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Abstract

Recent developments have produced several techniques for interactive ray tracing of dynamic scenes. In par-
ticular, bounding volume hierarchies (BVHs) are efficient acceleration structures that handle complex triangle
distributions and can accommodate deformable scenes by updating (refitting) the bounding primitive without re-
structuring the entire tree. Unfortunately, updating only the bounding primitive can result in a degradation of the
quality of the BVH, and in some scenes will result in a dramatic deterioration of rendering performance. The
typical method to avoid this degradation is to rebuild the BVH when a heuristic determines the tree is no longer
efficient, but this rebuild results in a disruption of interactive system response.

We present a method that removes this gradual decline in performance while enabling consistently fast BVH per-
formance. We accomplish this by asynchronously rebuilding the BVH concurrently with rendering and animation,
allowing the BVH to be restructured within a handful of frames.

1. Introduction

In the last decade, the graphics community has benefited
from tremendous improvements in the performance and ca-
pabilities of PC based graphics cards, with GPUs now pro-
viding around 330 GFlops and increasing programmabil-
ity [Lue06]. This demand for faster and more programmable
GPUs is driven mainly by the demanding needs of video
games for faster and more realistic graphics.

Along with the tremendous improvements in GPUs, CPUs
are also becoming much faster, especially with the cur-
rent trend of increasing the number of cores per chip. For
instance, a standard 3 GHz dual-core Opteron today has
roughly 24 GFlops, a PlayStation 3’s CELL processor has
180 GFlops, and Intel already has an 80 core processor pro-
totype capable of TeraFlop performance [Int06].

The quest for increased quality, combined with increases
in available compute power has led to improvements of
rasterization-based GPUs. This quest has also reignited an
interest in ray tracing for many applications. Ray tracing can
casily fulfill the growing quality demands, such as soft shad-
ows, depth-of-field, caustics, participating media, and global
illumination; but the main limitation is that it is not yet effi-
cient enough for use in dynamic applications such as games.
However, as long as compute power continues to rise, ray
tracing will eventually become real-time.

With this in mind, many researchers have recently fo-
cused on realizing real-time ray tracing, and, more recently,
on ray tracing dynamic scenes. Today, real-time ray trac-
ing with dynamic scenes can be realized via either kd-
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trees [GFW*06, HSMO06], grids [WIK*06], or bounding vol-
ume hierarchies (BVHs) [LYTMO06, WBS07], but there are
trade-offs associated with each of these data structures. Kd-
trees seem to offer the highest ray tracing performance,
but are most costly to build [WHO06]; grids are efficient to
build [WIK*06], but rely on a high degree of coherence
which may not exist for complex scenes and/or secondary
rays. BVHs offer a compromise between performance and
the ability to handle complex scenes and secondary rays,
but are currently limited for many types of dynamic scenes.
In particular, BVH-based interactive ray tracing systems are
currently restricted to scenes that deform over time, and will
deteriorate in performance for unstructured motion or severe
deformations [WBS07]. While one could rebuild a deterio-
rated BVH to restore performance, this creates a disruptive
pause while the BVH is being rebuilt [LYTMO06].

In this paper, we propose a new approach for handling dy-
namic scenes in a BVH-based ray tracer that is designed for
highly parallel architectures, and that handles scenes with
large deformations over time. In particular, our approach is
especially suited for the highly parallel, multi-core archi-
tectures as are currently foreseeable for the near future. In-
stead of alternating between phases of rendering and (poten-
tially infrequent) building, our approach exploits the paral-
lelism inherent in a multi-core system by continuously and
asynchronously rebuilding new BVHs (potentially over the
course of multiple frames) while the remaining cores con-
currently update and traverse the most recently built BVH.
This reduces BVH deterioration over time, while avoiding
disruptive pauses at BVH rebuild times.
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2. Background

Real-Time Ray Tracing and Dynamic Scenes As early
as the 1990s, researchers achieved interactive ray tracing
performance with the use of large supercomputers [GP90,
Muu95, PMS*99]. With the growing capabilities of com-
modity architectures, researchers then turned their attention
to ray tracing on PCs, and PC clusters [WSBWO1]. In partic-
ular since Reshetov’s “Multilevel Ray Traversal” [RSHOS5],
PC based ray tracers are—at least for very simple shading—
able to achieve fully interactive frame rates for non-trivial
scenes on multi-core desktop PCs. In that same year, Woop
et al. [WSSO05] demonstrated that real-time ray tracing can
also be achieved by building special purpose hardware.

