
1

SIMD Ray Stream Tracing - SIMD Ray Traversal with

Generalized Ray Packets and On-the-fly Re-Ordering -

Ingo Wald
∗†, Christiaan Gribble

‡
, Solomon Boulos

§
and Andrew Kensler

∗
∗
SCI Institute, University of Utah

†
currently with Intel Corp

‡
Grove City College

§
School of Computing, University of Utah

UUSCI-2007-012

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

Aug 2, 2007

Abstract:

Achieving high performance on modern CPUs requires efficient utilization of SIMD units. Doing
so requires that algorithms are able to take full advantage of the SIMD width offered and to not
waste SIMD instructions on low utilization cases. Ray tracers exploit SIMD extensions through
packet tracing. This re-casts the ray tracing algorithm into a SIMD framework, but high SIMD
efficiency is only achieved for moderately complex scenes, and highly coherent packets. In this
paper, we present a stream programming oriented traversal algorithm that processes streams of
rays in SIMD fashion; the algorithm is motivated by breadth-first ray traversal and implicitly
re-orders streams of rays on the fly by removing deactivated rays after each traversal step using
a stream compaction step. This improves SIMD efficiency in the presence of complex scenes and
diverging packets, and is, in particular, designed for potential wider-than-four SIMD architectures
with scatter/gather support.



Technical Report No UUSCI-2007-012

SIMD Ray Stream Tracing
— SIMD Ray Traversal with Generalized Ray Packets and On-the-fly Re-Ordering —

Ingo Wald12, Christiaan Gribble3, Solomon Boulos4, and Andrew Kensler1

1SCI Institute, University of Utah
2currently with Intel Corp

3Grove City College
4School of Computing, University of Utah

ABSTRACT

Achieving high performance on modern CPUs requires efficient
utilization of SIMD units. Doing so requires that algorithms are
able to take full advantage of the SIMD width offered and to not
waste SIMD instructions on low utilization cases. Ray tracers ex-
ploit SIMD extensions through packet tracing. This re-casts the
ray tracing algorithm into a SIMD framework, but high SIMD effi-
ciency is only achieved for moderately complex scenes, and highly
coherent packets. In this paper, we present a stream programming-
oriented traversal algorithm that processes streams of rays in SIMD
fashion; the algorithm is motivated by breadth-first ray traversal and
implicitly re-orders streams of rays “on the fly” by removing deacti-
vated rays after each traversal step using a stream compaction step.
This improves SIMD efficiency in the presence of complex scenes
and diverging packets, and is, in particular, designed for potential
wider-than-four SIMD architectures with scatter/gather support.

1 INTRODUCTION AND MOTIVATION

Ray tracing is a widely used technique in rendering, and is known
for its ability to produce highly convincing images. Though orig-
inally an off-line algorithm, the exponential growth in compute
power has made interactive ray tracing possible on commodity
hardware. While the compute power of commodity CPUs con-
tinue to grow, this no longer happens through increasing the pro-
cessor clock rate. More likely, future CPUs will focus less on serial
performance and may even decrease the clock rate of processors.
The CPU road-map indicates that future processors will increas-
ingly rely on parallelism through multi-core architectures. For an
algorithm that is as parallel as ray tracing, exploiting multiple cores
is rather straightforward.

1.1 SIMD Parallelism

On a finer scale, CPUs offer a way of exploiting data level
parallelism (ILP) using SIMD extensions like Intel’s SSE or
IBM/Motorola’s Altivec. SIMD instructions provide parallelism by
executing the same instruction in parallel on multiple data items.
From a processor designer’s standpoint, SIMD instructions are a
cheap way of increasing a processor’s compute performance: since
all data are subject to the same instruction, large parts of the core’s
logic can be shared among the multiple data paths in the wide
units. Said more simply, making an arithmetic unit n-wide is much
cheaper than making n copied arithmetic units.

Both SSE and Altivec expose a relatively small SIMD width of four
single precision floating point elements. As the complexity of map-
ping an algorithm to a SIMD programming model increases with
the SIMD width, a small SIMD width of four offers a nice trade-off
between SIMD benefit and mapping complexity. However, given
the small cost and potentially high benefit of increasing the SIMD

width, it seems likely that future architectures will explore larger
SIMD widths.

Though not immediately obvious, one such example is NVidia’s
G80 architecture. Though the G80 is commonly viewed as a mas-
sively multi-threaded scalar architecture, each warp of 32 “threads”
is essentially run in a SIMD fashion: high performance can only be
achieved if all of a warp’s threads execute the same instruction. This
essentially makes the G80 behave more like a 32-wide SIMD archi-
tecture than the 128-core scalar architecture it is often believed to
be. It seems quite possible that other architectures will follow the
same trend and eventually use wider-than-four SIMD instructions.

1.2 SIMD Extensions in Ray Tracing

Unfortunately, SIMD instructions are far harder to exploit in soft-
ware than they are to add in hardware. Except for few notable ex-
ceptions like linear algebra operations, algorithms often have to be
completely re-designed to make use of these SIMD instructions,
which often is far from trivial.

In ray tracing, the core concept that allowed the efficient use of
SIMD instructions was the introduction of packet tracing (aka Co-
herent Ray Tracing) [24]. In packet tracing, rays are no longer
traced sequentially (and individually) through the acceleration data
structure. Originally, packet tracing was introduced for kd-tree
traversal and triangle intersection only [24], but has been ex-
tended to different primitive types and acceleration structures (see,
e.g., [3, 12, 13, 23]). Packet tracing has also been successful for
special-purpose ray tracing hardware [20, 25]. Having large pack-
ets of rays also allows for algorithmic optimizations like frustum
culling [19] or interval arithmetic [7, 22]; as these exploit the same
kind of ray coherence that SIMD ray tracing does—but do so in
scalar or low-width SIMD form—frustum or interval arithmetic
techniques get particularly problematic for wider SIMD width. In
this paper, we will not consider frustum or interval arithmetic tech-
niques, and will only consider SIMD ray tracing.

