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Abstract

This paper presents a novel method that effectively combines both control variates and importance sampling in a

sequential Monte Carlo context. The radiance estimates computed during the rendering process are cached in a

5D adaptive hierarchical structure that defines dynamic predicate functions for both variance reduction techniques

and guarantees well-behaved PDFs, yielding continually increasing efficiencies thanks to a marginal computa-

tional overhead. While remaining unbiased, the technique is effective within a single pass as both estimation and

caching are done online, exploiting the coherency in illumination while being independent of the actual scene rep-

resentation. The method is relatively easy to implement and to tune via a single parameter, and we demonstrate its

practical benefits with important gains in convergence rate and competitive results with state of the art techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Ray-tracing G.3 [Probability and Statistics]: Probabilistic Algorithms

1. Introduction

Participating media are used to model a wide variety of el-
ements ranging from translucent materials such as skin or
marble where subsurface scattering plays a major role, to
various gaseous volumes such as smoke, clouds, and the at-
mosphere. The ability to accurately and efficiently simulate
their properties has considerable scientific implications. Al-
though realistic rendering of these media is often of con-
cern to the movie and gaming industries, such interest also
emerged among safety oriented research where typical sce-
narios entail predicting the visibility of traffic signs in a
foggy weather or exit signs in a smoke-filled room.

Despite their low order of convergence, Monte Carlo
methods are a very general and robust technique for stochas-
tically estimating multi-dimensional integrals and have con-
sequently been heavily used in path-tracing to render com-
plex global illumination effects. Several techniques were de-
veloped to reduce the variance of such estimates includ-
ing importance sampling, control variates and (ir)radiance
caching, sometimes trading noise for bias perceptually less
noticeable in order to yield plausible renderings with practi-
cal computation times. Integrating the product of the cached
radiance and the phase function must in general be done on

the fly via resampling. While realistic for a few coefficients,
this becomes prohibitive for refined representations making
it hard to predict whether the reduction in variance will ac-
tually overcome the considerable computational overhead.

Building on the previous concepts, this paper presents
a novel method targeting physically meaningful renderings
and exploiting the low dependence of the phase function on
the direction of the incoming ray. Radiance estimates com-
puted during rendering are cached in a 5D data structure
designed as a spatial octree where leaf nodes contain a di-
rectional grid of adaptive resolution. This caching scheme
provides dynamically refined representations of two predi-
cate functions allowing both control variates and importance
sampling to be used in a sequential Monte Carlo context.
This context allows for increases in the order of convergence
(not just a constant noise reduction factor) of the estimation
process. Since each new estimate is evaluated according to
a fixed snapshot of the two predicates, no bias is introduced,
while allowing the functions to evolve between samples.

This document starts by providing an overview of the re-
lated work and theoretical background. The method is then
presented followed by both quantitative and qualitative re-
sults along with a discussion of its limitations.
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2. Related Work

Several approaches have been proposed in the computer
graphics literature to reduce the variance of global illumi-
nation estimates computed using Monte Carlo integration
techniques. Such methods include bidirectional path-tracing
[LW96], photon-mapping [JC98] and Metropolis light trans-
port [PKK00]. A good survey is provided in [CPCP∗05].

Irradiance caching was first introduced by Ward et al.
[WRC88, WH92] and subsequently improved in [SM02,
TL04, CB04]. Extensions to radiance were proposed in-
cluding stepwise representations, such as fixed-size data
structures [CZS96, GSHG98] and Haar wavelets [CSSD96],
as well as (hemi)spherical harmonics [AFO05, KG05,
KBPZ06]. Voxel-based [BSS93] and envelope-based meth-
ods [BSS94] were also introduced for volumetric media. The
structure is typically initialized in a pre-processing pass.

Other methods focused on using the cached values to
guide the sampling process more efficiently, formulating
the probability density functions (PDFs) via 2D k-D trees
[DW94], fixed grids [DW95], photon maps [Jen95], Haar
wavelets [PP99] and particle-footprints [HP02]. In order to
guarantee non-zero stepwise representations, the PDF values
are customarily artificially clamped to a minimal threshold.