Apart from low level optimizations, fast ray tracing depends
on using efficient spatial acceleration structures, such as a
BVH, kd-tree, or grid. While there has been a long-running
debate on which of these is best, by 2005 virtually all fast
ray tracers were built on kd-trees. Unfortunately, kd-trees
are costly to build and cannot easily be incrementally up-
dated, and as such present an obstacle to handling dynamic
scenes. Thus, the debate is once again open, with researchers
actively exploring better ways to support dynamic scenes
with other acceleration structures. For kd-trees, Giinther et
al. [GFW*06] proposed a “motion decomposition” approach
to updating the kd-tree, but this only works if the anima-
tion sequence is known in advance. Stoll et al. [SMD™*06]
proposed a lazy build mechanism that is aided by scene-
graph information, but no real-time data is yet available. For
rendering general dynamic scenes with a kd-tree, Popov et
al. [PGSS06] and Hunt et al. [HSMO06] have investigated fast
approximate methods to rebuild kd-trees from scratch; these,
however, are still rather slow, and seem to parallelize poorly
( [PGSSO06] reports no speedup for small models and only a
2.4x speedup on 4 CPUs for a 10M triangle model).

As an alternative to kd-trees, Wald et al. [WIK*06] have pro-
posed a grid-based approach to ray tracing dynamic scenes,
which can handle arbitrarily dynamic scenes by rebuilding
the grid every frame. Ize et al. [[IWRP06] have shown that
the grid build can be parallelized quite effectively, with inter-
active rebuild rates even for complex scenes. Unfortunately,
this grid-based approach relies on highly coherent ray pack-
ets, and extensions for highly complex scenes and/or sec-
ondary rays are not obvious.

BVH-based Dynamic Scene Ray Tracing In parallel to the
grid and kd-tree based approaches, several groups have in-
vestigated the use of bounding volume hierarchies for ray
tracing dynamic scenes. Instead of subdividing space into
“voxels” of triangles, BVHs build an object hierarchy, and in
each tree node store a bounding volume for that subtree’s ge-
ometry. Wald et al. [WBSO07] proposed a traversal algorithm
for BVHs that achieved performance similar to Reshetov’s
MLRT system. Concurrently, a similar approach was devel-
oped by Lauterbach et al. [LYTMO6]. Other BVH inspired
approaches have been proposed by Havran et al. [HHS06],
Woop et al. [WMSO06], and Wéchter et al. [WKO06].

All of these BVH-based approaches make use of a BVH’s
ability to simply “refit” an existing BVH instead of rebuild-
ing it. A BVH is defined through two parts: the tree topol-
ogy, and each tree node’s bounding volume. Once the ob-
jects move, instead of rebuilding the complete BVH from
scratch, one can also leave the topology unchanged and only
refit the BVH nodes’ bounding volumes. While this refitted
BVH may have a different and potentially less efficient tree
structure than one built from scratch, the refitted BVH will
nonetheless be correct. Refitting a BVH is extremely fast,
and often less costly than the associated animation updates.

Handling BVH Deterioration While refitting a BVH is in-
expensive, it does have several drawbacks. First, it is only
applicable for deformable scenes (scenes that do not change
the triangle count or vertex connectivity). Second, refitting a
BVH will result in a correct BVH, but it will not necessar-
ily be efficient. The refitted BVH retains the original frame’s
BVH topology, but as the scene deforms the triangles might
form a configuration for where a different structure might
yield better performance. This will eventually lead to a de-
terioration of BVH quality (and performance) as scene and
BVH become out of sync.

