Efficient Ray Traced Soft Shadows using Multi-Frusta Tracing

Carsten Benthin

Intel ®

Abstract

Ray tracing has long been considered to be superior to rasterization
because its ability to trace arbitrary rays allows for simulating vir-
tually any physical light transport effect by just tracing rays. Yet,
to look plausible, extraordinary amounts of rays for effects such as
soft shadows are typically required. This makes the prospects of
real-time performance rather remote. Rasterization, in contrast, has
a record of producing such effects in real-time through employ-
ing specialized and approximate solutions for individual effects.
Though ray tracing may still be the right choice for effects like
reflections and refractions, using specialized solutions for certain
important effects also makes sense for a ray tracer.

In this paper, we propose a special solution to ray trace soft shad-
ows that is particularly targeted for Intel’s Larrabee architecture.
We use a specialized frustum tracing that traces multiple frusta of
specialized “light-weight” shadow packets in parallel, while gen-
erating rays within each frustum on demand. The technique can
easily be integrated into any packet ray tracer, and fits well into the
wide SIMD and cache-size constraints of the Larrabee architecture.
Our technique allows to reach rates of up to several dozen million
rays per second per Larrabee core, outperforming traditional packet
techniques by up to 6x. This high performance combined with
a simple light-weight illumination filtering step allows to achieve
real-time soft shadows for game-like scenes.

1 Introduction

Real-time graphics today is almost exclusively based on Z-Buffer
technology. Yet, ray tracing is often considered as a possible fu-
ture alternative that might eventually lead to higher image quality
and increased ease of content creation. This is based on the ability
to virtually simulate every physical lighting effect through tracing
rays and to easily combine all these effects in a single rendering
framework. This generality is important from the content creation
side, and may - eventually - well be the deciding argument in favor
of ray tracing.

Today, however, ray tracing is still far too slow to compete with
rasterization for real-time applications like games. Interestingly,
it is actually the image quality that usually argues in favor of Z-
Buffer based techniques for games: improvements in hardware and
traversal algorithms nowadays allow for real-time ray tracing per-
formance for primary visibility and hard shadows, but as soon as
effects like soft shadows, motion blur, anti-aliasing, ambient oc-
clusion, etc. are added, a ray tracing based renderer can no longer
maintain real-time frame rates due to the vastly increased number of
rays required to compute these effects. While Moore’s law argues
that it is only a matter of time until hardware will be fast enough to
trace even these numbers of rays in real time, this is certainly not
yet the case.

Ingo Wald

Corporation

Using rasterization, in contrast, most of these effects are (under
proper circumstances) affordable at real-time rates, and are com-
monly used in today’s games running on current hardware. This is
because programmers usually use specialized solutions for these ef-
fects, such as shadow maps [Soler and Sillion 1998; Fernando 2005;
Johnson et al. 2009] and shadow volume based techniques [Assars-
son et al. 2003] for soft shadows, screen-space filtering techniques
for ambient occlusion and motion blur effects, multi-sample anti-
aliasing (MSAA) etc. These special solutions often have problems
of their own, but usually are orders of magnitude more efficient than
computing the same effect through tracing rays.

The drawback of using such techniques is that it is often prob-
lematic to combine them with each other, and they often rely on
properly modeled scenes and manual software-tuning. Neverthe-
less, for today’s games this is usually not a deal-breaker, and if ray
tracing is ever to compete with rasterization in the real-time do-
main, either massively more powerful hardware is needed, or sim-
ilarly specialized solutions for the most important effects have to
be investigated for ray tracing too. Ideally, such special solutions
should give similar benefits as they did for rasterization, but not
negatively impact the ray tracer’s plug-and-play characteristics.

In this paper, we investigate a special solution for ray traced soft
shadows for game-like scenes. Instead of tracing dozens of “stan-
dard” rays per pixel to compute a soft shadow, we trace shadow
frusta from the hit points to the light source and generate rays for
intersection tests on demand. After tracing all shadow frusta, the ir-
radiance at each pixel is stored. In the final step a small filter kernel
is applied to the entire image to filter neighboring irradiance.

For traversal and intersection, we use specially designed data
layouts, culling techniques, and optimized algorithms that provide
dramatically higher performance than packet tracing approaches.
Though the technique is particularly designed for soft shadows, it
can also be applied efficiently for primary visibility (e.g., for multi-
sample anti-aliasing) or hard shadow rays. It cannot accelerate
other rays like reflection or refraction rays at all, however, it can
be easily integrated into an existing packet-based ray tracer with-
out major modifications (i.e., it also works for soft shadows seen
by reflected and refracted rays). Furthermore, it does not require
additional information like silhouette edges by itself, but could po-
tentially make use of it. In addition, our technique is specially de-
signed to fit well into the architectural constraints—in particular,
wide SIMD and limited amounts of per-thread storage/cache—that
are the hallmark of modern high-thoughput architectures. Though
also applicable to similar architectures, our particular implementa-
tion is optimized for the Larrabee architecture [Seiler et al. 2008].

Our technique is able to generate ray traced soft shadows up to
6x faster than computing the same image with packet tracing. Us-
ing a cycle-accurate Larrabee simulator—configured, like in [Seiler
et al. 2008], to simulate a hypothetical clock rate of 1 GHz—we
demonstrate that 16 cores would suffice to reach more than half a
billion primary and soft shadow rays per second (and thus, real-time
performance).

2 Background

2.1 The Larrabee Architecture

Larrabee [Seiler et al. 2008] is a scalable multi-core design that
comprises a group of small in-order processor cores (and certain
fixed-function units, see Figure 1) all of which are connected by
a high-throughput ring bus. Each core is derived from the Intel
Pentium processor, providing full support for the Pentium x86 in-
struction set. In addition, each core features a 512-bit wide SIMD
unit that performs sixteen 32-bit or eight 64-bit integer and floating
point operations.

All vector operations can be controlled by 16-bit mask registers,
which allows for handling SIMD divergence (rays not taking a cer-
tain code path can easily be disabled by setting their mask bits to
0). In addition to the typical arithmetic and logical vector oper-
ations the LRBni instruction set [Intel LRBni 2009] also supports
free conversions for various data formats, as well as three-operand
instructions, element swizzling, scatter/gather operations, and even
special operations such as bitcounts, bitscans, etc.

Larrabee cores are in-order, but run four different hardware
threads in parallel. Each core has its own sets of (fully coherent)
32 KB L1-cache and 256 KB of L2 cache, with communication be-
tween processors done by the ring bus. The cache hierarchy is fully
coherent among all cores.

Wide SIMD
8 D$

L2 Cache

de SIMD
s Ds

Fixed Function

Memory Controller

x
=2
°
=
€
3
o
&
o
£
]
H

System Interface Display Interface

Texture Logic

3 Ds ” D$

Figure 1: The Larrabee architecture consists of multiple small in-
order x86 processor cores. Each core has its own L1 cache and L2
cache, 4 hardware threads, and a 16-wide vector unit.