Lafortune et al. [LW95] proposed to cache surface radi-
ance values in a duotricenary tree (the direct 5D extension
of an octree uniformly handling spatial and directional coor-
dinates) refined based on the density of primary samples. In
addition to guiding the sampling process, the stepwise fixed-
grid hemispherical representations built via resampling are
also used as control variates. Besides the undesirable discon-
tinuous nature of the resulting integrand, this double usage is
actually of no benefit. Also, while they reported reductions
in variance but with unaffected convergence rates, the linear
cost of resampling induced large computational overheads.

Recently, sequential methods focusing on adaptation dur-
ing rendering received some attention in the graphics com-
munity and the works of Fan [Fan06] and Ghosh et al.
[GDH06] showed promising applications of this framework.

Although for participating media, the method presented
in this paper extends Lafortune’s work by addressing its var-
ious issues. The proposed data structure was designed for
efficient estimations on the integration domain of concern
and consists of a spatial tree of directional entities requir-
ing no resampling. It provides symbiotic continuous control
variates and stepwise PDF predicates guided by both visual
importance and the features of the scene, combined in a se-
quential context to yield increases in the convergence rate.

3. Theoretical Background

This section provides an overview of the related theoretical
background, including Monte Carlo integration and the main
concepts of radiative energy transfer in participating media
while referring the reader to classic texts for further details.

3.1. Monte Carlo Integration

Monte Carlo methods are a general and robust technique for
stochastically evaluating multi-dimensional integrals. To re-
duce the variance of the estimates, several techniques were
developed [HH64, KW86]. The control variates method as-
sumes the knowledge of a function g approximating the in-
tegrand f and analytically integrable as G, while importance
sampling assumes a normalized PDF p≥ 0 correlated with f

and such that p 6= 0 whenever f 6= 0. Defining N samples, a
continuous random variable ~X distributed according to p and
the expectation E, both techniques can be combined [OZ00]
to compute the integral F of f on a domain D, yielding the
unbiased estimator F̂ of standard deviation σ[F̂]

F = E

[
f (~X)−g(~X)

p(~X)

]
+G ⇒ F̂ =

N

∑
i=1

f (~xi)−g(~xi)

N p(~xi)
+G(1)

σ
[
F̂

]
=

√
1
N

V

[
f (~X)−g(~X)

p(~X)

]
=

1

N
1
2

σ

[
f (~X)−g(~X)

p(~X)

]
.(2)

Equation 1 shows that p should now resemble f −g rather
than f . As the sign of the integrand f − g might here vary
while p ≥ 0 must hold, an alternative is to correlate p with
| f − g| instead [Bek99]. Also, if g is proportional to p, the
previous estimator becomes identical to the one with impor-
tance sampling alone. This implies that if a function is used
for importance sampling, using it as a control variate as well
will not yield any further variance reduction [Vea97].

Equation 2 shows that when using static predicate func-
tions p (as when importance sampling from the phase func-
tion) and g (as when g = 0 and p = 1/‖D‖ for basic Monte
Carlo integration), the method exhibits an order of converge
of 1/2, meaning that n2 times as many samples are necessary
to reduce the expected error by 1/n. In this context, these
techniques yield a reduction of variance if V [( f − g)/p] <
V [ f‖D‖] (both constant with respect to N) corresponding to
a vertical translation on a log scale of the convergence curves
shown in figure 3 (division by a constant factor on a linear
scale). To affect the slope of these curves, i.e. the conver-
gence rate, sequential Monte Carlo methods are adequate.