As pointed out by Lauterbach et al. [LYTMO06], deforming a
BVH usually works for at least some number of frames, and
instead of rebuilding a BVH every frame, one could rebuild
only every few frames, with the frames in-between handled
by BVH deformations.

In order to do these rebuilds when they are most effec-
tive, Lauterbach et al. [LYTMO6] have proposed a “rebuild
heuristic” that detects BVH degradation, and rebuilds the
BVH if and only if the quality degradation has reached a
given threshold. This allows for striking a balance between
total rebuild cost and render cost, and can yield a signifi-
cantly reduced average frame time in an animation.

Unfortunately, a lower average frame time is not always
helpful in an interactive setting. In an offline animation the
infrequent rebuilds can be amortized over all frames of the
animation, yielding a low average time per frame; in an in-
teractive setting, however, amortization does not apply, and
system responsiveness is disrupted while a rebuild is per-
formed, which hurts the user’s ability to interact with the en-
vironment. For interactive applications, removing large vari-
ations in frame rate is often more important than having a
moderately faster average frame time [WWRS98].

3. Asynchronous Dynamic BVHs

As discussed in the previous section, BVHs hold promise
for ray tracing dynamic scenes, but the refits eventually lead
to degraded performance, and rebuilds result in disturbing
pauses. These problems will likely become exacerbated by
future ray tracing systems running on architectures with a
large number of cores, since rebuilding and incremental up-
dating do not scale as well as rendering, thus further wors-
ening the effect of the disruptions.
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In this paper, we propose combining fast and asynchronous
single-threaded BVH builds with parallel and scalable re-
fitting and rendering. We continuously and asynchronously
build new BVHs as fast as possible in a dedicated thread
while all other threads are kept busy with rendering. Even
with fast build algorithms, a BVH will usually take more
than one frame to build; but since building is asynchronous,
rather than wait for the build to finish, the rendering threads
can refit the previous BVH and continue rendering, which
can easily be done in parallel. As soon as a new BVH is
available, the rendering threads switch to the new BVH, and
rebuilding starts anew. Using this approach, BVH deteriora-
tion is avoided since no BVH is deformed for more than a
few frames; and because no dependencies between building
and rendering are introduced, the rendering threads are never
stalled, producing good scalability and avoiding disruptions
altogether (see Figure 1).
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Figure 1: Given a highly parallel architecture with N cores,
N — 1 of the cores work on parallel rendering and BVH re-
fitting of the most recently finished BVH, while the N core
works asynchronously and builds new BVHs as fast as pos-
sible, potentially over multiple frames (2 in this example).
BVHs are deformed for only a few frames, and both scala-
bility bottlenecks and pauses are avoided altogether.

3.1. Asynchronous Build

To allow multiple threads to work asynchronously on the
same data, we must double buffer the shared data, which
consists of the vertex positions (which are updated each
frame by the renderer) and, of course, the BVH nodes. All
other data, like triangle connectivity, triangle acceleration
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structures, vertex normals, texture coordinates, etc are not
touched by the builder, and so are not replicated. This results
in roughly 80 bytes extra storage per triangle, which for most
scenes has a minor impact. A large 1M triangle scene, for in-
stance, would only require roughly 80MB of extra storage.

Whenever a new BVH is finished, the rebuilder passes it to
the renderers, and grabs a new set of vertices to work on.
This naturally occurs between when the render threads fin-
ish their current frame and before they start refitting the BVH
for the next frame. Since at that time the application has not
yet computed the new vertex positions, we start the build
process with vertex positions that are already one frame out-
dated. While we could wait for the new vertex positions to
be calculated before exchanging the data, this would require
an expensive copy of those values to the rebuilder, which
is especially problematic since the render threads must be
blocked waiting for the copy to finish before they can use the
new data. This critical section hurts the system’s scalability.
Instead, by building the BVH from the last finished frame’s
vertex positions, the vertex and BVH buffers can be switched
quickly with two pointer swaps, and the builder, application,
and render threads can immediately continue. Furthermore,
since it will likely take several frames before the new BVH
is available anyways, that BVH will already be outdated by
the time it is finished, so building the BVH with vertex posi-
tions that are outdated by one frame is equivalent to the build
taking one frame longer to complete—which is a minor cost
for ensuring good scalability. In addition, while the swap-
ping could be performed during the actual rendering (“hot
swapping”), it would require extra synchronization during
rendering as well as refitting the newly completed BVH to
the current frame being rendered. These issues would prob-
ably hurt performance more than is made up by having the
newer BVH as soon as it is available.