2.2 Packet and Frustum Traversal Techniques

Before SIMD became ubiquitous, achieving high ray tracing per-
formance relied on tracing individual rays through an optimized
spatial index structure. In the presence of SIMD, operating on indi-
vidual rays becomes problematic. To solve that problem, packets of
rays are traced together [Wald et al. 2001], typically using packet
sizes equal to the SIMD width. This approach can also be used on
Larrabee, and will provide the baseline for our comparisons.

In general, the benefit of traditional packet tracing is limited
by the SIMD width. Greater speedups can be achieved by using
even larger packets, and bounding them by frusta, envelopes, or
interval arithmetic. This bounding information can then be used
to effectively cull entire packets during traversal and/or intersec-
tion [Dmitriev et al. 2004; Reshetov et al. 2005; Boulos et al. 2006;
Wald et al. 2007].

Rather than using the bounding information only for culling, one
can also base the entire traversal exclusively on this bounding infor-
mation [van der Zwaan et al. 1995; Wald et al. 2006; Overbeck et al.
2007]. Since the bounding information has to be conservative, this
may lead to some unnecessary traversal steps, but since the bound-
ing tests are typically cheap compared to testing multiple rays, a
significant speedup can usually be achieved. Unfortunately, such
traversal techniques often do not fit well to wide-SIMD architec-
tures, as we will discuss in more detail in Section 3.

2.3 Soft Shadow Algorithms

The first approaches for computing soft shadows used ray tracing
for Monte-Carlo-based sampling [Cook et al. 1984]. In order to
reduce the noise caused by variance in the estimate, a large number
of samples (> 256) was required. Exact soft shadows are obtained
by determining the precise occluder geometry by either turning a
flood-fill algorithm on point samples [Hart et al. 1999] or searching
for silhouette edges [Stewart and Ghali 1994; Drettakis and Fiume
1994]. These approaches produce high quality soft shadows but are
typically slower than sampling based techniques.

Soft shadow volumes [Laine et al. 2005; Lehtinen et al. 2006]
utilize penumbra wedges to determine the screen space of poten-
tial silhouette edges. Both approaches require memory-intensive
data structures and complex query algorithms, which do not fit
well into the Larrabee architecture. The same problems apply to
beam techniques [Overbeck et al. 2007] as polygon-clipping and
frustum splitting require complex state handling, making it hard to
efficiently map them to a wide-SIMD architecture.

Approximate techniques focus on generating plausible instead
of accurate soft shadows [Hasenfratz et al. 2003; Amanatides 1984,
Soler and Sillion 1998; Parker et al. 1998]. These approaches tend
to break down in certain situations (e.g. self-shadowing), require
manual parameter tuning, or demand significant preprocessing (as,
for example, in the case of precomputed radiance transfer [Sloan
et al. 2002]).

Today’s fastest soft shadow algorithms either use light-view
based spatial index structures [Johnson et al. 2009] or pre-filtered
shadow maps [Annen et al. 2008]. They are very fast and pro-
duce plausible soft shadows which might not be physically accu-
rate. However, they are purely rasterization-based and are not easy
to integrate into a pure ray-tracing based rendering system.

On the ray tracing side, Instant Radiosity [Keller 1997] in com-
bination with interleaved sampling [Keller and Heidrich 2001], dis-
continuity filtering, and packet tracing, has been shown to compute
indirect illumination at interactive rates [Wald et al. 2002]. Our soft
shadow approach uses these techniques, in particular interleaved
sampling and a light-weight discontinuity buffer, to significantly
reduce the number of required shadow rays per pixel (compared to
standard sampling).

3 Multi-Frusta Tracing (MFT)

Disregarding memory access, the performance of a packet ray tracer
strongly depends on the SIMD utilization, which is particularly
true for Larrabee’s wide-SIMD. As mentioned in Section 2.2, ray
packet tracing in general fits well to a SIMD architecture, but higher
speedups can only be achieved by using bounding information to
handle large sets of rays. Obviously, the bounds need to enclose
the contained rays tightly, which means that the rays themselves
need to be coherent. In the following, we will refer to the bounding
information simply as frustum.

The major drawbacks of frustum techniques are that the higher
the SIMD width, the lower the potential speedup over packet tracing
and the more difficult it is to make efficient use of SIMD. For ex-
ample, the fast BVH traversal algorithm by [Wald et al. 2007] per-
forms essentially two scalar tests: the first hit test and the frustum
culling test. These two (logically scalar) tests can still be mapped
reasonably well to 4-wide SIMD, but not to 16-wide SIMD any
more. Additionally, for the proposed packet size of 64 rays [Wald
et al. 2007], the potential maximum traversal speedup, compared
to 16-wide packet tracing, will be 4x (instead of 16x for 4-wide
SIMD). Getting the same theoretical benefits would require to use
even larger packets, which however leads to other problems like
increased cache footprint, higher coherency demands, etc.

3.1 Our approach

Instead of performing a single frustum culling test at a time, our
approach does the culling for 16 frusta in parallel. As the culling
is independent across the frusta, it maps well to 16-wide paral-
lel SIMD execution. Our multi-frusta tracing (MFT) uses interval
arithmetic-based culling [Wald et al. 2007] of axis-aligned bound-
ing boxes (AABB). Extensions to other BVH variants (e.g., ori-
ented bounding boxes or spheres) are straightforward. Rather than
interval arithmetic one could also use bounding planes, bounding
cones, etc, but our interval-based approach is both simple and effi-
cient. Note that we use “open ended” frusta without a far plane, as
this has shown to be eaiser and faster than trying to save some some
traversal steps by maintaining such a far plane.

Compared to the algorithm by Wald [2007], we drop the first hit
test and the packet-intersection fallback test. The latter computes
ray-AABB intersections for all active rays and is executed every
time the first hit and the interval-based culling tests fail. The first
hit and packet-intersection fallback test are the only tests that re-
quire individual rays. Our BVH traversal relies exclusively on the
culling efficiency of the 16 frusta. This in particular requires ex-
tensions to the culling itself (see Section 4.1) and to the primitive
intersection test at the leaf level (see Section 4.2). Compared to
tracing only a single ’big’ frustum at a time [Reshetov et al. 2005],
multiple small frusta are more efficient as they can be terminated
individually during traversal, which is similar to packet traversal
where individual rays can be terminated.

Our MFT technique does not require major changes to the under-
lying ray tracer; instead, it is built on top of an already existing ray
tracing core. The core’s internal data structures for storing scene
data are simply reused. Though also applicable to other data struc-
tures, for the rest of this paper we assume that the underlying ray
tracer uses a bounding volume hierarchy (BVH). We also assume
that this BVH has already been built/updated for this frame, but
extensions to lazy construction schemes are straightforward.

3.2 Usage scenarios

MFT is not tied to one particular shading/lighting algorithm, but
rather a general tool that can be used in various ways. Though
one could in theory build an entire ray tracing system around MFT,
we do not recommend this: as any other frustum-technique MFT
depends on the rays in each frusta to be coherent, and maintaining
sufficient coherence for arbitrary secondary rays is not trivial.