In Markov chain Monte Carlo (MCMC) methods, the next
state solely depends on the present state, i.e. every future
state is conditionally independent of every prior state. Se-
quential Monte Carlo (SMC) methods split the computa-
tion in stages such that the estimator in a subsequent stage
is adapted based on the information gained during previous
stages in the sequence. While this dependent sampling may
appear to introduce bias, it can be proven that the result is
unbiased and that the method can considerably increase the
rate of convergence of the estimation process [Hal62]. This
can be illustrated by assuming adaptive predicates g and p

such that V [( f − g)/p] decreases with an order 2α with re-
spect to V [ f ]. The standard deviation then becomes

σ
[
F̂

]
=

√
1
N

1
N2α

V
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f (~X)
]

=
1

N
1
2 +α

σ
[
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]
. (3)
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3.2. Radiative Transfer in Participating Media

The evolution of (spectral) radiance L as light travels through
a medium is defined by the Radiative Transport Equation
(RTE). For a given wavelength λ, position in space ~x, and
direction ~ω, this integro-differential equation reads [SH81]

(~ω ·∇)L(λ,~x,~ω) = σa(λ,~x)(Le(λ,~x,~ω)−L(λ,~x,~ω))+

σs(λ,~x)(Li(λ,~x,~ω)−L(λ,~x,~ω)), (4)

where σa is the absorption coefficient, σs the scattering co-
efficient, Le the emitted radiance, and Li the in-scattered ra-
diance which depends on a normalized phase function Φ

Li(λ,~x,~ω) =
Z

4π
L(λ,~x,~ωi)Φ(λ,~ω,~ωi)d~ωi. (5)

Defining the boundary condition as the background radi-
ance Lb, the extinction coefficient as σt = σa + σs and the
optical thickness as τ(λ, ~xa, ~xb) =

R ~xb

~xa
σt(λ,~x)d~x, the RTE ac-

cepts an analytical solution which reads

L(λ,~x,~ω) = e
−τ(λ,~x,~x0)Lb(λ, ~x0,~ω)+ (6)

Z ~x0

~x
e
−τ(λ,~x,~x′)(σa(λ,~x′)Le(λ,~x′,~ω)+σs(λ,~x′)Li(λ,~x′,~ω))d~x′.

A first unbiased estimation method often used in homo-
geneous media defines the source radiance Lt = (σaLe +
σsLi)/σt and uses e−τσt as a PDF to sample the integrand
obtained by rewriting equation 6 as a single integral [LW96]

L(λ,~x,~ω) =
Z ~xinf

~x
e
−τ(λ,~x,~x′)σt(λ,~x′) (7)

(
‖~x′−~x‖ < ‖~x0 −~x‖ ? Lt(λ,~x′,~ω) : Lb(λ, ~x0,~ω)

)
d~x′.

A second approach often used in inhomogeneous media
approximates equation 6 by assuming that the properties of
the medium are constant over a set of non-overlapping in-
tervals along the ray, as in [LW96, JC98, PKK00]. The ray-
marching algorithm yields for a single interval ‖∆~x‖

L(λ,~x+∆~x,~ω)=e
−σt (λ,~x)‖∆~x‖

L(λ,~x,~ω)+ (8)

(1− e
−σt (λ,~x)‖∆~x‖)Lt(λ,~x,~ω).

While the other terms are locally defined, estimating the
in-scattered radiance and transmitted radiance L requires
new rays to be traced. To evaluate both while tracing a sin-
gle ray, we propose to rewrite the associated terms on the
right-hand side of equation 8 as a single integral I which is
a straightforward juxtaposition onto a single virtual spheri-
cal domain of extent 4π+1. We define κt = e−σt‖∆~x‖, κs =
(1−e−σt‖∆~x‖)ω, the single-scattering albedo ω = σs/σt , the
solid angles Ωt = 1 and Ωs = 4π such that Ωt ∩Ωs = ∅, and
δ(~ω,Ω) = 1 if ~ω ∈ Ω and 0 otherwise.