1.3 SIMD Efficiency and SIMD Packet Tracing

While quite successful, packet tracing is efficient only for highly
coherent packets in which all the rays in the packet will execute the
same traversal steps and primitive intersections. As soon as rays
diverge during traversal, some of the rays become inactive during
traversal. Though we still perform N operations with every instruc-
tion (where N is the SIMD width), only a smaller portion (n < N)
of these operations are performing useful work on active rays. The
remaining slots of the SIMD instruction (N − n) are performing
wasted work and would not have occured in a single ray based sys-
tem. This allows us to define the SIMD efficiency as the relative
number of useful operations: n

N .

In the worst case, only a single ray remains active leading to a
worst-case efficiency of 1

N . Thus larger SIMD widths can lead to

1



Technical Report No UUSCI-2007-012

lower utilization and efficiency. This is perhaps the primary reason
that architectures may not increase their SIMD width: utilization is
key in hardware design.

The number of active rays in a given traversal or intersection step
depends on many parameters. Obviously the more coherent the
rays are, the higher the resulting SIMD efficiency. Secondary rays
are, usually, less coherent than primary rays, but the exact degree
of coherence is hard to predict. Boulos et al. have reported very
similar rays/second rate for distribution ray tracing (including soft
shadows, motion blur, depth of field, and glossy reflections [6])
as for Whitted-style ray tracing; on the other hand, Reshetov has
shown that even for a small SIMD width of four, and even for per-
fectly specular reflections in moderately complex scenes, multiple-
bounce reflections can quickly lead to almost completely incoherent
ray packets and 1

N SIMD efficiency.

1.4 Outline

In this paper, we propose a new approach to SIMD ray tracing
that combines elements from stream computing, packet tracing,
breadth-first ray tracing, and ray re-ordering. In Section 2, we
briefly summarize related work; Section 3 introduces the core ideas
of our approach, followed with its application to BVH traversal and
triangle intersection in Section 4. Section 5 provides extensive ex-
perimental data for both our algorithm and traditional packet trac-
ing, followed by a detailed discussion in Section 6. Finally, we
summarize and conclude in Section 7.

2 RELATED WORK

SIMD packet tracing The use of packets to support SIMD exten-
sions was first introduced by Wald et al. under the name of “Coher-
ent Ray Tracing” [24]. Wald et al.’s original implementation was
targeted towards the SSE instruction set with a SIMD width of 4,
and consequently used packets of 4 rays. Later implementations
also used larger packet sizes of 4× 4 rays [2], but kept the same
concept of fixed-size packets that never got split, shortened, or re-
ordered.

Packet tracing was originally proposed for kd-trees and triangle
primitives [24], but was later used for other primitive types includ-
ing iso-surfaces [15], free-form surfaces [4], and for other acceler-
ation structures like bounding volume hierarchies [13].

In his Multilevel Ray Traversal Algorithm, Reshetov et al. [19] pro-
posed using much larger packets than used in traditional packet
tracing, and to split packets on the fly during traversal. Splitting
was performed in screen space, and extending the concept to gen-
eral ray packets is an open problem. In addition, MLRT traversal
uses a combination of frustum culling and interval arithmetic to re-
duce the number of traversal steps, but the resulting operations are
inherently scalar, and do not work well in wide SIMD. Similarly,
the large-packet schemes proposed for grids [23] and BVHs [22]
are either scalar or 4-wide SIMD.

Ray re-ordering Ray reordering for coherence was first inves-
tigated by Pharr et al. [16]. This reduced disk operations when
rendering massively complex scenes that would not fit into main
memory, but no consideration for finer scales (e.g. L2 caches) was
considered.

Breadth-first ray tracing Instead of tracing rays depth-first
through the hierarchy, multiple researchers have investigated
breadth-first traversal concepts. Mahovsky [14] has proposed
breadth-first traversal of BVHs to render massively complex models

through progressively compressed BVHs. This approach, however,
used breadth-first traversal to amortize BVH decompression cost,
and did not target real-time rates or SIMD.

3 BASIC COMPUTING PARADIGM

The two core concepts in this paper are streams of rays (or ray IDs),
and sets of filters that successively extract sub-streams–with certain
properties–from a parent stream. For example, a BVH traversal
filter may extract a sub-stream of rays that intersect a given BVH
node and passes only this sub-stream to child nodes.

A stream only contains data of the same type (say, a stream of rays,
or a stream of IDs), but can be of arbitrary length. Streams are pro-
cessed sequentially, albeit in SIMD manner1; non-sequential mem-
ory accesses are possible through gather read/scatter write opera-
tions (in which a stream of non-sequential addresses or ray IDs is
used to generate a sequential stream of data).

For ray tracing, our core observation is that most operations in
traversal, intersection, and shading can be written as a sequence of
conditionals that are applied to each ray. Instead of applying condi-
tional statements to individual rays, we can execute a conditional as
a stream filter across an entire packet of rays. Given the arbitrary or-
dering and length of the streams, we can then effectively use SIMD
processing for long streams. An important purpose of this work is
to demonstrate that such long streams exist for ray tracing.

Stream Filtering Taking an input stream of rays and extracting
those with a given property into a resulting sub-stream is what we
refer to as a filter. In a traditional non-SIMD architecture, a filter
operating on a given input stream would be written as

filter<test>(inputstream) -> outputstream {
for each e in inputstream

if (test(e) == true)
outputstream.push(e)

}

In a data parallel or SIMD environment, the stream filter can be
implemented as a two-step process: Instead of processing each el-
ement individually, many elements of the input stream are tested
in parallel, and a Boolean output mask is computed for the in-
put stream. This mask is then used to compact the input stream
to only those elements whose mask is “true”. Ideally, the com-
paction operation would be supported in hardware (e.g., a SIMD
vector compaction operation in our hypothetical SIMD architec-
ture); otherwise, efficient data-parallel algorithms for compacting
an entire stream (typically based on parallel prefix sums) are avail-
able in both the data parallel [5] and in the GPGPU literature [10].