Instead, we suggest to trace arbitrary rays with traditional packet
tracing, and use our approach only for specific kinds of rays that
are sufficiently dense and coherent. For now, we focus only on
primary rays (16 frusta of 16 rays) and soft shadows (16 shadow
rays each for a packet tracer’s 16 surface samples), but will briefly
sketch other applications in Section 6.1. Concentrating on specific
kinds of rays also allows further optimizations like early frustum
termination and on-demand generation of the rays, which we will
detail below.

4 Implementation
4.1 Traversal

Our BVH traversal is based on culling AABBs using interval arith-
metic. As a common origin is assumed for each frustum (but not
for all frusta), only intervals over the ray directions are required,
more precisely over the reciprocals of ray directions per frustum.
Each AABB is stored using a 32-byte layout, while the AABBs for
the left and right child of a BVH node are stored consecutively in a
64-byte block (a single cache line).

The culling step itself performs a 3D slabs-test [Kay and Kajiya
1986] using intervals [Boulos et al. 2006], which is done for all 16
frusta in parallel. It first subtracts the origin from min/max values
of the AABB and then computes the intersection of interval bounds

per dimension (using the reciprocal direction intervals). In case
all frusta share a single origin (primary or hard shadow rays), only
a single subtraction is needed for the two AABBs (left and right
child). The code complexity of 16-wide interval-based slabs test is
similar to a standard 16-wide ray slabs test.

During traversal of the BVH, we keep track of all active frusta by
simply tracking an active mask. If a frustum has been terminated, it
is marked as inactive (by setting the corresponding bit in the mask
to zero), after which this frustum will not be considered in further
traversal/intersection steps.

As multi-frusta traversal does not consider individual rays, only
the triangle intersection test itself requires them. This avoids pre-
traversal setup such as computing and storing ray directions and
their reciprocals. The latter are typically required for an optimized
slabs test. The drawback of performing only interval-based culling
without a per-packet fallback is the dependence of culling efficiency
to the extent of the interval bounds.

Even for tight ray direction intervals, the culling efficiency
breaks down if one of them contains zero in any of the three di-
mensions. In this case, the reciprocal interval is the full interval
(—o0,40), meaning a complete loss of culling efficiency in the re-
spective dimension. In order to fix it, a simple additional culling
step is introduced: if the ray directions within a frustum differ for
a given dimension, an intersection test between the AABB of the
ray directions and the node’s AABB is performed. This assumes
that the interval in the zero-containing dimension is tight, which is
usually the case. Moreover, the case of different directions per di-
mension is far less likely than the common direction case, e.g. less
than 4% for primary rays.

For all test scenes used, the culling-based traversal increases the
number of active frusta reaching leaves only slightly, compared to
performing exact ray-AABB intersection tests at the leaf level. The
increased number of triangles passed to the intersection test can be
efficiently accommodated by fast triangle culling techniques, see
Section 4.2. In general, all our application scenarios, e.g. primary
visibility and soft shadows, assume that the frusta are reasonably
tight, meaning the rays in frusta are somewhat coherent. Otherwise,
frustum shrinking during traversal can be applied, see Section 5.3.

4.2 Intersection

As described so far, MFT can only reduce the number of AABB
tests. However, the same concept can also be used during (multi-
)packet-triangle intersection, by performing some additional “per
packet” culling tests (like backface culling and corner ray culling)
for all 16 packets in parallel. In total, once reaching a leaf we it-
erate over all contained triangles and perform up to three tests per
triangle, see Figure 2.

Figure 2: Left: The first test checks the orientation of the triangle
with respect to the frustum’s origin. If the triangle’s normal has the
wrong orientation the triangle is culled. Center: Testing to separate
the four corner rays (which bound the frustum) from each of the
three triangle edges. If the four corner rays are outside with respect
to one of the edges, the triangle is culled too. Right: Final ray-
packet triangle intersection test, by first checking the aperture and
then the distance.

First, we check the orientation of the triangle with respect to the
frustum origin (back-face culling) in parallel for all 16 frusta. After
and’ing with the active frustum mask, we know which frusta are
still active after backface culling, and can exit if no frustum remains
active. This test is particularly useful to avoid intersections with the
triangles on which the shadow rays originate.

Second, we perform a more accurate triangle vs. frusta separa-
tion test. We use the four ’corner’ rays of each frustum to deter-
mines whether any frusta are entirely ’outside’ any of the triangle’s
edges [Boulos et al. 2006; Wald et al. 2007]. This test is again
performed for all 16 frusta in parallel, and the result mask is log-
ical ANDed with the back-face culling mask and the active frusta
mask found during traversal. The final mask, which we call triangle
active mask, indicates for which frusta a full 16-wide ray-triangle
intersection test has to be performed. The corner ray test is efficient
in compensating the drawbacks of the culling-based traversal, as it
quickly culls a large fraction of non-intersecting triangles, see Sec-
tion 5. It mostly offsets any potential benefit from full ray packet-
AABB intersection tests at the leaf level.

Third, we scan over all active frusta (using bitscan) and per-
forms a 16-wide ray packet-triangle intersection (only) for the ac-
tive frusta. Note that all operations so far (AABB tests, backface
culling, corner ray tests) have considered only the bounding frusta,
so this packet/triangle test now is the only point where we actu-
ally have to consider the individual rays. Rather than reading pre-
generated rays from memory, for primary and shadow rays it is
actually faster to generate these rays on demand (as detailed Sec-
tion 4.4). In particular, for fully lit regions this means that in most
cases no shadow rays are ever generated, as in those cases the only
tests performed are AABB tests, back-face culling, and possibly
corner-ray culling, all of which use only the frustum information.

For packet/triangle intersection, we use a variant of the Pluecker
test that allows to exploit the common origin per frustum and to
reuse computed data between all three tests [Benthin 2006]. By
first subtracting the origin(s) from the three vertices and computing
a cross product per edge, the triangle aperture test (for corner and
frustum rays) simplifies to three SIMD dot products. Obviously,
this setup is performed in SIMD for all 16 frusta in parallel.

Each dot product between a ray and a triangle edge determines
their orientation. Since we perform back-face culling, the triangle
orientation is known, so we only have to check for the *correct’ sign
of each dot product. The corner ray culling step is done the same
way, by just checking the orientation of the four corner rays. If all
four rays have the *wrong’ orientation, no intersection occurs.

For the first two tests, early exits are implemented: if, for ex-
ample, a triangle has a wrong orientation with respect to all active
frusta, it will be culled. For the actual triangle intersection test, the
aperture test is performed before the distance test, as it is likely to
have a higher culling rate than the distance test.

It is worth mentioning that no preprocessed triangle data is used.
The underlying ray tracing core just stores three vertex indices per
triangle. Storing some precomputed per-triangle data leads to even
higher performance (by reducing the number of memory accesses),
but is not done in our experiments below.