3.2. Parallel Update and BVH Refitting

With the poorly parallelizable BVH build moved to its own
asynchronous thread, the rendering stage itself can be kept
highly parallel. In particular, the operations to be performed
per frame are updating the vertices, refitting the most re-
cently built BVH, updating the triangle acceleration data,
and ray tracing. On a machine with N cores, we reserve one
thread for the BVH build, and dedicate the remaining N — 1
threads for parallel updating and rendering.

Vertex Generation The first task is to get the new frame’s
vertex positions, which are needed by all following steps.
Vertices are usually generated by the application using, for
example, a vertex shader or linear interpolation. Since for
non-trivial scenes even generating the vertices can be quite
costly compared to refitting a BVH or rendering a frame, en-
suring good system scalability requires either parallelizing
the vertex generation, or having the application generate the
vertices asynchronously to rendering. In our current frame-
work, we compute vertices by linearly interpolating between
fixed timesteps, which we do in parallel on N — 1 threads.
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5s, 6s, 7s, and 8s for the museum scene, and t=0s, 2s, 4s, 6s, and 7.75s for the Fairy scene, respectively).

Parallel BVH Refit Once the new vertex positions are
known, we start refitting the most recently finished BVH’s
bounding volumes; this again has to be done in parallel. One
way of doing so is a static work assignment, in which each
thread works on one of the top N — 1 independent subtrees of
the BVH. While for two threads Lauterbach et al. [LYTMO06]
reported good results for that approach, we found that for
significantly more threads, and for complex models with un-
even geometry distributions, this did not load balance well.

Therefore, we use a three-way dynamic load-balancing
scheme for the update. In the first phase, one “seeder” thread
traverses the upper k levels of the BVH and records the node
IDs of all the leaf nodes encountered and the node IDs of
the k’th level subtrees. Though no other thread can start re-
fitting until this seeding is done, there is no scalability issue
as the seeding has to traverse only a very small number of
nodes, is thus extremely cheap, and so can be run by one of
the update threads before that thread continues with its load
balanced vertex updating. This ensures that the seeding cost
is load balanced with the vertex updates.

Once all the N — 1 update threads are done updating the ver-
tices and seeding, they synchronize on a barrier, and then
switch to BVH refitting. We dynamically load-balance by
having each thread take a node ID from the list, refit that
subtree, and repeat. As soon as a thread finds no more sub-
trees to refit, it immediately goes on to performing triangle
updates. The last thread to finish a subtree update also per-
forms the final “merge” of the refit subtrees.

Triangle Update For ray-triangle intersection, we use the
method outlined in [WalO4]. This method uses a precom-
puted set of data values for each triangle, which for an an-
imated scene has to be recomputed every frame. Due to
imbalances in the BVH refitting phase (i.e., the last thread
having to merge the subtrees), the update threads can enter
that phase at different times. We compensate by dynamically
load balancing the triangle updates. In this way, all of the
individual operations—parallel subtree update, serial sub-
tree merge, and triangle update—are fully interleaved, en-
suring that all cores remain constantly utilized and finish at
the same time.

Parallel Rendering Once all N — 1 render threads have fin-
ished updating, they synchronize themselves via a barrier,
and then render the scene using a standard tile-based dy-
namic load balancing scheme, as used by Wald [Wal04].