SIMD Sub-stream Processing If the underlying SIMD instruc-
tion set supports gather read operations, the above successive
stream filtering paradigm can be very efficiently implemented in
SIMD. We start with an initial input stream of data, and generate an
ID list (0,1,2...M− 1), where M is the number of elements in the
initial stream. In each subsequent filter operation, we process the
input stream of IDs and compute an output stream of IDs of those
elements which “pass” the filter.

filter<test>(element[M],inputstream<IDs>)
-> outputstream<IDs> {

for each ID in inputstream
if (test(element[ID}) == true)

outputstream.push(ID)

1All stream elements are independent from each other, and can be pro-
cessed in arbitrary order. In particular, an arbitrary number of elements can
be processed in parallel, which allows us to process the stream in arbitrarily-
wide SIMD

2



Technical Report No UUSCI-2007-012

}

Given that a gathering read is available to a SIMD unit, we can pro-
cess the entire stream in a SIMD fashion. This is due to the single
level of indirection available for each filter and the independence of
the elements of the stream. For any filter, we follow the following
steps:

1. Read a SIMD wide chunk of ray IDs from the stream

2. Collect data elements via a gather read operation

3. Apply the filter to the SIMD wide chunk

4. Generate and compact a portion of output based on the filter
mask

5. Append the new “active” IDs to the full output-stream

In this basic outline, we assume that our hardware provides effi-
cient compaction on a SIMD chunk. If this is not the case, we
could instead generate a stream length mask and perform a tradi-
tional stream compaction operation as mentioned above.

There are two main reasons for this stream processing approach.
First, if input streams are larger than the available SIMD width we
will usually operate on N items in parallel and achieve high utiliza-
tion. Second, the filtering removes elements from our stream that
would perform useless work. This allows subsequent filter opera-
tions to operate only on active elements and yields higher utiliza-
tion.

The main requirement for this stream processing approach is an in-
struction set supporting gather reads. Though this is not currently
supported in traditional SIMD instruction sets such as SSE, we be-
lieve that future hardware will support this operation. NVidia’s
G80, if viewed as a 32-wide SIMD architecture, already does sup-
port gather and scatter, and so does—albeit at a much different
scale—Intel’s SSE4. Hardware support for compaction/reduction
would also be desirable, but current prefix-sum based reduction for
full streams would probably perform similarly.

4 SIMD STREAM TRACING

Once the basic stream approach is understood, applying it to BVH
traversal, primitive intersection, and shading is fairly straightfor-
ward. We now specifically detail each of these operations in se-
quence.

4.1 Traversal

For traversal, our initial input stream is a large number of rays, ide-
ally far larger than the SIMD width—say, 1K rays. We then gener-
ate the initial ID stream (0,1,2, . . .) and start recursive BVH traver-
sal. In each traversal step, we take the input stream of ray IDs, test
all of the corresponding rays with the current BVH node’s bound-
ing box, and reduce the ID stream to produce the output stream,
which contains the IDs of all those rays that want to traverse that
sub-tree. If this stream is empty, we backtrack to the last sub-tree on
the stack; else we either intersect the output stream with the node’s
triangles if it is a leaf node, or we recursively traverse the output
stream down the node’s children, ideally in front-to-back order.

In pseudo-code, the algorithm can be written very compactly:

BVHTraverse(ray[M]) {
stream init = (0,1,2,...M-1);
traceStream(root,ray,init);

}
recTrv(node,ray[M],inputIDs) {

activeIDs = filter<boxtest(node)>(inputIDs);

if (empty(activeIDs)) return;
if (isLeaf(node))

for (all triangles t)
intersectStreamWithTriangle(t,ray,activeID);

else
traceStream(firstChild(node),ray,activeIDs);
traceStream(secndChild(node),ray,activeIDs);

}

Here, f irstChild and secondChild are the first and second child to
be traversed, with order being determined through any given heuris-
tic, ideally through ordered traversal based on the first active ray’s
direction vector signs. Note that the filter operation above is where
most of the time is spent, and that this operation is executed strictly
in SIMD manner.

All in all, the code is very simple, looks almost like single-ray
traversal (except that we work on variable-length streams of rays),
and can be written in a few lines of code.

4.2 Intersection

In the most simple way, the triangle intersection code takes a SIMD
chunk of N ray IDs, gather read’s the respective rays, and performs
N complete SIMD ray/triangle intersections in parallel. This results
in an N-wide mask of which ray-triangle intersections have been
successful, which is then used to store the respective rays’ new hit
information using conditional masks. The new hit information is
then written back into the initial ray population using a scatter write.
As with gather reads, we assume scatter writes are supported by the
hardware.

Instead of performing entire triangle intersections in SIMD chunks,
one can also write the triangle test itself as a sequence of filter op-
erations. This should yield higher SIMD utilization than simply
performing complete ray/triangle tests in SIMD fashion. Though
there are a variety of triangle tests, any method will eventually have
to perform a distance test to determine whether the distance to the
triangle is within the valid ray interval. Furthermore, any test will
need to determine that the ray passes through the inside of the tri-
angle (e.g., using barycentric coordinates or Plücker tests against
each edge). Using filters, each of these four tests can be applied in
succession with every subsequent test only operating on active rays
that have passed previous tests. This sequence of filters approach
would provide higher SIMD efficiency for large streams of rays,
but also requires more gather and compaction operations. Which of
the two variants performs better will depend strongly on the actual
hardware used to execute them.

4.3 Shading

By applying a filter of shader ids to input streams, we can gener-
ate streams of rays that all execute the same shader. To do so, we
grab the first element of the stream and apply a filter to separate the
stream into rays that match the shader id and those that do not. The
rays to be shaded are all passed to the shader at once, which may
apply further filters during shading. The rays that did not match
the original shader id now form a stream of “remaining rays” that
require shading for other shader ids. We continue this process until
the “remaining rays” stream is empty and we have shaded all input
rays.