4.3 Ray Termination

Shadow rays can be terminated as soon as any intersection is found.
Similarly, a shadow frustum can be terminated as soon as all con-
tained rays report an intersection. For these frusta the respective
bits in the active mask are set to zero, and no further triangle in-
tersection tests will be performed. Compared to tracing one big
primary ray frustum at a time, tracing multiple smaller frusta thus
has four big advantages: it better utilizes SIMD units by operat-
ing on 16 different frusta at a time; it allows to perform common
origin optimizations (eg, in the triangle test) as long as all rays in
any given frustum have the same origin; it allows to selectively ter-

minate individual frusta while other frusta may still be active; and
finally, it leads to better culling efficiency because the 16 individual
frusta are much tighter than one bug frustum encompassing all rays
(see Figure 4).

Figure 4: Top left: Single primary ray frustum, representing a 4 x 4
pixel grid. Top-Right: 16 primary ray frusta, grouped in a 4 x 4
grid, representing 16 x 16 pixels. Bottom-Left: Single shadow ray
frustum, enclosing 16 shadow rays, starting from a common origin
to 16 samples on the light source. Bottom-Right: 16 shadow ray
frusta, enclosing 256 shadow rays. Each shadow ray frustum has a
different origin. Note that the 16 individual shadow frusta are much
tighter than a single frustum spanning all shadow rays.

4.4 Frusta Generation and Data Layout

Primary Ray Frusta Each primary ray frustum corresponds to
a4 x4 pixel grid. All 16 frusta represent 16 x 16 pixels or 256 rays,
see Figure 4. Generating corner rays for the 16 primary frusta by
using the image plane is trivial, as well as computing the respec-
tive ray intervals from the corner rays. As storing data for 256 rays
increases the cache-footprint by more than 3KB (+3KB for recip-
rocals), it is more beneficial to generate rays quickly on demand.
Therefore, we decompose each ray direction into two 3D vectors: a
start and delta vector. The start vector corresponds to the upper-left
corner ray of each frustum while the delfa vector represents 16 off-
sets to the centers of a 4 x 4 pixel grid. Generating the 16 rays for
frustum n can now be done by loading the delfa vector and adding
the replicated n entry of the start vector. This is done for the 16
rays in parallel, requiring only 3 SIMD loads and 3 SIMD adds,
due to the free broadcast feature of the LRBni instruction set. As
the delta vector for primary rays is constant over all 16 frusta, it is
only loaded once per leaf.

The traversal only needs the frusta origin(s) and the reciprocals
of the 16 ray directions intervals: one min and max value per di-
mension yield a total of 6 SIMD vectors. Triangle intersection tests
require the four corner rays per frustum and the delta vector (the
start vector is the upper-left corner ray) to create the rays within
each frustum. The four corner rays require 4 x 3 = 12 SIMD vec-
tors. By using delta vectors, the four corner rays can be created
on demand too, which would require only 3 SIMD vectors plus the
respective delta vector.

As mentioned in Section 3.2, complete data has to be computed
and stored only for intersection. Each hit point typically requires
data such as triangle ID, barycentric coordinates, distance, vertex
indices, geometric and shading normal etc. Intersection data for
16 x 16 = 256 rays in particular requires that a large fraction (> 12
KB) of the L1 cache is dedicated to it. Handling even more than 16

A e’

Figure 3: Test scenes: T-Rex (69K triangles), Fern (212K triangles), Saloon (60K triangles) taken from the game “Call of Juarez” by
Techland, and Fairy Forest (174K triangles). All scenes are rendered at 1024 x 1024 resolution with multi-frusta tracing and 16 shadow
samples per pixel. Samples are generated by interleaved sampling and filtered using a 4 x 4 discontinuity filter.

frusta at a time would further increase the pressure on the L1 cache,
making it unlikely to achieve any significant speedups.

Soft Shadow Frusta For 16 hit points, 16 frusta are traced to
the light source (see Figure 4). We currently assume quadrangular
lights; extensions to other light source shapes are straightforward.
As each frusta has a different origin, 16 ’different’ origins are
used during traversal and intersection. However, no intersection
data per shadow ray is required, as we only track a binary state ("oc-
cluded’ or 'not occluded’). For less than 32 shadow rays per frus-
tum, the binary states of all shadow rays (< 512 bits) can be stored
in the bits of a single SIMD vector. Additionally, 3 SIMD vec-
tors for origin, 6 SIMD vectors for interval reciprocals, 12 SIMD
vectors for the four corner rays are required. All shadow rays are
created on demand using the 16 pre-computed delta vectors and
one of the corner rays. Compared to primary frusta, shadow frusta
are very ’cache-friendly’ as only a very small amount of temporary
data is required. Though we currently do not this, we could also
that handle transparency by storing 3 floats per ray for the opacity
value, and disabling rays if this opacity crosses a given threshold.
The main difference compared to primary frusta is that the delta
vector is no longer created for a fixed 4 x 4 pixel grid but for a
set of random samples on the light source plane. As (4 x 4) inter-
leaved sampling [Keller and Heidrich 2001] requires a different set
of random numbers for each of the 16 pixels, 16 delta vectors are
created. As these samples are constant over the frame, the 16 delta
vectors can be pre-generated per frame. Instead of using the four
corners of the light source to generate the corner rays and frusta, it
is slightly more beneficial to compute tighter bounds based on the
axis-aligned bounds (in 2D) of the random samples set.

4.5 Shading, Interleaved Sampling and Filtering

Every sample on the light has different influence on the illumina-
tion at a given point. As shading every shadow ray would be quite
expensive, we follow the same approximation as other soft shadow
algorithms: the separation of the visibility term and the shader eval-
uation. A single sample to the center of the light is used for shading,
while the fractional visibility is done by MFT (see Figure 3 for an
illustration of the achieved soft shadow quality).

After determining primary visibility, each pixel is assigned to a
different interleaved sampling set, using a 4 x 4 pixel grid pattern.
Each set contains 16 2D random numbers, referring to 16 3D points
on the light source plane (used to generate the shadow rays on de-
mand). Once combined, all 2D sets yield 256 2D random numbers.
In order to achieve high quality results, we use either Hammersley
or Larcher-Pillichshammer QMC samples [Kollig and Keller 2002].

After tracing all shadow ray frusta, we perform a simple irra-
diance filtering pass over the image, filtering the illumination in a
4 % 4 neighborhood around every pixel. Each pixel needs there-
fore additional information such as normal, depth, and irradiance,

which can be stored in the reduced 16-bit floating point format. The
filtering itself is performed for 16 pixels in parallel. Even for our
non-optimized implementation, the filtering itself requires less than
20 million cycles (on one core). Compared to tracing soft shadow
frusta, these costs are rather negligible.

5 Results

A fair comparison between MFT and packet tracing requires that
optimal settings are applied to both. A deep BVH in particular
is sub-optimal for MFT, as the frusta typically prohibit efficient
culling deep down in the tree. In contrast, packet tracing relies on
efficient culling by the BVH to reduce the number of triangle inter-
section tests to a tolerable level. A deep BVH is therefore used for
packet tracing and a shallower BVH for MFT. The shallower BVH
would also lead to faster build/update times, but this is not con-
sidered in our comparison. The reference packet implementation
uses an optimized BVH packet traversal with a Moeller-Trumbore
triangle test [Mdller and Trumbore 1997].