I(λ,~x,~ω) = κt(λ,~x)L(λ,~x,~ω)+κs(λ,~x)Li(λ,~x,~ω)

=
Z

Ωt∪Ωs

δ(~ωi,Ωt)κt(λ,~x)L(λ,~x,~ω) (9)

+ δ(~ωi,Ωs)κs(λ,~x)L(λ,~x,~ωi)Φ(λ,~ω,~ωi) d~ωi

4. SMC Adaptation for Participating Media Rendering

This section describes how to carry the evaluation of inte-
grals 5 (for unbiased estimations 7) and 9 (for ray-marching
8) in a sequential Monte Carlo context using both control
variates and importance sampling. As the integrand f in both
integrals is expressed in terms of the incoming radiance L,
we introduce a 5D data structure allowing for efficient es-
timations of integrals over solid angles in which the sam-
ples computed during rendering are cached. The following
subsections detail the directional caching schemes for each
variance reduction technique as well as the spatial and direc-
tional adaptive refinement strategies before explaining how
this information is used in the estimate evaluation process.

4.1. Caching for Control Variates

The representation defining predicate g should provide low-
cost read/write access and efficient integration to compute
G. B-splines meet both criteria as their basis functions have
local support and their integral evaluates to a simple sum of
their coefficients regardless of their order, except at the do-
main boundaries. For this property to hold in 2D, we regu-
larly partition the normalized spherical coordinates s = φ/2π

and t = (1− cos(θ))/2 as to yield uniform solid angles.

Control variates lead to the new integrand f −g of which
properties must be analyzed in correlation with the complex-
ity of evaluating g. While order 0 B-splines are the cheap-
est (involving 1 coefficient), their piecewise constant repre-
sentation artificially introduces undesirable high-frequency
discontinuities in the integrand, therefore decreasing the po-
tential benefit of the method. Order 1 B-splines (piecewise
linear) consequently provide higher quality estimates for a
modest overhead (4 coefficients) while remaining natural in-
terpolants. B-splines of order 2 (piecewise quadratic) and
higher obviously entail a higher cost while being smoother
and less tight to the control points as the support of the basis
functions increases, usually yielding lower quality estimates.
Order 1 B-splines are consequently most suitable and a grid
representation allows for efficient interpolation.

We exploit the periodicity in s and introduce in t two polar
values computed as the average of the boundary coefficients
at t = 0 and t = 1 respectively. These allow to eliminate dis-
continuities at the poles when reconstructing g and to regu-
larize the boundaries with respect to integration, yielding a
more efficient computation of G which evaluates to a simple
average assuming an isotropic phase function. As shown in
figures 1(a)-1(b), each directional cell holds a color of which
channels represent the coefficients of the 2D B-splines defin-
ing predicate g. Whenever a new sample is estimated, its
color is averaged with the corresponding cell’s coefficients
while incrementing its counter of cached records C which
determines the respective weights 1/(C +1) and C/(C +1).
The spherical integral and polar averages are maintained and
updated at each write operation, allowing the constant time
computation of both g and G during the estimation process.
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(a) (b) (c)

(d) (e) (f)

Figure 1: (a) Per-color-channel coefficients stored in each

directional cell of a radiance cache (b) 2D B-spline recon-

struction of the incoming radiance defining predicate g (d-

e) Color-mapped scalar values of predicate p at 2 different

refinement stages (c-f) Illustration of the hierarchical data

structure designed as a spatial octree of which leaf nodes

hold adaptive directional grids defining both control vari-

ates and importance sampling 5D predicate functions.

4.2. Caching for Importance Sampling

For efficiency reasons, the resolution used to represent pred-
icate p is set to be the same as the one for g. Drawing sam-
ples from a given PDF can be done by inverting its cumu-
lative distribution function (CDF) defined as its partial in-
tegral. This favors cheap low-orders while continuity is not
crucial here. Order 0 B-splines are therefore adequate. In ad-
dition to the radiance coefficients and records counter, each
cell contains a scalar estimate of the value of | f −g| over the
associated solid angle as shown in figures 1(d)-1(e). When a
new sample of f is added to a cell, the value of g is deter-
mined and f −g computed. Since the latter is a color, a scalar
PDF sample is generated by averaging the absolute values of
its channels and merged with the cell’s PDF coefficient.