4.4 Managing Stream Memory

In the examples above, we have abstracted memory management
and assumed that we have a memory system that supports a “push”

3



Technical Report No UUSCI-2007-012

into an output stream at any time. In our implementation, we cur-
rently use one large chunk of pre-allocated stream memory. Each
new output stream is started immediately after its “parent” stream,
and a stream is represented with a pair of pointers that point to
the beginning and end of the stream elements. In this setup, only
only the head and tail need to be pushed onto a stack. This makes
creating, freeing and appending stream elements trivial. The total
required stream memory is then bounded by the size of the input ID
stream multiplied by the maximum number of successive reduction
operations. For all operations we have considered this has been triv-
ial to compute; for example, a BVH traversal will at most generate
D sub-streams where D is the maximum depth of the tree.

Alternatively, since each filter output is a sub-stream of the input
stream, the stream can be sorted “in place”. Elements that pass
the filter are moved to the start of the stream, and those that fail
are moved to the end (possibly using double-buffering to simplify
read/write conflicts to the input stream). In this setup, a filter oper-
ation is similar to a quick-sort “partition” step (also see, e.g., [5]).
As our algorithm does not depend on the ordering of the elements,
the ensuing permutations of the ray IDs in the ID streams are not a
problem. Though actual real-time implementations of our approach
will likely use in-place sorting, our simulator is neither time- nor
space-critical and does not use in-place sorting, yet.

4.5 Expected Behavior

Before interpreting actual measurements, it is worthwhile to first
discuss the intended behavior of our algorithm.

The main intention of the algorithm is to increase the SIMD effi-
ciency of SIMD ray traversal by filtering out inactive rays immedi-
ately upon detecting that they miss a sub-tree. In a certain sense,
compacting the output stream then fills up the gaps caused by de-
activated rays, which obviously means that some other rays need
to be available. This requires that the initial stream is sufficiently
long. If we are always able to find enough rays to feed into the next
traversal step, SIMD efficiency should be significantly higher than
for traditional packet traversal.

Implicit on-the-fly re-ordering. This filtering at each traversal
step can also be viewed as on-the-fly reordering of rays during
traversal. In fact, the reordering performed is in some sense op-
timal with respect to the original stream of rays: all rays from the
original stream that would perform the same traversal or primitive
intersection will always perform that operation together. It is im-
portant to note that this is true despite the order in which the rays
occurred in the initial input stream or which path rays take to reach
the common operation. Thus, no other re-ordering algorithm would
be able to combine more operations of the same kind than our algo-
rithm given the same input. By definition, this reordering scheme
is optimal wrt. this efficiency measure. While this does not imply
that actual performance will be optimal, we find it to be a nice the-
oretical point.

Additionally, this on-the-fly reordering does not rely on either
costly pre-sorting nor on any heuristic for estimating coherence.
Furthermore, its insensitivity to the initial ordering of rays seems
quite attractive, at least theoretically. It relies solely on what ul-
timately defines whether rays do the same operations–the actual
scene geometry and acceleration structure. Note that this concept
is valid not only for BVHs and triangles, but for any kind of hierar-
chical data structure and primitive type.

5 EXPERIMENTS AND RESULTS

To evaluate the impact of our method, we compare it against
plain packet traversal, and measure the SIMD efficiency of both
methods—for a hypothetical N-wide SIMD architecture with scat-
ter/gather support—in a variety of experiments. In particular, we
compare the respective algorithms’ SIMD utilization for three fun-
damentally different types of rays: primary rays, N-bounce specular
rays, and one bounce diffuse rays. Primary rays should be consid-
ered a best-case example for packet tracing, while the N-bounce
specular ray test is more like a worst case (as proposed by Reshetov
et al. [18]). The one-bounce diffuse reflection allows us to consider
rays more in the style of full distribution ray tracing [6].

Because we explicitly want to abstract from any underlying hard-
ware specifics, we make several assumptions: First, we do not con-
sider memory bandwidth or cache effects at all. This is a rather
grave abstraction for any physical architecture our algorithm might
eventually run on; however, not considering these effects at all ar-
guably is not worse than simulating with an arbitrary memory sub-
systems and then using that to derive claims for other. Second, we
assume that all operations are equally costly; this again is unrealis-
tic, as, for example, a scatter/gather operation is likely to be more
costly than, say, arithmetic operations. To abstract from this prob-
lem, we do not count individual operations at all, and instead only
determine the average SIMD utilization for the two most abstract,
high-level operations in ray tracing: a traversal step (i.e., a ray-box
test), and triangle intersection (both in SIMD, of course). Even for
these operations we only give the average utilization, not absolute
numbers. However, as both algorithms perform exactly the same
number of active operations, the ratio of utilizations is inversely
proportional to the ratio of actual operations (in other words: if al-
gorithm A has twice the average utilization of algorithm B, B will
perform twice as many operations).

5.1 Experimental Setup

To be able to simulate different SIMD widths, we do not make use
of the respective processor’s SIMD hardware. Instead, we use a
generic C++ SIMD class in which the SIMD width is as a template
parameter. This allows for simulating features that are not sup-
ported in SSE, such as wider SIMD units and support for scatter,
gather, and compact operations. We believe that all of these fea-
tures will be extensively available in future hardware architectures
(they already are, at least to some degree, in both a G80, and in
SSE4) Both out new method and packet traversal are implemented
using this generic SIMD class, and track the SIMD efficiency–i.e.,
the percentage of active rays–in each traversal and triangle inter-
section step. Being designed for flexibility and ease of generating
simulation data, the implementation is rather slow. Consequently,
we report only statistics like SIMD efficiency, but no absolute tim-
ings.

We will primarily compare out method to standard packet tracing
in the spirit of “traditional coherent ray tracing”; both traversal
schemes operate on a bounding volume hierarchy built using a sur-
face area heuristic [22], and all examples are run at 1024× 1024
pixels. Data will be reported for a set of typical ray tracing test
scenes: ERW6, conference, blade, and fairy-forest (see Figure 1).