5.1 Comparison to 16-ray packet tracing

As the code for a ray packet-AABB intersection test has the same
complexity as a ray interval-AABB intersection test (except for the
zero-interval-fix), we will refer to them as just AABB tests.

Even assuming perfect coherence (which is not the case), travers-
ing 16 ray packets by multi-frusta traversal would theoretically al-
low for reducing the number of AABB test (#AABB) by at most
16 x. However, due to the slightly shallower BVH tree the reduc-
tion in #AABB tests is actually slightly higher than 16x (see Ta-
ble 1): For the T-Rex scene, multi-frusta traversal in combination
with a shallow BVH reduces #AABB tests by up to factor of 21 x for
primary rays P-Frusta, while for soft shadows with 16 samples per
frustum (S-Frusta) this value increases to 23.8x. Statistics for soft
shadows include primary ray results. The saving obviously vary de-
pending on scene and the light source configuration, but in general
MFT works even better for shadow rays than for primary rays.

As a single triangle is typically tested for intersection by multi-
ple frusta, 1.58 —3.67x less triangles are accessed in total, sav-
ing memory bandwidth. Moreover, corner ray culling compen-
sates the pure frusta-based traversal by reducing the number of tri-
angles passed to the 16-wide ray-triangle intersections tests (#tris
+ culling) by 2.98 — 10.06x. At the same time, the culling effi-
ciency reduces the actual number of 16-wide triangle intersection
test (#isec) by 1.01 —3.1x.

As multi-frusta traversal has higher setup cost than packet tracing
and corner ray culling adds additional cost, the speedup in run-time
performance ranges from 3.42x to 7.83x for primary rays without
shading. Applying even simple shading decreases the speedup fac-
tor to 2.98 — 6.09 x. For tracing primary rays, shading, filtering and
soft shadows, the speedup factor increases again to 3.34 —6.11x.

#tris #AABB #isec Simulation #tris (+culling) #AABB #isec # addl.
(+culling) tests tests cycles accesses tests tests tests
T-Rex (69K triangles) T-Rex (69K triangles), 1024 x 1024
P-Packet (+shad) 399K 1218K 399K 94.1M (104.3M) No Shrink. 3401K/613K 1459K | 5402K
P-Frusta (+shad) 173K /42K 58K 125K 19.5M (29.6M) Ray-AABB 2896/498K 3733K 3973K
Reduction 2.3x/9.5x 21x 3.1x 4.82x (3.52x) -14.8%/-18.6% 155% -26.4%
S-Packet 10957K / 7298K | 36234K 7698K 2572M CR 3401K/512K 1459K 4261K 386K
S-Frusta 3575K /725K 1518K 5527K 635M 0%/-13.9 % 0% -21.1%
Reduction 3.06x / 10.06x 23.8x 1.39x 4.05x FS 3138K/503K 1433K 4168K 386K
Fern (212K triangles) 77%-179% | 1% | -22.8%
P-Packet (+shad) 655K / 466K 2408K 466K 163.9M (175.2M)
P-Frusta (+shad) 414K /156K 204K 315K 47.9M (58.6M) Table 2: Three techniques to implicitly or explicitly shrink frusta.
Reduction 1.58x /2.98x 11.8x 2.08x 3.42x (2.98x) Ray-AABB performs intersection tests between the leaf’s AABB
Z:ﬁ;‘? 14538285215 // lizg;? 3;%? }ggggi 937277 2511\\44 and all non-terminated shadow ray packets, resulting in a lot of ad-
Reduction 3.67% / 4.96x 14.1x L01x 334x ditional intersection tests. CR only shrinks the extend of the corner
Call of Juarez: Saloon (60K triangles) rays on the light source plane, while FS shrinks the ray direction
P-Packet (+shad) 383K / 278K 5839K 278K 246.9M (257.4M) interval bounds too. For our implementation only CR is a viable
P-Frusta (+shad) 204K / 34K 388K 150K 31.5M (42.2M) option, as it has the best triangle reduction vs. overhead ratio.
Reduction 1.86x / 8.17x 15.04x 1.85x 7.83x (6.09x)
S-Packet 5332K /3209K 81023K 3209K 2672M
S-Frusta 2730K / 340K 5419K 2218K 437M
Reduction 1.95x / 9.43x 14.95x 1.44x 6.11x the frustum’s rays are occluded, but in particular in penubra region
Fairy Forest (174K triangles) may still end up with frusta that are partially occluded.
P-Packet (+shad) 587K /524K 3651K 324K 209M (222.5M) For such partially occluded packets, shrinking the bounding frus-
P-Frusta (+shad) 403K /111K 235K 312K 49.5M (63.2M) tum such that the frustum bounds only active rays and ignores in-
Reduction Ld5x/461x 15.5% 1.67x 42x (3.52%) active ones would lead to tighter frusta and, consequently, more
S-Packet 6556K / 4290K 51765K 4290K 2535M . e A ?
S-Frusta 461K / 775K 321K | 3874K 637M culling aqd fev&fer Fraversal steps. There are multlp_le different ways
Reduction 1.89% / 5.53x 16.58x 11x 3.97x of how this shrinking can be done, and these vary in both effective-
ness and cost overhead. We will investigate three different options
Table 1: Statistical and run-time performance (1024 x 1024 res- (also see Figure 2).

olution, single simulated 1 GHz LRB core) comparison between
MFT and packet tracing. Multi-frusta traversal for primary rays
(P-Frusta) and for soft shadows with 16 samples per frustum (S-
Frusta) provides a reduction of 11.8 —23.8x over standard packet
traversal (P-Packet and S-Packet) in the number of ray-AABB inter-
section tests (#AABB tests). In addition, back-face and corner ray
culling (#tris + culling) significantly reduce the number of triangles
passed to the intersection test. For primary rays, a run-time speedup
of 3.42 —7.83x (2.98 —6.09x including shading) is achieved. For
soft shadows with 16 samples per frustum, including primary rays,
shading, and filtering, MFT provides a speedup of 3.34 — 6.11 x.

5.2 Comparison to 256-ray packet tracing

We also compared the performance of MFT to an optimized packet-
tracing implementation for 16 x 16 = 256 rays. To achieve a fair
comparison, only the traversal of MFT has been replaced, while the
shallow BVH, corner culling, and triangle intersection tests have
been left in place. For each BVH node, we iterate over all active
16-wide ray packets and determine whether it intersects the children
AABBEs. This results in two new active masks for the left and right
child. At the leaf, the current active mask is used in the same way
as MFT does.

Even though the statistical results are slightly better than for
MFT (3-4% less #AABB tests on average), 256-ray packet tracing
reaches at most 50% of the performance of MFT. In some cases, the
run-time performance is actually slower than 16-wide packet trac-
ing. The main reasons for the bad performance are the increased
memory and computation cost (ray directions and reciprocals), and
far more complex traversal code. In case only a few 16-wide pack-
ets are active, the complex traversal slows down performance.

