauterbach, C., Manocha, D.: R-lods: Fast lod-based
ray tracing of massive models. The Visual Computer (Proc. Pacific
Graphics 2006) 22(9-11), 772–784 (2006)

A Coherent Octree Traversal Algorithm

In this pseudocode, duv and euv are SSE vector variables, and k is an in-
teger. Cap depth is dcap = dmax −1. For multiresolution, the algorithm
is similar except we may intersect slices at lesser stop depth than dmax.
Also refer to Figs. 6,8, and 9 for illustration of this algorithm.

Algorithm 2 Octree CGT algorithm
Require: axes K,U,V; packet P; octree volume OV ; isovalue
Ensure: compute P intersection with OV

for all depths i ∈ {0..dmax} do
duv[i]⇐ [dumin,dvmin,dumax,dvmax] / 2dmax−i

k0[i]⇐ (P enters OV)K / 2dmax−i

k1[i]⇐ (P exits OV)K / 2dmax−i

euv[i]⇐ [umin,vmin,umax,vmax] at k0[i],k1[i]
k[i]⇐ k0[i]
knextMC[i]⇐ k[i]+2

end for
d ⇐ 0
while k[d]≤ k1[d] do

if k[d] = knextMC[d] then
d ⇐ d−1
continue

end if
traverseChild ⇐ f alse;
for all u ∈ [umin,umax],v ∈ [vmin,vmax] of euv do

node ⇐ OV.lookup(vec3(k,u,v),d)
if isovalue ∈ [node.min,node.max] then

traverseChild ⇐ true
break

end if
end for
if d = dcap then

clip euv to non-empty cap-level macrocells
end if
if traverseChild = true then

if d = dmax then
clip cell slice euv to active rays
intersect P with slice k[dcap] at euv[dcap]
if all rays in P hit then

return
end if

else
euv[d]⇐ euv[d]+duv[d]
knew[d +1]⇐ 2∗ k[d]
k[d +1]⇐ knew[d +1]
knextMC[d +1]⇐ k[d +1]+2
d ⇐ d +1
continue

end if
end if
euv[dcap]⇐ euv[dcap]+duv[dcap]

end while

14

B Quality Comparison

Fig. 16 Qualitative comparison of results on the RM data, t=270, 10242 f ramebu f f er, using 8x8 packets. Top row: without multiresolution,
with forward differences (left) and central differences (right), rendering at 1.8 and 1.3 fps, respectively. Middle row: color-coded multiresolution
with dP/dV = 1, rendering at 4.2 and 3.1 fps for forward and central differences respectively. Bottom row: inverted differences between the
results with and without multiresolution. Benchmarks performed on an 8-core dual Intel Xeon 3 GHz desktop with 4 GB RAM.