5.2 Comparison for Primary Rays

5.2.1 Efficiency of Plain Packet Tracing

To provide a baseline for comparisons, we first determine the SIMD
efficiency of plain packet tracing for primary rays (Table 1). Since

4



Technical Report No UUSCI-2007-012

Figure 1: The four test scenes used for our experiments: erw6, 806 triangles; conference 282K triangles; fairy, 174K triangles (time-step 100); and blade, 1.76m
triangles. Since we only generate simulated statistical data, all scenes are used in static configurations only. The erw6 and conference scenes are closed
scenes, fairy-forest is mostly closed (the sky is open), and blade is a single object without environment.

primary rays are widely acknowledged as being highly coherent,
this experiment can be considered a best-case experiment for both
packet and SIMD stream tracing.

Intersection vs Traversal Efficiency. SIMD efficiency for trian-
gle intersection is always lower than for BVH traversal, in particular
for increasing model complexity. This is because triangle intersec-
tions are always performed at the leaves where the rays are most
diverged, whereas for traversal at least some of the traversal steps
operate close to the root, where rays are still coherent. This has
been speculated about before (see, e.g. [21]), and our measurements
empirically prove it to be the case.

Model complexity. Table 1 also shows the impact of rising model
complexity on SIMD efficiency. While SIMD efficiency remains
high for the ERW6 with it’s huge triangles, it drops significantly
for the conference and fairy scenes, and drops even further for the
blade scene. Even disregarding the acknowledgedly extreme exper-
iment of using 8× 8 packets, the data for 4× 4 packets indicate
that for a SIMD width of 16, only an average of 9.1 out of 16 rays
would be active during traversal, and only 2.1 out of 16 during tri-
angle intersection (57% respectively 13%)–even for the best-case
setting of high-density primary rays. Even for the smallest reason-
able packet size of 2× 2 rays, intersection SIMD efficiency drops
to almost one third in the blade model, and even in the conference
and fairy scenes, almost one ray in four is un-utilized.

Increasing SIMD width has an even more adverse effect on effi-
ciency. Efficiency remains reasonable for the SSE-like 2× 2 case,
but drops considerably for the 4× 4 case. This is particularly true
for the blade model, but applies for all models.

In the 8× 8 packet traversal case, intersection efficiency drops to
less than 50% in all but the ERW6 scene, and in the blade scene,
to a horrendous 3% (i.e., in this case, only 1.9 out of 64 units are
doing productive work!). Note that while a simulated SIMD width
of 64 may seem unlikely to enter the CPU domain any time soon, an
NVidia G80 GPU already has a warp size of 32, and the 8×8 results
are a good indicator on SIMD efficiency that could be expected
from a plain packet traversal algorithm on such an architecture.

packet size erw conf fairy blade
2×2 99 / 97 97 / 87 96 / 83 83 / 39
4×4 97 / 93 93 / 69 88 / 61 57 / 13
8×8 94 / 84 84 / 48 75 / 35 30 / 3

Table 1: SIMD efficiency (for traversal/intersection, respectively; in percent,
rounded down) for packet tracing using 2×2 packets for 4-wide SIMD, 4×4
packets for 16-wide SIMD, and 8×8-packets for 64-wide SIMD, respectively.

5.2.2 Efficiency of the SIMD Stream Traversal

The SIMD efficiency for our new algorithm–again with primary
rays only so far–is given in Table 2. If the initial stream size
matches the SIMD width, the stream traversal achieves exactly the
same efficiency as the packet traversal. For larger initial stream
sizes of 32× 32 or 64× 64 rays, the SIMD utilization increases
significantly, in particular in cases where standard packet traversal
suffers (i.e., for large SIMD width and/or high model complexity).
This is due to the fact that even if certain rays in a SIMD ray-box
test may miss the box, the compress operation will automatically
remove these newly deactivated rays from the output stream, mean-
ing the next stream-box test will again operate on a fully active
stream of rays. Thus, there are only two sources of potential im-
balance: first, due to shrinking during traversal the streams sizes
will, in general, not be multiples of the SIMD width, implying that
the last chunk of rays will be only partially filled; second, eventu-
ally streams may become shorter than the SIMD width, so SIMD
utilization will necessarily dip below 100%.

5.3 N-Bounce Specular Rays

Though helpful to get a best-case estimate, primary rays are not the
most representative set of rays to evaluate a ray tracing algorithm.
In particular, primary rays are highly coherent, and algorithms that
work well on primary rays may still break down for less coherent
secondary rays. For that reason, Reshetov [18] proposed an effec-
tive yet easily reproducible benchmark for secondary rays based
on computing N bounces of specular reflections for every ray (in-
dependent of the scene’s material properties). In his experiments,
SIMD efficiency for traditional packet tracing of a kd-tree dropped
rapidly after only a few bounces.

In Table 3, we give the SIMD efficiency for both SIMD packet
tracing and SIMD stream tracing for a varying number of specu-
lar bounces for both 4-wide and 16-wide simulated SIMD units.
For packet tracing, we use a SIMD width matching the packet sizes

packet size N erw conf fairy blade
2×2 4 99 / 97 97 / 88 96 / 83 83 / 39

32×32 4 99 / 99 99 / 98 99 / 97 96 / 61
64×64 4 99 / 99 99 / 99 99 / 97 96 / 62

4×4 16 97 / 93 93 / 70 88 / 61 57 / 13
32×32 16 99 / 99 98 / 93 97 / 85 80 / 18
64×64 16 99 / 99 99 / 95 98 / 87 82 / 18

Table 2: SIMD efficiency for the SIMD stream traversal for simulated 4-wide
and 16-wide SIMD units, and for various initial stream sizes. While actually
designed for initial stream sizes that are far larger than SIMD width, we also
include data for a SIMD-width stream for reference purposes.

5



Technical Report No UUSCI-2007-012

of 2×2 and 4×4; the stream tracing uses input streams of 32×32
rays in both cases.

Packet tracing. As expected, the data for reflection depth 0
matches the data for primary rays; increasing the number of
bounces leads to a severe drop in efficiency, depending on the scene.
For the erw6 scene, efficiency remains high even for 6 levels of re-
flections. For the conference and fairy scenes, SIMD efficiency
drops to roughly one half for 2× 2 packets and roughly one quar-
ter for 4× 4 packets. Also as expected, SIMD efficiency is still
somewhat reasonable for the smaller 2× 2 packets, but can drop
significantly for 4×4 rays.