5.3 Frustum shrinking

As MFT shifts the cost from traversal to intersection (in particular
for soft shadows), it is worth exploreing techniques for reducing
the number of intersection tests further. Using the techniques de-
scribed so far, we can terminate individual shadow frusta once all

Ray packet-AABB intersection tests at the leaves For
each half-occluded frustum, an additional ray-packet intersection
test with the leaf’s AABB is performed. Although this test reduces
the number of triangle intersection tests by 26.4%, it leads to a sig-
nificant increase in additional AABB tests: while a typical traversal
step performs one SIMD AABB test for all 16 frusta in parallel, leaf
culling has to perform a SIMD AABB test for every active frustum,
leading to an increase in AABB tests by +155%. In addition, these
per-frustum AABB tests are more costly, since they require per-ray
direction reciprocals, which are costly to compute. Overall, leaf
culling does not pay off, since its overhead is higher than the 26.4%
savings in triangle tests.

Recomputing the corner rays A much simpler version of
shrinking a frustum is to only compute the 2D parameter interval
(on the camera/light plane) of the still-active samples, and recom-
pute the corner rays through the corners of thsi 2D rectangle. Par-
tially occluded frusta then have tighter corner rays, and cull more
triangles. At a culling rate of 21.1%, this method is almost as ef-
fective as performing ray packet-AABB tests (26.4%), but has far
lower cost that actually pays off (see Table 2). We currently perform
this shrinking after all triangles in a leaf have been intersected, but
only if at least one shadow ray has newly terminated.

Shrinking the frustum intervals Recomputing the corner
rays leads to better triangle culling, but does not affect which nodes
are traversed, and thus, does not reduce the number of accessed tri-
angles. To have an impact on traversal steps, one has to shrink the
interval arithmetic bounds used by the BVH traversal. Doing so ev-
ery time the corner rays are recomputed indeed reduces the number
of accessed triangles by an additional 7.7%. However, the achieved
reduction is marginal, and does not pay for the additional cost in re-
computing the tightest frusta and associated direction reciprocals.

In summary, for both leaf-culling and frustum interval shrink-
ing the statistical gains in reduced traversal and intersection steps
were outweighed by the respective method’s overhead. The only
successful option for our implementation was to shrink the corner
rays, but even that led to a maximum speedup of only 10%.

Figure 5: Left: MFT with interleaved sampling and discontinuity
filtering, requiring only 16 shadow rays per pixel, Right: Packet
tracing with 256 shadow rays per pixel.

5.4 Shadow Quality and Impact of LS Size

Even for complex shadow patterns like the T-Rex scene, 4 x 4 = 16
interleaved sampling in combination with a 4 x 4 pixel discontinuity
filtering achieves almost the same quality as shooting 256 shadow
rays per pixel, but requires only a % in the number of shadow rays,
see Figure 5.

If improved quality is required, one could either use directly
more sample sets per frustum or perform a second pass over the
image and adaptively refine only the penumbra pixels. As the num-
ber of penumbra pixels is typically only a fraction of all pixels, the
second approach would be quite efficient.

As shown in Figure 6, the total number of accessed triangles
(without culling) and triangle intersections tests increases linearly
with the light source size.

6 20 :
s5H '
s
45
4
35
3
25
21 .

P P o b T
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
size % size %

triangle (Million)
L

intersections (Millions)
=
S

IS
LS S B B

Figure 6: Impact of light source size for the T-Rex, Fern, and
Saloon scene. Left: Total number of accessed triangles without
culling. Right: Total number of triangles intersection tests. Both
increase linearly with the light source size.

6 Discussion

Like another packet or frustum based traversal technique, the effi-
ciency of MFT depends significantly on the kind—and coherence—
of the rays that it is being applied to. Traditional packet tracing can,
at worst, lead to total loss of SIMD efficiency and a deterioration
to single-ray traversal. In contrast to this, like other large-packet
and frustum traversal techniques, MFT can theoretically even lead
to even worse perforamnce when applied to incoherent rays that
span excessively wide frusta (see, e.g. [Wald et al. 2007; Wald et al.
2006]). For all reasonably coherent ray distributions, such as pri-
mary, hard, and soft shadow rays, however, it outperforms packet
tracing. For all incoherent ray distributions, the technique does not
perform well, as the frusta become too wide to provide efficient
culling. In these cases, it would be useful to switch to another
traversal algorithm which is better suited for incoherent rays but
still benefits from wide SIMD [Wald et al. 2008a; Boulos et al.
2008; ?; ?].

The requirement that a pre-built BVH is available is not a hard
limitation as typical ray tracing systems either rebuild or refit
their BVH per frame to handle dynamic scenes. Recent work has
shown [Wald 2007; Wald et al. 2008b; Lauterbach et al. 2009], that
building BVH can be efficiently mapped to a parallel architecture
and is fast enough to fully rebuild the BVH for moderately complex
scenes. Obviously, lazy building can be used for MFT too, further
lowering the build impact. As the built BVH is view-independent,
as opposed to [Hunt and Mark 2008], it can be reused for all light
sources, amortizing the build cost further.

Assuming—Iike [Seiler et al. 2008]—a LRB core with a hypo-
thetical clock rate of 1 GHz, our method would achieve over 30
million rays per second per core. Similar to other ray tracing sys-
tems on Larrabee [Seiler et al. 2008], our approach scales linearly
with the number of cores, so a hypothetical number of 16 such
cores would achieve over half a billion rays per second, and 16-
36 frames per second at a resolution of 1024 x 1024. Compared
to soft shadow algorithms based on rasterization using e.g. shadow
wedges, shadow volumes, soft irregular Z-Buffer, etc., the perfor-
mance of our approach lies within 2x of what has been reported
in [Johnson et al. 2009]. However, all these approaches use special-
ized data structures and other approximations, which complicates
an easy integration into an existing ray-tracing system.

Figure 7: MFT allows for a fast and easy integration of adaptive
sampling, in particular for MSAA or super-sampling. Left image:
Silhouette edges are determined during traversal. For the Saloon
scene, roughly 11.5% of all pixels are marked for retrace. Right
image: Image quality when all silhouette marked pixels are retraced
with 16 samples per pixel.

6.1 Other applications

While we have so far only considered accelerating primary and soft
shadow rays, MFT can also be used for other applications, as long
as ray density and coherence is sufficiently high. For example, for
a packet-based instant global illumination based system that uses
4 x 4 interleaved sampling, one could directly connect each pat-
tern’s hit point to a different virtual point light (VPL) each, again
forming 16 packets of 16 shadow rays each (in that case, the main
difference would be that one traces the packets from the VPLs to-
wards the surface rather than vice versa). The same framework can
also be used to compute environment illumination (connecting 16
interleaved surface samples to the same envmap sample), for ambi-
ent occlusion, etc.

Alternatively, one can also use our technique for fast MSAA-
like supersampling, by tracing 16 visibility samples per pixel to
determine partial occlusion and/or silhouettes. Since each frustum
would then represent an entire pixel, with minimum modifications
MEFT even allows for cheaply determining pixels containing silhou-
ette edges. Once adjacency information is available, an edge can
be identified as a silhouette edge by comparing the two adjacent
triangles’ orientation with respect to the frustum’s origin (also see
Figure 7).