To make the sampling process inexpensive, each cache
maintains a logical tree of partial sums [Vea97] similar in
spirit to a Huffman tree, stored in a flat array of size 2N −1
with N being the number of cells. Each node of this complete
binary tree holds the sum of its 2 children, starting with the
cells’ values of p as the leaves up until the root holding the
sum of all PDF coefficients. While write operations need to
traverse the log2(2N) nodes of a branch, the space of basis
functions can now be sampled in logarithmic time given a
random number. Normalization is achieved by multiplying
the random number by the value of the root node. If the ran-
dom quantity is greater than the value of the first child of the
current node, its PDF value is subtracted from the quantity
and the second child becomes the current node, the latter be-
ing set to the first child otherwise. The process is recursively
repeated as to traverse an entire branch until a cell is reached
and a random direction is drawn from the linear CDF.

4.3. Adaptive refinement

The proposed hierarchical structure provides an adaptive
representation permanently refining in correlation with the
current records population. Given that positional interpola-
tion mainly impacts continuity in the efficiency of the es-
timation process which we do not seek, the structure was
designed as an octree of spatial partitions, each holding an
adaptive radiance cache as shown in figures 1(c)-1(f).

The structure is initialized as a single octree node hold-
ing a radiance cache with only two cells (in s) of which ra-
diance B-spline coefficients, PDF values and records coun-
ters default to zero. Since the PDF is not relevant at this
stage, a uniform directional sampling strategy is used. For
each ray traced, the octree is traversed in logarithmic time to
reach the node corresponding to the new sample’s position
while its direction determines the cache’s cell which should
be updated. If the refinement criterion is met, the resolution
of the cache is doubled in both polar and azimuthal coor-
dinates while duplicating previous records to preserve the
data repartition. The octree node then subdivides and its ra-
diance cache is replaced by eight new copies of it. Therefore,
only leaf nodes contain a cache of which resolution is cor-
related with their octree depth. The cells’ records counters
of the eight new caches are then divided by the dimension-
ality of the split, i.e. 32. This effectively reduces the weight
of ancient coarse records and allows future locally relevant
samples to be more influential. Inheritance is enforced by
preventing the counters from being rounded down to zero
which would cause a new record to overwrite rather than be-
ing merged with ancestral information. While each cell of
the radiance cache has to be processed, the linear cost of
refining is however not prohibitive as its frequency of occur-
rence is low compared to other read/write accesses.

This inheritance strategy allows a PDF to always contain
a portion of its ancestors’. By prohibiting the refinement
of the initial root node until its two cells contain non-zero
PDF coefficients, all PDFs are guaranteed to be non-zero as
well. This allows the PDFs to tend freely towards zero where
needed while remaining implicitly well-behaved without the
need for an artificial bound as in previous approaches.

4.4. Refinement Criterion

The refinement criterion is defined as a threshold on the av-
erage value of the records counters also maintained in each
radiance cache to yield a constant time access. Since the
density of rays is defined by both the camera location and
the PDFs guiding the sampling process, such criterion will
adaptively promote deeper refinement in highly sampled re-
gions most crucial to the variance reduction techniques. This
threshold actually controls the inertia of the system and de-
creasing it will increase the versatility of the structure requir-
ing a smaller population before refining. This induces pred-
icate functions quickly morphing into the target functions,
yielding improved convergence rates and lower variance.
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However, if the threshold is too low, the structure might
evolve while being under-populated and yield unreliable
predicates. These will generate estimates of increased vari-
ance themselves affecting the subsequent predicates and
lowering their reliability, causing the method to diverge
while still producing statistically correct results. Hence, the
optimal criterion is the lowest one guaranteeing that the
structure contains meaningful information before refining.
In our experiments, it was determined empirically by con-
ducting a few trial-and-error tests on down-sampled images.