Stream tracing. With the stream tracing approach, the re-
ordering works quite well. For the erw6 scene, the reordering
maintains nearly full utilization even after multiple bounces, and
even for the conference and fairy scenes utilization is significantly
higher than for packet tracing. In particular, the traversal coherence
is greatly improved for higher bounce depths in both the 4-wide and
16-wide SIMD cases. Obviously, the re-ordering cannot extract co-
herence if none is available. Eventually, SIMD efficiency drops
even in the stream version due to a lack of rays requiring common
operations. The important point, however, is that decreased utiliza-
tion will occur at a much later stage than for packet tracing.

#refl./method erw6 conf fairy blade

SIMD Width 4
0 packet 2×2 99 / 97 97 / 87 96 / 83 83 / 39
0 stream 4 / 32 99 / 99 99 / 98 99 / 97 96 / 61
1 packet 2×2 98 / 92 94 / 81 90 / 74 76 / 37
1 stream 4 / 32 99 / 99 99 / 97 98 / 93 92 / 55
2 packet 2×2 97 / 91 91 / 76 85 / 67 70 / 35
2 stream 4 / 32 99 / 99 99 / 96 97 / 89 89 / 52
4 packet 2×2 95 / 89 82 / 64 76 / 59 67 / 35
4 stream 4 / 32 99 / 99 97 / 90 94 / 82 88 / 50
6 packet 2×2 94 / 87 74 / 55 71 / 55 67 / 34
6 stream 4 / 32 99 / 98 95 / 83 92 / 78 87 / 49

SIMD Width 16
0 packet 4×4 97 / 93 93 / 69 88 / 61 57 / 13
0 stream 16/32 99 / 99 98 / 93 97 / 85 80 / 18
1 packet 4×4 95 / 84 86 / 58 75 / 46 46 / 12
1 stream 16/32 99 / 98 97 / 88 92 / 71 66 / 15
2 packet 4×4 92 / 82 77 / 49 63 / 36 39 / 11
2 stream 16/32 99 / 97 95 / 80 86 / 59 60 / 14
4 packet 4×4 88 / 77 60 / 34 48 / 27 35 / 10
4 stream 16/32 98 / 96 87 / 62 74 / 45 55 / 13
6 packet 4×4 83 / 72 46 / 25 40 / 23 34 / 10
6 stream 16/32 97 / 94 79 / 46 67 / 38 54 / 13

Table 3: Comparison for n-bounce specular rays. SIMD efficiency (for traver-
sal/intersection) for both packet tracing and SIMD stream tracing, for 4-wide
and 16-wide SIMD, using a forced number of n specular bounces. Packet
tracing uses square packets of 2×2 resp. 4×4; SIMD stream tracing oper-
ates on initial ray sets of 32×32 pixels.

5.4 One-Bounce Diffuse Rays

Finally, we report data for a single diffuse bounce per ray, which is
to simulate typical global illumination algorithms like final gather-
ing, ambient occlusion, or path tracing. Most global illumination al-
gorithms would arguably trace more coherent rays than one-bounce
diffuse (e.g. highly specular materials or caustic), but one-bounce
diffuse rays should nonetheless be roughly representative. Because
real global illumination algorithms would arguably have a higher
ratio of secondary to primary rays than the 1:1 ratio used in this
experiment, we–for this particular experiment–use 16 samples per
pixel, and include only the secondary rays in our measurements.

method config erw6 conf fairy

SIMD Width 4
packet 2×2 92 / 85 89 / 72 71 / 53
stream 4/32×32 99 / 99 98 / 92 95 / 84
stream 4/64×64 99 / 99 99 / 95 97 / 90

SIMD Width 16
packet 4×4 86 / 70 69 / 42 40 / 21
stream 16 / 32×32 99 / 96 91 / 70 79 / 49
stream 16 / 64×64 99 / 98 95 / 80 88 / 63

Table 4: Comparison for one-bounce diffuse ray distributions. SIMD effi-
ciency (traversal/intersection) of both packet tracing and SIMD stream trac-
ing, for one-bounce diffuse rays (16 rays/pixel). Data is for the diffusely
bounced rays only, primary rays are intentionally excluded.

As can be seen from Table 4, this experiment reinforces the re-
sults from the previous experiment: again, higher model complexity
reduces the SIMD efficiency, as does increasing the SIMD width.
Also as expected, for 16-wide SIMD, the relative impact of reorder-
ing is higher than for 4-wide SIMD (> 2× higher efficiency for the
conference scene), but even re-ordering on 64× 64 rays (16× 16
pixels with 16 samples per pixel) still produces noticeable under-
utilization at 63% utilization in the fairy scene. Nevertheless, the
reordering improves SIMD efficiency by more than 2×, and is gen-
erally much higher than expected for the seemingly random rays
used in this experiment2

6 DISCUSSION

We have demonstrated that for initial packet sizes larger than SIMD
width, our stream tracing approach can yield significantly higher
SIMD utilization in both BVH node traversal triangle intersection
than standard packet tracing. However, several issues have to be
discussed in order to see the whole picture.

6.1 Extendability

The framework discussed above is very general, and can be ex-
tended in many ways.

General secondary ray packets. Though only demonstrated for
primary, N-bounce specular, and one-bounce diffuse rays, the algo-
rithm can handle arbitrarily sized, unstructured soups of rays, and
no explicit or implicit ordering is required.

Other data structures and primitives. Though presented only
for BVHs and triangles, the algorithm extends easily to other hier-
archical data structures and primitives.