Note that the entire per-frame rendering phase—update and
render—is dynamically load-balanced at all stages, uses all
N — 1 threads all the time, and performs only three barrier
operations per frame: after vertex updates, after all threads
have completed updating, and once all tiles have been ren-
dered. The only non-parallelizable stage is the time between
the end of the current and the start of the next frame, in which
the application processes user input, displays the image, and
if applicable, swaps the rebuild data.

3.3. BVH Build Method

The choice of BVH build method is orthogonal to our ap-
proach, allowing our method to be used with any build
method, including incremental update methods, if required.
Since building a BVH over multiple frames is explicitly al-
lowed in our framework, one could in principle use very
costly BVH builds that try to achieve the best possible BVH
quality. However, when building asynchronously, a BVH
will always be outdated by as many frames as it took to build
this BVH. Thus, there is still a trade-off between a build
method’s resulting BVH quality and the time to achieve that
quality, as longer builds potentially suffer worse from deteri-
oration. We currently support the O(NlogN) sweep method
outlined in [WBSO07] and a centroid-based spatial median
method in the spirit of [WKO06]. By default we use the very
fast to build centroid-based spatial median method.

4. Results and Discussion

Although mainly designed for upcoming multi-core archi-
tectures that will likely contain a large number of cores,
current processor architectures only feature 2 to at most 4
cores per processor. We therefore use an 8 processor dual-
core Opteron 880 shared-memory PC for our experiments,
which we believe most closely resembles our target proces-
sor designs. Unless otherwise noted, we use all 16 cores in
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Figure 3: Impact on frame rate for the three BVH build/update strategies: refit only (blue), using Lauterbach et al.’s update

heuristic (

), and using our asynchronous rebuilding strategy (red). Data is given for the “Fairy Forest 27 (394k triangles)

and the “BART museum” (262K triangles), and are measured on an 8 processor dual-core Opteron PC. Since refitting only
leads to performance deterioration, both our and Lauterbach’s approach work significantly better than refitting only. Compared
to Lauterbach’s approach, we achieve roughly equal peak performance, but maintain much more stable frame rates, and in
particular, avoid the disturbing “freezes” that occur whenever Lauterbach’s rebuild heuristic triggers a rebuild.

our tests. We use two test scenes: the “Fairy Forest 2” and
the “2 x 2 BART museum” (see Figure 2). The Fairy Forest
2 is a 7.75s long keyframed animation with 394K triangles,
almost all of which are deforming every frame, and resem-
bles a game-like scene. The 262K triangle 2 x 2 BART mu-
seum is 8s long and composed of 4 copies of the museum
scene from the BART benchmark [LAMOO] and is inten-
tionally designed to stress test large deformations. Because
it deforms heavily by morphing into wildly varying shapes
(see Figure 2), it provides a challenge where standard BVH
refitting quickly breaks down (see [LYTMO06, WBS07]). All
measurements were performed using the packet/frustum ray
tracer used in [WBSO07] at 1024 x 1024 pixels, with simple
lambertian shading and no textures. We do not use shadows
or other secondary rays, such as reflection, refraction, and so
on; these would not influence scalability or build times at all,
would only affect render times, and are therefore completely
orthogonal to our approach.

Using the centroid-based spatial median build method on a
single Opteron core, we can build a new BVH in roughly
170ms for the BART scene, and in roughly 230 ms for the
Fairy Forest 2 scene.

Parallel building Using more than one core for the build
would be an obvious and straightforward extension, and
would fit well within our approach. Since building is asyn-
chronous to rendering, perfect scalability of the build pro-
cess would not even be required, as any “idle” cycles dur-
ing the build could be used by the render threads. Though
the benefit of a parallel rebuild for moderately sized scenes
running on a small number of cores is not clear, for fu-
ture systems with many cores, such as Intel’s 80-core pro-
totype [Int06], a parallel build would likely be beneficial.
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Deterioration and Disruptions In Figure 3 we compare
our method with the standard “refit only”” method which uses
no rebuilds, and with Lauterbach’s rebuild heuristic.