4.5. Estimate evaluation

Considering unbiased estimations (7), the associated PDF
provides a means of defining a 3D sample position along
the ray and depending on its location, either Lb or Li will be
evaluated. In the latter case, the octree is traversed to reach
the node corresponding to the estimate position. The term G

used for control variates is directly read from the spherical
integral of the associated radiance cache. Using its tree of
partial PDF sums, a direction of associated p is then impor-
tance sampled while the associated radiance approximation
is computed from the B-spline coefficients and weighted by
an isotropic phase function to yield g. This term is then sub-
tracted from f estimated as a newly ray-traced sample times
the actual phase function value. The result is finally divided
by p and added to G to form the final low-variance estimate.

For ray-marching (8), the octree is traversed at each step
to find the corresponding node. The spherical integral ap-
proximating Li is read from the radiance cache and multi-
plied by κs. The result is added to κt times the radiance ap-
proximation to L in the transmission direction to yield G.
The spherical integral of the PDF, computed as a simple di-
vision of the value at the root of the tree of partial PDF sums
by the number of cells in the cache, is then multiplied by κs

while the value of the PDF in the transmission direction is
multiplied by κt . The probability tree is therefore completed
on the fly and used to draw a sample direction of associated
p. If it lies in the scattering interval Ωs, the value of g and f

are computed as before and multiplied by κs, whereas if the
sample direction lies in Ωt , the value of g is reconstructed
in the transmission direction and a newly ray-traced sample
estimates f , both being multiplied by κt . In either case, g is
subtracted from f and the result is again divided by p and
added to G to form the final low-variance estimate.

4.6. Pseudo-Code

Figure 2 provides a high-level pseudo-code illustration (for
Le = 0) of the integration of the various steps individually
presented. Line 5. corresponds to importance sampling as
described in section 4.2, lines 6. and 7. to the control vari-
ates step from section 4.1 and lines 8. to 11. to the actual
estimation process from section 4.5. Finally, line 13. popu-
lates the structure as explained in sections 4.1 and 4.2 while
line 14. corresponds to the refinement step from section 4.3.

1. EstimateRayIntegral()

2. (position, weight) = GetSamplePositionFromRayPDF();
3. if (position < mediumBoundary)
4. cache = octree.GetCache(position);
5. (direction, p) = cache.GetSampleDirection();
6. G = cache.GetIntegralForIsotropicPhaseFunction();
7. g = cache.GetRadiance(direction);
8. g *= isotropicPhaseFunction.GetWeight(direction);
9. radiance = TraceRay(position, direction);

10. f = radiance * phaseFunction.GetWeight(direction);
11. estimate = G + (f - g) / p;
12. node = octree.GetNode(position);
13. node.AddRecordToCache(direction, radiance);
14. if (node.CriterionIsMet()) node.Refine();
15. else
16. estimate = TraceBackgroundRay();
17. return estimate * weight;

Figure 2: Pseudo-code for unbiased estimations (7)

5. Results

In order to demonstrate the convergence characteristics of
the method, we experimented with a test-bed consisting of
a box of homogeneous isotropic participating medium illu-
minated by a gradient background. The solutions were com-
puted using Markov chain Monte Carlo integration with a
number of samples several orders of magnitude greater than
the ones used for the test cases. The quantitative results for
various albedos are shown in figure 3 where the number of
samples per pixel on the abscissa increases by a factor 4. The
slopes of the root mean squared error (RMSE) curves illus-
trate the 0.5 convergence rate of MCMC integration com-
pared to the higher order of SMC here ranging in between
0.62 and 0.63 (∼ 25% gain). Considering the rightmost ver-
tices of the intermediate-albedo graph, the MCMC approach
would require about 24 times as many samples in order to
reach the error level achieved by the SMC method which
in contrast only requires a 57% overhead (factor of 1.57) in
computational time, yielding a 15.3X speed-up.