Operations other than traversal and intersection. The same
concept–repeated stream reduction–can also be applied to other op-
erations like shading. In that case, one would successively generate
streams that share the same shader, that access the same texture,
etc. Though our shaders already do this for the shader, our scenes
have no “real” shading and texture information, so we decided to in-
tentionally not include any—arguably misleading—utilization data
for shading. Most generally, the core concept could also be applied
to other, completely non-ray tracing related techniques. For exam-
ple, collision detection, k-nearest neighbor queries (photon map),
database queries, etc, could use this method as long as these tech-
niques use a hierarchical data structure and can be written such as

2In particular the efficiency for packet tracing is higher than expected.
We believe that this is due to rays not only intersect geometry where they
eventually end up (and where they are arguably most incoherent), but also
where they originate, and where they are still coherent.

6



Technical Report No UUSCI-2007-012

to perform its primitive operations in a (data-)parallel way. Eventu-
ally, we are re-addressing the question of how ray tracing maps to
a stream processing framework, which was previously addressed,
for example, by Purcell et al. [17]. However, Purcell investigated a
particular hardware architecture (a third-generation, only partially
programmable GPU) and was constrained by the particular hard-
ware constraints of that architecture (e.g., no scatter write); instead,
we investigate the question on a higher abstraction level, but in ad-
dition investigate the SIMD side of any such architecture3

Extendability to IA/frustum techniques. Our algorithm extends
to frustum- or interval-arithmetic driven culling schemes [7, 19, 22,
23]. Given conservative bounds (e.g., interval data) for the input set
of rays, in each traversal step one can first perform the conservative
culling test. If that test is successful, one can directly proceed to
the next traversal step without performing a stream reduction; if
not, one performs the stream reduction step as described above, and
could–though this is not absolutely required–then re-compute the
bounding information for the reduced ray stream.

Suitability for stream architectures. Being motivated by a
streaming compute paradigm, the algorithm would ideally fit
stream-oriented hardware architectures such as Imagine [11] or the
Stanford Streaming Supercomputer [9]. In such a framework, the
scatter/gather operations would be performed by the memory con-
troller. Eventually, the combination of streaming and SIMD pro-
cessing for generalized ray packets would also be an interesting
paradigm for designing special-purpose ray tracing hardware.

6.2 Relation to Existing Techniques

The proposed technique is a generalization of traditional ray traver-
sal, packet tracing, and breadth-first traversal: for PACKET_SIZE=1,
the algorithm specializes to standard recursive single-ray traver-
sal; for PACKET_SIZE>1 and SIMD_WIDTH=1, the algorithm spe-
cializes to standard breadth-first ray traversal as; and finally,
for PACKET_SIZE>1 and SIMD_WIDTH=PACKET_SIZE, the algorithm
specializes to standard packet traversal as described in [24].

6.3 Limitations

Maximally extractable SIMD parallelism. Our algorithm can ef-
fectively extract the SIMD parallelism available in the initial ray set.
However, if the initial ray set does not contain any such parallelism
at all, SIMD efficiency will still be low. In particular, if triangles
become sub-pixel size, then even a very large initial ray stream will
end up with very short ray streams for each individual triangle (this
effect is already visible in Table 2 for the blade data-set).

Eventually, this suggests a different SIMD processing scheme at
least for the triangle intersection stage: for example, instead of only
operating on streams of rays that request intersection with the same
triangle, one could also combine streams from multiple different
triangles; due to the scatter capabilities, each of the stream element
could eventually operate on a different triangles (though merging
the results would require additional care).

Similarly, low SIMD efficiencies suggest building shallower hierar-
chies. Instead of intersecting two small BVH leaves with 3 triangles
each, intersecting a larger one with 6 triangles has the same inter-
section cost, but saves some traversal steps. This observation will
require more consideration.

3In Purcell’s target hardware, pixels were processed independently, even
though all pixels associated with one of his “quads” could be considered an
extremely wide SIMD vector.

Initial stream size. Our algorithm depends on a reasonably large
number of rays in the initial ray set. If this is not the case, no
efficiency gains through re-ordering can be expected. On the flip-
side, overly large initial ray sets may have a high theoretical SIMD
efficiency, but might nonetheless perform badly on real machines
due to cache spilling. As a result, practical implementations will
likely enforce a maximum initial stream size, which may become
problematic for shaders with a variable number of output rays.

Programming model. In particular for secondary rays, having a
large enough initial ray set to start with implies that multiple dif-
ferent shaders pool their rays before tracing them together. It is a
strength of our algorithm that this is supported at all, and that differ-
ent shaders can pool their rays without any restrictions on number
or ordering of these rays. Still, the programming model and API
for writing such shaders may prove to be non-trivial.

7 SUMMARY AND CONCLUSIONS

In this paper, we have presented a new approach to SIMD ray trac-
ing that yields higher SIMD efficiency than traditional packet trac-
ing schemes. The approach supports both larger-than-four SIMD
widths and general, arbitrary sized “packets” of arbitrary rays.

The technique operates on rather large streams of rays, and implic-
itly reorders the rays after each traversal step by discarding newly
de-activated rays from each traversal step’s output stream. This
ensures that each new traversal step’s input stream only contains
active rays.

The key strengths of our algorithm are that

it can re-order on the fly, thus achieving higher SIMD utilization
than packet tracing, and eventually extracts all of the SIMD
parallelism available. In particular, the ordering in which the
rays is passed is completely irrelevant.

re-ordering is done on the geometry hierarchy itself, and does
not depend on hard-to-control and possibly faulty ray coher-
ence heuristics

it supports arbitrary SIMD widths, and is thus applicable for a
wide range of future hardware architectures, and

it is general, and not restricted to BVHs and triangles.

The key challenge with the presented approach is that so far it has
only simulated results. Achieving more realized performance than
packet tracing with existing hardware may not be trivial. In partic-
ular, our algorithm relies on efficient support for scatter and gather
operations, which are not yet available in contemporary instruction
sets like SSE. However, our algorithm is not designed for existing
hardware, but for hardware architectures with much wider SIMD
units than used today. Nevertheless, ultimately ray tracing on wide-
SIMD architectures will remain a challenge: while our algorithm
can significantly increase the SIMD efficiency compared to tradi-
tional packet tracing, for complex scenes and/or mostly incoherent
rays there eventually isn’t enough SIMD parallelism in the input set
of rays that our algorithm could extract. Ultimately, this suggests
a different data-parallel approach to SIMD ray tracing, in which a
single operation traverses a set of rays through different BVH nodes
respectively intersects them with different rays in the same opera-
tion. This technique has been explored by Pixar’s PhotoRealistic
Renderman, where ray coherence is assumed to minimal [8]. Ex-
isting techniques have not investigated this possibility mostly due
to the restrictions of the SSE instruction set, which does not allow
for gather reads (which is essential for operating on different, ran-
dom triangles); if scatter and gather was supported in hardware—as
it is, for example, on a G80—such an approach would be feasible.