7 Conclusion and Future Work

For coherent rays, MFT reduces the number of AABB intersection
tests by up to 23x. All steps of our MFT technique map very well
to Larrabee’s wide SIMD architecture, and achieve a very high per-
formance for primary rays, hard shadow rays and in particular for
soft shadows. It outperforms packet tracing by a factor of 3 —7x
for primary rays and by 4 — 6 for soft shadows.

The approach is simple and easy to integrate into existing packet-
based ray tracing engines. It does not require the traversal of addi-
tional data structures, nor significant changes to the rendering core
itself. In particular, MFT can also be used within an exiting 16-ray
packet traverser, and use it only where it makes sense (eg, primary
or shadow rays), while relying on packet tracing for secondary rays.

Due to the low memory footprint it should map very well to to-
day’s GPU architectures. As MFT is a very general concept, it is
possible to apply it to various applications where coherent ray dis-
tributions are given. The same concept of processing 16 different
frusta in parallel would also make sense for other traversal algo-
rithms like frustum-based kd-tree or octrees traversal, or coherent
grid traversal [Wald et al. 2006].

In the future, we would like to explore hierarchical traversal for
primary visibility and higher resolutions. This could be used to
quickly find entry points in the BVH for larger than 16 x 16 pixel
blocks, further reducing AABB intersection tests. Instead of han-
dling individual triangles at the leaves, edge-based representations
look promising. For improved soft shadow quality without taking
additional samples, we would like to investigate larger and more
advanced filter kernels, and the support for transparent shadows.

ACKNOWLEDGEMENTS

We thank Alexander Reshetov and Manfred Ernst for fruitful dis-
cussions and the anonymous reviewers for their valuable comments.

References
AMANATIDES, J. 1984. Ray tracing with cones. In SIGGRAPH '84, ACM, 129-135.

ANNEN, T., DONG, Z., MERTENS, T., BEKAERT, P., SEIDEL, H.-P., AND KAUTZ,
J. 2008. Real-time, all-frequency shadows in dynamic scenes. ACM Trans. Graph.
27,3,1-8.

ASSARSSON, U., DOUGHERTY, M., MOUNIER, M., AND AKENINE-MOLLER, T.
2003. An optimized soft shadow volume algorithm with real-time performance. In

HWWS °03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, Eurographics Association, 33—40.

BENTHIN, C. 2006. Realtime Ray Tracing on current CPU Architectures. PhD thesis,
Saarland University.

BoOULOS, S., WALD, I., AND SHIRLEY, P. 2006. Geometric and Arithmetic Culling
Methods for Entire Ray Packets. Tech. Rep. UUCS-06-010, SCI Institute, Univer-
sity of Utah.

BouLOs, S., WALD, I., AND BENTHIN, C. 2008. Adaptive ray packet reordering. In
Proceedings of the 2008 IEEE/EG Symposium on Interactive Ray Tracing.

COOK, R., PORTER, T., AND CARPENTER, L. 1984. Distributed Ray Tracing. Com-
puter Graphics (Proceeding of SSIGGRAPH 84) 18, 3, 137-144.

DMITRIEV, K., HAVRAN, V., AND SEIDEL, H.-P. 2004. Faster Ray Tracing with
SIMD Shaft Culling. Research Report MPI-1-2004-4-006, Max-Planck-Institut fiir
Informatik, Saarbriicken, Germany.

DRETTAKIS, G., AND FIUME, E. 1994. A fast shadow algorithm for area light sources
using backprojection. In SIGGRAPH 94 Proceedings, ACM, 223-230.

FERNANDO, R. 2005. Percentage-closer soft shadows. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Sketches, ACM, 35.

HART, D., DUTRE, P., AND GREENBERG, D. P. 1999. Direct illumination with lazy
visibility evaluation. In SSIGGRAPH '99, ACM, 147-154.

HASENFRATZ, J.-M., LAPIERRE, M., HOLZSCHUCH, N., AND SILLION, F. 2003.
A survey of real-time soft shadows algorithms. CG Forum 22, 4, 753-774.

HUNT, W., AND MARK, W. R. 2008. Ray-specialized acceleration structures for
ray tracing. In Proceedings of the 2008 IEEE/EG Symposium on Interactive Ray
Tracing.

INTEL LRBNI, 2009. C++ Larrabee Prototype Library. http:/software.intel.com/en-
us/articles/prototype-primitives-guide/.

JOHNSON, G. S., HUNT, W. A., HUX, A., MARK, W. R., BURNS, C. A., AND
JUNKINS, S. 2009. Soft irregular shadow mapping: fast, high-quality, and robust
soft shadows. In I3D ’09: Proceedings of the 2009 symposium on Interactive 3D
graphics and games, ACM, 57-66.

KAY, T., AND KAJIYA, J. 1986. Ray tracing complex scenes. In Proceedings of
SIGGRAPH, 269-278.

KELLER, A., AND HEIDRICH, W. 2001. Interleaved Sampling. Proceedings of the
12th Eurographics Workshop on Rendering, 269-276.

KELLER, A. 1997. Instant Radiosity. Proceedings of ACM SIGGRAPH, 49-56.

KOLLIG, T., AND KELLER, A. 2002. Efficient Multidimensional Sampling. Computer
Graphics Forum 21, 3, 557-563. (Proceedings of Eurographics 2002).

LAINE, S., AILA, T., ASSARSSON, U., LEHTINEN, J., AND AKENINE-MOLLER, T.
2005. Soft shadow volumes for ray tracing. ACM Transactions on Graphics 24, 3,
1156-1165.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE2, D., , AND
MANOCHA, D. 2009. Fast bvh construction on gpus. In Eurographics 2009:
Proceedings.

LEHTINEN, J., LAINE, S., AND AILA, T. 2006. An improved physically-based soft
shadow volume algorithm. Computer Graphics Forum 25, 3.

MOLLER, T., AND TRUMBORE, B. 1997. Fast, minimum storage ray triangle inter-
section. Journal of Graphics Tools 2, 1, 21-28.

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. R. 2007. A Real-time Beam
Tracer with Application to Exact Soft Shadows. In Proceedings of the Eurographics
Symposium on Rendering.

PARKER, S., SHIRLEY, P., AND SMITS, B. 1998. Single Sample Soft Shadows. Tech.
Rep. UUCS-98-019, Computer Science Department, University of Utah, October.
Available at http://www.cs.utah.edu/~bes/papers/coneShadow.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-Level Ray Tracing
Algorithm. ACM Transaction on Graphics 24, 3, 1176-1185. (Proceedings of
ACM SIGGRAPH 2005).

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M., DUBEY,
P., JUNKINS, S., LAKE, A., SUGERMAN, J., CAVIN, R., ESPASA, R., GRO-
CHOWSKI, E., JUAN, T., AND HANRAHAN, P. 2008. Larrabee: a many-core x86
architecture for visual computing. ACM Trans. Graph. 27, 3, 1-15.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed Radiance Transfer
for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. In
Computer Graphics (Proceedings of ACM SIGGRAPH), 527-536.