While it is constant for MCMC integration, the efficiency
((variance ∗ cost)−1) of the SMC method keeps increasing
with the sampling rate. For the high-albedo case, control
variates provide most of the gain whereas importance sam-
pling has a more prominent impact as the albedo diminishes.
This illustrates their respective strengths. While control vari-
ates approximate well smooth variations, importance sam-
pling performs better for higher frequencies by focusing on
strong contributions. When combined, control variates al-
low importance sampling to focus on hard features rather
than smooth high contributions, yielding increased efficien-
cies. The only exception arises in the high-albedo case where
the cost of importance sampling here supersedes its benefit,
making control variates alone more efficient. However, ex-
trapolating from the slopes of these curves, the method may
become beneficial at higher sampling rates.
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Figure 3: Logarithmic plots of root mean squared error and

efficiency versus number of samples per pixel for experi-

ments with an albedo of 1, 0.8 and 0.5 (from left to right).

Results are shown for several strategies: no control variate

(cv0), piecewise constant control variates (cv1), piecewise

linear control variates (cv2), no importance sampling (is0)

and piecewise constant PDFs (is1). is1_cv2 corresponds to

the proposed SMC method and is0_cv0 to MCMC.

Table 1 details the memory requirements of the data struc-
ture for various qualitative experiments generated at a reso-
lution of 512x512 pixels on an Intel Xeon 3.00GHz proces-
sor desktop with 2GB of RAM. To evaluate the ability of the
method to autonomously capture energy radiators, we exper-
imented with a scene containing implicitly sampled (i.e. not
a priori identified) light sources of about equal contribution,
the first one being large and dim and the second relatively
localized and intense. Figure 4 shows that control variates
alone adequately capture and reduce variance from the larger
light (the bluish component in the fog and near Lucy’s feet;
see insert) but have little impact on evaluating contributions
from the small light (the whitish spots in the fog and near
Lucy’s head). While importance sampling alone also rea-
sonably evaluates the larger light, it however dramatically
increases variance for the small light causing many pixels
to under-estimate its contribution (the darker regions) and
a few to largely over-estimate it (the bright spots). This re-
sult is nonetheless statistically correct in the sense that the
total energy distributed across the image is preserved, and
illustrates the divergence discussed in section 4.4. Disconti-
nuities in efficiency due to the lack of positional interpola-
tion are also clearly visible. However, when combining both
techniques, control variates mainly handle the large source
and allow importance sampling to focus on the smaller one,
reinforcing the statement made earlier. Because the resulting
sampling strategy differs from the one with importance sam-
pling alone, both computational overheads and variations
in path-length will impact the overall rendering cost. Also,
since the structure captures the global radiance distribution
in the scene, a single instance can be shared by several ob-
jects with different materials (e.g. the fog and Lucy’s body).

Figure 4 5 6
Criterion 512 256 256

Depth 8 7 6
Nodes 12577 2489 6913
Leaves 11005 2178 6049
Cells 23810048 3887712 6525440

Memory 0.978 GB 163.5 MB 274.8 MB

Table 1: Characteristics of the data structure after render-

ing the listed figures, including the value used for the re-

finement criterion, the maximal depth of the octree, its total

number of nodes, its number of leaf nodes (i.e. of radiance

caches), the total number of cells for all radiance caches,

and the total memory usage (using double-precision).

Figure 4: Lucy in the fog illuminated by two implicitly sam-

pled lights, rendered using (from left to right) SMC impor-

tance sampling and control variates (4096 spp), SMC im-

portance sampling alone (3025 spp), SMC control variates

alone (8836 spp), and MCMC (10816 spp) all in 32.5 hours.

Although the method is optimal for purely isotropic
phase functions, it also provides substantial improvements
in low-anisotropy media. Figure 5 shows an inhomogeneous
cloud with a forward Henyey-Greenstein phase function of
asymmetry coefficient 0.1 illuminated by a directional light
source. The superiority of the combination of both variance
reduction techniques in the SMC framework is here again il-
lustrated. Also, since main contributions are due to relatively
short paths which are favored by importance sampling, the
latter allows greater sampling rates for an equal rendering
time despite its computational overhead.