7



Technical Report No UUSCI-2007-012

Pixar’s system avoids this by knowing that the geometry and BVH
nodes are stored together in their geometry caches.

Future work. As a next step, we would like to build a real-time
implementation of our algorithm. First results on a SSE-variant
are available, and, albeit significant overhead in software-emulated
scatter/gather, results are promising. In addition, we would like to
perform more simulations for different kinds of ray distributions–in
particular, global illumination rays–and start work on designing an
appropriate shader programming model. Finally, we have already
suggested a different data-parallel approach to SIMD ray tracing
in which each operation operates on different triangles respectively
BVH nodes; investigating this should be straightforward using the
generic SIMD simulation tools we already have at hand.

REFERENCES

[1] Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,
2006.

[2] Carsten Benthin. Realtime Ray Tracing on current CPU Architectures.
PhD thesis, Saarland University, 2006.

[3] Carsten Benthin, Ingo Wald, Michael Scherbaum, and Heiko
Friedrich. Ray Tracing on the CELL Processor. In Proceedings of
the 2006 IEEE Symposium on Interactive Ray Tracing [1], pages 15–
23.

[4] Carsten Benthin, Ingo Wald, and Philipp Slusallek. Interactive Ray
Tracing of Free-Form Surfaces. In Proceedings of Afrigraph, pages
99–106, November 2004.

[5] G.E. Blelloch and J.J. Little. Parallel solutions to geometric problems
in the scan model of computation. Journal of Computer and System
Sciences, 48(1):90–115, 1994.

[6] Solomon Boulos, Dave Edwards, J Dylan Lacewell, Joe Kniss, Jan
Kautz, Peter Shirley, and Ingo Wald. Packet-based Whitted and Dis-
tribution Ray Tracing. In Proceedings of Graphics Interface 2007,
May 2007.

[7] Solomon Boulos, Ingo Wald, and Peter Shirley. Geometric and Arith-
metic Culling Methods for Entire Ray Packets. Technical Report
UUCS-06-010, SCI Institute, University of Utah, 2006.

[8] Per H. Christensen, Julian Fong, David M. Laur, and Dana Batali. Ray
tracing for the movie ’Cars’. In Proc. IEEE Symposium on Interactive
Ray Tracing, pages 1–6, 2006.

[9] Bill Dally, Pat Hanrahan, and Ron Fedkiw. Stanford streaming super-
computer whitepaper, 2001.

[10] GPGPU Forum. Stream compaction on G80.
http://www.gpgpu.org/forums.

[11] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi, Pe-
ter Mattson, Jinyung Namkoong, John D. Owens, Brian Towles, and
Andrew Chang. Imagine: Media processing with streams. IEEE Mi-
cro, pages 35–46, March/April 2001.

[12] Aaron Knoll, Ingo Wald, Steven G Parker, and Charles D Hansen.
Interactive Isosurface Ray Tracing of Large Octree Volumes. In Pro-
ceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,
pages 115–124, 2006.

[13] Christian Lauterbach, Sung-Eui Yoon, David Tuft, and Dinesh
Manocha. RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes
using BVHs. In Proceedings of the 2006 IEEE Symposium on Inter-
active Ray Tracing [1], pages 39–45.

[14] Jeffrey Mahovsky and Brian Wyvill. Memory-Conserving Bounding
Volume Hierarchies with Coherent Raytracing. Computer Graphics
Forum, 25(2), June 2006.

[15] Gerd Marmitt, Heiko Friedrich, Andreas Kleer, Ingo Wald, and
Philipp Slusallek. Fast and Accurate Ray-Voxel Intersection Tech-
niques for Iso-Surface Ray Tracing. In Proceedings of Vision, Model-
ing, and Visualization (VMV), pages 429–435, 2004.

[16] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Render-
ing Complex Scenes with Memory-Coherent Ray Tracing. Computer
Graphics, 31(Annual Conference Series):101–108, August 1997.

[17] Timothy Purcell, Ian Buck, William Mark, and Pat Hanrahan. Ray
tracing on programmable graphics hardware. ACM Transactions on
Graphics, 21(3):703–712, 2002. (Proceedings of ACM SIGGRAPH).

[18] Alexander Reshetov. Omnidirectional ray tracing traversal algorithm
for kd-trees. In Proceedings of the 2006 IEEE Symposium on Interac-
tive Ray Tracing [1], pages 57–60.

[19] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-Level
Ray Tracing Algorithm. ACM Transaction on Graphics, 24(3):1176–
1185, 2005. (Proceedings of ACM SIGGRAPH 2005).

[20] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR – A
Hardware Architecture for Ray Tracing. In Proceedings of the ACM
SIGGRAPH/Eurographics Conference on Graphics Hardware, pages
27–36, 2002.

[21] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[22] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies. ACM
Transactions on Graphics, 26(1):1–18, 2007.

[23] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G.
Parker. Ray Tracing Animated Scenes using Coherent Grid Traversal.
ACM Transactions on Graphics, 25(3):485–493, 2006. (Proceedings
of ACM SIGGRAPH).

[24] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.
Interactive Rendering with Coherent Ray Tracing. Computer Graph-
ics Forum, 20(3):153–164, 2001. (Proceedings of Eurographics).

[25] Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU: A pro-
grammable ray processing unit for realtime ray tracing. ACM Trans-
actions on Graphics, 24(3):434–444, 2005. (Proceedings of SIG-
GRAPH).

8