Both scenes show that simply refitting leads to severe per-
formance deterioration, with about a 2.3 x drop for the Fairy
scene, and a nearly complete standstill for the BART scene.
Lauterbach’s approach is clearly superior to refitting only; it
avoids the BART scene’s extreme deterioration, and achieves
higher frame rates for the Fairy scene. Furthermore, with
only three rebuilds triggered for the Fairy scene, it achieves a
nearly constant frame rate that is up to 2 x that of the refitting
only approach.

While these experiments confirm Lauterbach’s method is su-
perior over deforming only, they also show its weaknesses:
the high variation in frame rate caused by rebuilds and vary-
ing rates of deterioration, the “sawtooth” effect of deterio-
ration until a new build is triggered, and, in particular, the
disruptions in which the system temporarily freezes while
a new BVH is being built. That last effect is particularly
visible in the fairy scene, where the otherwise nearly con-
stant frame rate of 30-35Hz is unexpectedly interrupted three
times, during which the system freezes for roughly 9 ordi-
nary frames.

Compared to Lauterbach’s method, our approach actually
consistently performs better than Lauterbach’s method, de-
spite rendering with one less core. This is due to the over-
head inherent in calculating a rebuild heuristic being more
expensive than the loss of 1 out of 16 cores for rendering.
Furthermore, our method achieves a significantly smoother
frame rate without disruptions, and with a significantly re-
duced sawtooth effect.



T. Ize & I. Wald & S. G. Parker / Asynchronous BVH Construction for Ray Tracing Dynamic Scenes on Parallel Multi-Core Architectures

45 T T T T T T T
g
3
3
8
8
e
5_ =
8
8
<
8
7
6
g 5
g 4
N 3
2_ =
1_ =
0 ! ! ! ! ! ! !

T=0s 1s 2s 3s 4s 5s 6s 7s

Figure 4: As the number of available cores increases, the
advantage of asynchronous rebuilds (red) increases over
both the rebuild heuristic ( ) and refit only (blue), as
seen in the frame rate for the Fairy Forest 2 scene.

Impact of Number of Cores While continuously rebuild-
ing the BVH results in a faster to traverse BVH compared
to a refitted BVH, the downside is that one core is always
busy with building BVHs and cannot contribute to render-
ing. Thus, we consistently have one thread less for rendering
than when using the rebuild heuristic or refitting only. As ex-
pected, Figure 4 shows that this effect is particularly severe
for two cores (in which case we spend half our compute po-
tential on BVH construction), but diminishes for more cores.
Increasing the number of cores used by our method reduces
the fraction of CPU time spent on rebuilding, and thus re-
duces our method’s overhead.

Interestingly, even for the worst case of 2 threads our worst
frame time is still better than that of either Lauterbach or
refitting only, even if the average frame time is far worse.
For 8 cores, this overhead is nearly gone; while one would
expect our peak performance to be %x that of the rebuild
heuristic, in practice the difference is much smaller due to
the overhead in computing the rebuild heuristic, and in fact,
by 16 cores we perform better than the rebuild heuristic.

When adding more cores, the frame rate will improve, but
the build time will not. Consequently, we will render more
frames during one build cycle, and have to deform the exist-
ing BVH more often before a new one is available. Though

35 T T T T T T T T T 1
30

25

Bart
N
=}

1 | | ! | | |
4&':0’5 2s 4 6s 8s 10s 12s 14s 16s 18s 20s 22s 24s

0 1 I 1 1

30 I 1 a

Fairy Forest
N
o
T
1

=

o
T
1

5 -
1 1 1 1 1 1 1 1 1 1 1

0
T=0s 2s 4s 6s 8 10s 12s 14s 16s 18s 20s 22s

Figure 5: Frame rate for high-quality sweep-build ( )
vs fast approximate build (red). The sweep build generates
better BVH quality, but takes significantly longer to build.
Due to the longer build times, the sweep build exhibits a
“sawtooth” effect: longer builds imply longer times of de-
formation, leading to noticeable degradation over time in
the BART scene. The sweep build even produces far lower
frame rates than the approximate build, since its BVHs are
already significantly outdated by the time they are finished
building. We run these animations at 3x slower speed so
that the sweep build has a chance to occur multiple times.