Finally, figure 6 shows an isotropic homogeneous medium
illuminated through a stained glass. Although both bidirec-
tional path-tracing [LW96] and photon-mapping [JC98] can
render such effects, these methods will be somehow ineffi-
cient without additional information about the scene since
many connections will be blocked by the wall or many pho-
tons will lie on the other side of it [PKK00]. This issue is
addressed in [PP98] and [KW00] yet requiring a third pass
to the initially two-stage photon-mapping technique. In con-
trast, the proposed SMC method provides substantial vari-
ance reductions over bidirectional path-tracing while gather-
ing information in a single rendering pass.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



V. Pegoraro & I. Wald & S. G. Parker / SMC Adaptation in Low-Anisotropy Participating Media

(a) (b)

(c) (d)

Figure 5: An anisotropic inhomogeneous cloud rendered us-

ing (a) SMC importance sampling and control variates (256

spp), (b) SMC importance sampling alone (250 spp), (c)

SMC control variates alone (166 spp), and (d) MCMC phase

function importance sampling (174 spp) all in 4.7 hours.

6. Discussion and Future Work

While remaining statistically correct, the quality of the esti-
mates will degrade as the anisotropy of the media increases
and our assumption gets gradually violated. Further investi-
gation is required to alleviate this limitation while preserv-
ing the efficiency of the method. Although setting the refine-
ment criterion requires little effort, further investigation is
also needed to determine an optimal intrinsically divergence-
inhibitive formulation which adapts to the local complexity
in lighting rather than being global to the scene.

Another limitation occurs in rendering volume caustics
which are visually more appealing when using a point light
source. The probability of implicitly sampling such source
is null while refraction/reflection prevents explicit sampling.
Because they start paths directly from the light source, bidi-
rectional approaches [LW96,JC98] should here be preferred
instead. The Metropolis light transport algorithm [PKK00]
also performs well in such setting with focused high contri-
bution paths. As noted in [JC98], Metropolis however tends
to perform no better than pure bidirectional path-tracing in
high-albedo media where the illumination is mainly soft,
and where the proposed SMC method performs well. The
latter can consequently be regarded as complementary to
the aforementioned bidirectional approaches and future di-
rections of research could explore ways of combining these
techniques to exploit their respective strengths.

Figure 6: A dust-filled room illuminated through a stained

glass rendered using (from left to right) SMC importance

sampling and control variates (1024 spp) and bidirectional

path-tracing (1064 spp) both in 3.8 hours.

7. Conclusion

We have presented a novel method which effectively com-
bines both control variates and importance sampling in
a symbiotic sequential Monte Carlo context. The method
yields continually increasing efficiencies thanks to a mod-
est computational overhead achieved by exploiting the low-
anisotropy of the participating media and implicitly guaran-
tees non-zero PDFs via its inheritance strategy.

A main advantage is that no pre-computation is needed as
both estimation and caching are done online, allowing the
sampling process to be driven by both visual importance and
features of interest in the scene while remaining unbiased.
The algorithm exploits the coherency in illumination of the
latter while being independent of its actual representation.
The technique is also relatively easy to implement in a gen-
eral Monte Carlo path-tracer and easy to tune via a single
refinement parameter compared to the choice of good mu-
tation strategies for Metropolis light transport or optimally
balancing computation in a multi-pass approach.

In addition to important gains in the convergence rate,
the quantitative and qualitative results showed that this com-
bined model outperforms the individual variance reduction
techniques on which it is based, and is competitive with state
of the art techniques. The method consequently appears as a
promising step towards efficiently simulating accurate light
transport in participating media via self-tuning estimators
that learn to become effective based on the information pre-
viously collected during the rendering process itself.
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