SOLER, C., AND SILLION, F. 1998. Fast calculation of soft shadow textures using
convolution. In SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, ACM, 321-332.

STEWART, A.J., AND GHALI, S. 1994. Fast computation of shadow boundaries using
spatial coherence and backprojections. In SIGGRAPH 94 Proceedings, ACM, 231—
238.

VAN DER ZWAAN, M., REINHARD, E., AND JANSEN, F. 1995. Pyramid clipping
for efficient ray traversal. In Rendering Techniques 95, Proceedings of the Euro-
graphics Workshop on Rendering, 1-10.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Interactive
Rendering with Coherent Ray Tracing. Computer Graphics Forum 20, 3, 153-164.
(Proceedings of Eurographics).

WALD, I., KOLLIG, T., BENTHIN, C., KELLER, A., AND SLUSALLEK, P. 2002.
Interactive Global Illumination using Fast Ray Tracing. Rendering Techniques,
15-24. (Proceedings of the 13th Eurographics Workshop on Rendering).

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. G. 2006. Ray
Tracing Animated Scenes using Coherent Grid Traversal. ACM TOG 25, 3, 485—
493.

WALD, 1., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM TOG 26, 1, 1-18.

WALD, 1., BENTHIN, C., AND BOULOS, S. 2008. Getting rid of packets: Efficient
simd single-ray traversal using multi-branching bvhs. In Proceedings of the 2008
IEEE/EG Symposium on Interactive Ray Tracing.

WALD, I., IZE, T., AND PARKER, S. G. 2008. Fast, parallel, and asynchronous
construction of BVHs for ray tracing animated scenes. Computers & Graphics.

WALD, 1. 2007. On fast Construction of SAH-based Bounding Volume Hierarchies. In

Proceedings of the 2007 IEEE/Eurographics Symposium on Interactive Ray Trac-
ing, 33-40.

Appendix A /% —— IA slabs test for left and right AABB —— x/

1Bounds = SlabsTest(leftAABB, offset ,min_rcp , max.rcp, distance);

Pseudo C++ traversal code for primary rays assuming common origin and directions. X) K K
rBounds = SlabsTest(rightAABB, offset ,min_rcp , max_rcp, distance);

All operations on vector classes can directly be implemented by the LRBni instruction

prototype library. /% —— mask = bounds_min <= bounds_max —— x*/
Irb_f /% vector SIMD class for 16 float values =/ Irb_m leftMask = le (IBounds[0],IBounds[1]);
Irb2f /% vector SIMD class for 2 x 16 float values =/ Irb_m rightMask = le(rBounds[O],rBounds[1]);
Irb3f /% vector SIMD class for 3 x 16 float values =/
Irbom /% class for the 16—Dbit mask type */ if (leftMask && rightMask) {
/% —— decide order when traversing both children — %/
struct StackNode { if (1t(1Bounds[0],rBounds[0])) {
int node; node = childrenID +0; mask = leftMask;
Irb_m mask; stackNode [stackIndex].node = childrenID +1;
s stackNode [stackIndex].mask = rightMask;
stackIndex ++;
/* —— 3D slabs test for common origin rays —— */ } oelse {
/x —— using interval arithmetic — %/ node = childrenID+1; mask = rightMask;
/ stackNode [stackIndex].node = childrenID +0;
Irb2f SlabsTest(float xaabb, stackNode [stackIndex]. mask = leftMask;
int offset[3], stackIndex ++;
Irb3f min_rcp,)
Irb3f max_rcp, else if (leftMask || rightMask) {
Irb_f distance) /% —— traverse either left or right child — x/
{ if (leftMask) {
Irb_f clipMinX = aabb[offset[0]]* max_rcp[0]; node = childrenID + 0; mask = leftMask;
Irb_f clipMinY = aabb[offset[1]]* max_rcp[1]; } else {
Irb_f clipMinZ = aabb[offset[2]]*max_rcp[2]; node = childrenID + 1; mask = rightMask;
Irb_f clipMaxX = aabb[offset[0]"4]* min_rcp[0]; }
Irb_f clipMaxY = aabb[offset[1]"4]* min_rcp[1]; }
Irb_f clipMaxZ = aabb[offset[2] 4]+ min_rcp[2]; else goto pop._stack_entry;
Irb_f min_dist = max(max(clipMinX , clipMinY), clipMinZ); }
Irb_f max_dist = min(min(clipMaxX,clipMaxY),clipMaxZ);
return Irb2f (max(min_dist ,0.0f),min(max_dist,distance)); /x —— leaf intersection —— x/
} Irb.m updateMask = 0;
for (int i=0;i<triangles;i++) {
void TraceMultiFrusta (...) { /% —— for each triangle perform back—face — =/
/¥ —— origin stored in 4 x AOS layout [x y z 0] — */ /% ——— and corner ray culling to create — */
Irb_f origin4; /% —— the ’triangleActiveMask’ — x/
/¥ —— 16 distances, each entry is the maximum —— x/
/¥ —— distance of all rays per frustum */ Irb_m triangleActiveMask = mask &
Irb_f distance;
/% —— iterate over all ’active’ frusta —=x/
/% —— init stack with root node and — %/ int frustumID = —1;
/¥ —— set all bits in frusta active mask —— %/ while ((frustumID = bitscan (frustumID , triangleActiveMask)) != —1)
StackNode stack [MAX_STACK.SIZE]; {
stack [0].node = 0; /x —— generate rays on demand, perform triangle — x/
stack [0].node = Oxffff; /% —— intersection , and initialize ’updateMask’ —— x/
int stackIndex = 1;
updateMask |= 1 << frustumID;
/¥ —— reciprocal ray direction intervals — x/ }
Irb3f min_rcp, max.rcp; }
/x —— offset table to select min/max —— x/ /% —— update ’distance’ but only for those — x/
int offset[3]; /x —— frusta marked by the ’'updateMask’ — %/
offset[0] = (lz(min_rcp[0]) == 0) ? 0 : 4; int frustumID = —1;
offset[1] = (lz(min_rcp[1]) == 0) 2 1 : 5; while ((frustumID = bitscan (frustumID ,updateMask)) != —1)
offset[2] = (lz(min_rcp[2]) == 0) 2 2 : 6; {
distance [frustumID] =
while (1) { }
pop-stack_entry :
if (stackIndex == 0) break; }
stackIndex ——;
/¥ —— current BVH node index and frusta active mask —— x/

int node = stackNode[stackIndex].node;
Irb_m mask = stackNode|[stackIndex].mask;
while (1) {

if (isLeaf(bvh[currentNode])) break;

int childrenID = firstChildID (bvh[node]);

/¥ —— subtract origin from left and right child AABB —— x/
Irb_f box16 = 1rb_f ((float*)&bvh[childrenID]) — origin4;
float xleftAABB = (floatx)&box16;

float *rightAABB = (floatx)&box16 + 8§;