this might seem problematic at first, it is not in practice. Vir-
tually all interactive animations, such as games, operate in
world time, and having a larger budget in rays that can be
traced per second simply means a smoother animation by
taking smaller timesteps and rendering the same animation
with more frames, or rendering with more rays per pixel (i.e.,
at higher quality). As such, the deformation accumulated by
the time the new BVH is ready is independent of the number
of cores or frame rate.

Impact of Build Method and Build Time As mentioned
in Section 3.3, a better build method will result in a higher
quality BVH, which in principle will translate to higher ren-
der performance; but, the longer to build method also means
that the BVH will have degraded more by the time it is ready
to be used and will degrade even more while the next BVH
is being built, potentially leading to severe degradation.

To quantify that effect we have run our two animation se-
quences with two different build methods: a very fast ap-
proximate build as described by Wichter et al. [WKO06],
and the SAH sweep method outlined in [WBS07]. For our
two scenes, the sweep method’s BVHs usually had around a
1.5x lower expected traversal cost, for the frame it was built
for, but took roughly 18 x as long to build.

As can be seen in Figure 5, both of the above mentioned ef-
fects are clearly visible in the form of a “sawtooth” pattern
in frame rate and lower peak performance due to the sweep
BVH already being heavily outdated by the time it is finally
built. Because the sweep build takes so long to build, we ran
these animations at one third the normal speed so that these
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effects would be visible. At the normal speed only two re-
builds are accomplished during the entire animation, result-
ing in the performance almost matching that of just perform-
ing the refitting. This clearly argues for the faster to build or
parallel build methods, even if the build can be done asyn-
chronously.

4.1. Practicability for Future Ray Tracing Systems

While the previous results have shown that our approach can
produce better results than current approaches based on ei-
ther refitting or rebuild heuristics, its practicability for future
ray tracing applications will depend on how adaptable it is
to different hardware architectures, to the growing demands
on scene size, types of animation, and render quality.

Higher per-core performance A potentially higher perfor-
mance per core (e.g., through a higher clock rate) would in-
crease both the frame rate, and the build performance. Thus,
as previously argued, the absolute time we have to rely on
deformation will go down, resulting in less BVH degrada-
tion, which increases the practicability of our method.

Impact of render cost per pixel Just like changing the
number of cores, by increasing the cost per pixel (e.g., by
tracing more rays for advanced effects) we merely change
the ratio of build time to render time, which has the same
effect as reducing the number of cores: the frame rate goes
down, but the absolute time we have to rely on deforming
an old BVH is not affected. In fact, the argument can be re-
versed: if future ray tracers will spend more rays per pixel,
and if future chips will have more cores, then we can use the
additional cores for tracing more rays per pixel at the same
frame rate, and without negatively affecting the dependence
on deformation at all.

Scene Complexity and Animation Speed While most cur-
rent games do not use more triangles than our 394K trian-
gle Fairy Forest 2 scene, if significantly larger scenes were
used, the O(NlogN) build method would require that we
rely longer on deformation before a new BVH is available.
This, and increasing the animation speed, is similar in spirit
to using a slower to build BVH as mentioned above and
would share the same results. Furthermore, if a scenegraph is
available, which is often the case in games, the scene could
be easily decomposed into subsets which could each be re-
built asynchronously on separate cores. On the other hand,
many researchers argue that future games might make heavy
use of freeform or subdivision geometry, and would there-
fore need significantly fewer primitives than are used to-
day [SMD*06]. In that case, our build times would shrink as
well, thus further improving the practicability of our method.

Remaining limitations While we significantly reduce the
dependence on refitting, we still refit for at least one
frame. As such, completely unstructured motion with near-
randomly changing geometry every frame cannot be sup-
ported. However, practical applications for such completely
random scenes are probably rare, and more likely effects,
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such as exploding objects, are arguably not worse than what
happens in the BART scene, which our method handles well.

Similarly, changing scene topology is currently not sup-
ported. However, this usually occurs only if entire objects
appear into/disappear from a composite scene environment,
which can easily be handled by a two-level approach as pro-
posed in [WBSO03]: the small top-level scene could easily be
rebuilt per frame, with our method handling the per-object
deformations, potentially for multiple models in parallel.

Application to non-CPU architectures Though we have
only talked about standard multi-core CPU architectures so
far, our method is also applicable to other architectures. On a
CELL [BWSF06], for example, the render threads could run
on the SPEs, with the rebuild thread running on either one of
the SPEs or on the slower but more flexible PowerPC core.

Even more interesting, the method could also be used for ray
tracers running on GPUs, or for special-purpose ray tracing
hardware as proposed by Woop et al. [WMSO06]. For these
architectures, rendering and BVH updating can easily be
performed in parallel on the respective hardware architec-
tures [WMSO06], but rebuilding doesn’t easily map to such
architectures. Using our method, the update would run on
the respective SPE, GPU, or RPU, while the rebuild is asyn-
chronously performed on the host CPU.

5. Conclusion

In this paper, we have presented a new approach to handling
dynamic scenes in a highly parallel ray tracing system and is
especially suitable for multi-core hardware architectures. In-
stead of trying to do a full BVH rebuild per frame, we avoid
any kind of scalability issues by rebuilding asynchronously
over the course of multiple frames, and in the meantime rely
on refitting, which parallelizes quite well.

The method is particularly designed for highly parallel
multi-core architectures, be it CPU cores, GPU cores, CELL
SPEs, or even special purpose hardware. While increasing
parallelism is a problem for pure rebuilding, our method
in fact benefits from more cores, as the relative overhead
decreases. As argued in the previous section, the currently
foreseeable trends towards having many more cores, slightly
more performance per core, and more rays per pixel would
make our method even more suitable for these architectures
than the one we used in our experiments.

Our method’s advantage over existing methods depends on
the scene, and on the amount of deformation in a scene. If
the deformation is sufficiently small, simply refitting every
frame may suffice, rendering our method superfluous; the
same is true if the scene is sufficiently small to be rebuilt
per frame (though any such approach might still suffer from
scalability issues). Compared to Lauterbach’s rebuild heuris-
tic, for a small number of cores we achieve a lower average
performance, but avoid performance degradations and sys-
tem response disruptions, which is important for truly inter-
active applications like games. When more cores are avail-
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able, we actually perform consistently better than the rebuild
heuristic since we do not need to calculate the heuristic. This
means that given enough cores, it is better to always perform
asynchronous rebuilds, despite the loss of one core to ren-
dering and updating, than trying to rebuild asynchronously
only when the BVH efficiency is low.

Since we still depend on a scene’s deformability for at least
short periods of time, we cannot handle randomly deform-
ing scenes, or scenes with changing topology; for such se-
vere scenes, another data structure, such as Wald’s “Coher-
ent Grid Traversal” [WIK*06], may be more applicable.

In future work, we will look into different BVH build meth-
ods that offer a good trade-off between build time and BVH
quality. More importantly, we would like to see our frame-
work applied to systems like the RPU, the CELL, or upcom-
ing multi-core architectures. Ideally, this would happen in
a truly dynamic environment, such as in a real game. Fi-
nally, in particular for architectures with many more cores,
we would like to extend our method to incorporate parallel
BVH building on a larger number of threads.
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Figure 1: Given a highly parallel architecture with N cores, N — 1 of the cores work on parallel rendering and BVH refitting of
the most recently finished BVH, while the N"* core works asynchronously and builds new BVHs as fast as possible, potentially

over multiple frames (2 in this example). BVHs are deformed for only a few frames, and both scalability bottlenecks and pauses
are avoided altogether.
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