
Applying Ray Tracing for Virtual Reality and Industrial Design

Ingo Wald1,3 Andreas Dietrich2 Carsten Benthin3 Alexander Efremov4 Tim Dahmen3

Johannes Günther4 Vlastimil Havran5 Hans-Peter Seidel4 Philipp Slusallek2

1SCI Institute 2Computer Graphics Group 3inTrace GmbH 4MPI Informatik 5Czech Technical University
University of Utah Saarland University Saarbrücken, Germany Saarbrücken, Germany Prague, Czech Republic

Figure 1: Several example screenshots from the presented framework, demonstrated on a complex Mercedes C-Class model: (a) The model
consists of 320,000 Bézier patches and thousands of trimming curves that are directly and interactively ray traced without triangulation.
(b) The model with ray traced shaders, e.g. glass and car paint, put into a surrounding scene made up of 200,000 triangles and a captured high
dynamic range environment map. Note the accurate reflections, the refraction through the glass, and the smooth shadows from environment
lighting. (c) The realistic interior appearance is achieved via a shader supporting bidirectional texture functions of measured samples from the
corresponding real-world materials. (d) All these effects work together seamlessly, as can be seen on this view through the side window. At
slightly reduced quality during interaction, these views can be rendered at 20, 14, 1.5, and 4.8 frames per second, respectively (640×480 pixels).

ABSTRACT

Computer aided design (CAD) and virtual reality (VR) are becom-
ing increasingly important tools for industrial design applications.
Unfortunately, there is a huge and growing gap between what data
CAD engineers are working on, what rendering quality is needed
by designers and executives to faithfully judge a design variant, and
what rendering capabilities are offered by commonly available VR
frameworks. In particular, existing VR systems cannot currently
cope with the accuracy demanded by CAD engineers, nor can they
deliver the photo-realistic rendering quality and reliability required
by designers and decision makers.

In this paper, we describe a ray tracing based virtual reality
framework that closes these gaps. In particular, the proposed sys-
tem supports direct ray tracing of trimmed freeform surfaces even
for complex models of thousands of patches, allows for accurately
simulating reflections and refraction for glass and car paint effects,
offers support for direct integration of measured materials via bidi-
rectional texture functions, and even allows for soft environmental
lighting from high dynamic range environment maps. All of these
effects can be delivered interactively, and are demonstrated on a
real-world industrial model, a complete Mercedes C-Class car.

CR Categories: I.3.7 [Computer Graphics]: Ray tracing— [I.3.2]:
Computer Graphics—Distributed/network graphics I.6.3 [Simula-
tion and Modeling]: Applications

Keywords: ray tracing, virtual reality, photo-realistic rendering

1 INTRODUCTION

Computer aided design (CAD) and virtual reality (VR) are becom-
ing increasingly important tools for industrial design applications.
In particular large high-end engineering projects such as cars or air-
planes are already engineered almost entirely digital, as the cost for

building physical mockups of such objects is prohibitively high. In
practice visualization of such a digital design is not as straightfor-
ward as it might first seem, as there are several problems and com-
plication arising from conflicting demands of the different groups
involved in such a project, namely CAD engineers, designers, VR
specialists, and company executives.

CAD engineers work on the raw geometric data of the model, usu-
ally using freeform data such as NURBS surfaces [19]. The main
objective of a CAD engineer is to model the individual geometric
components of the car, and to perform evaluations like stress anal-
ysis, crash tests, or assembly simulation. For that reasons, CAD
engineers are mostly interested in the highest possible geometric
accuracy, as e.g. an assembly simulation can easily produce wrong
results when working on approximated data.Photo-realistic render-
ing quality is usually not an objective for CAD designers – in fact,
most of their tools do not even support reasonable material proper-
ties or even texture coordinates.

Designers are in contrast to CAD engineers usually interested in
producing photo-realistic results. As designers are responsible for
the eventual look of the car, they strongly depend on the ability to
predict how the model will look in reality. For this reason, designers
usually prefer the highest rendering quality possible, and are partic-
ularly interested in realistic surface appearance, physically-correct
lighting effects like shadows, accurate reflection and refraction, and
if possible even global illumination.

Decision makers use visualizations supplied by the designers or
VR specialists to evaluate and judge different variants of a model.
As a decision for or against a certain variant may have significant fi-
nancial consequences, decision makers require that what they see in
VR is faithful to reality, and is as accurate as possible. Additionally,
they are often neither computer specialists nor graphics experts, and
thus have to take their decisions solely based on what they are being
shown by the VR specialists.

VR Specialists have the task of taking the data prepared by CAD
engineers and designers, and generating an interactive visualiza-
tion. Unfortunately, the above-mentioned goals, high accuracy,
high realism, and real-time performance, are in conflict to each

other: In order to satisfy interactivity constraints, virtually all of
todays VR systems are built on triangle rasterization. With that
however, rendering complete models at full geometric accuracy is
not possible, as freeform surfaces cannot be rendered directly, and
the amount of triangles generated by a high-quality tessellation is
in the order of tens of millions of triangles. Thus, VR specialists
usually deliver their presentation on specially prepared VR models
of the real data. In the best case, this only involves a lot of vari-
ous tools and manual effort for converting the model, tesselating,
simplifying, removing invisible parts, and for fixing polygon orien-
tations, degeneracies, and surface cracks, etc. In the worst case, this
leads to costly remodeling a completely new, simpler version of the
original CAD model.

Apart from lack of geometric accuracy, existing VR tools fail
to deliver the visual realism required by designers and decision
makers. Whereas designers often make use of offline rendering
processes, VR presentations have to deliver real-time frame rates,
and thus often rely on approximations, manual model tuning, and
“hand-painting” special textures to create reasonably nice images.
This “model preparation” step as well involves many different tools,
complex workflows, and a lot of manual effort. As a result such
model preparation is usually measured in “person weeks”.

1.1 Limitations and Demands of Industrial VR

This process of working on specially prepared VR models is cur-
rently state-of-the-art in industry, but has several important draw-
backs: First, preparation of special VR models takes time, so
changes to the original data may take several days or weeks be-
fore they can be shown again in a VR presentation. This often leads
to decision makers looking at outdated model variants. Apart from
this, the personnel cost for the same tedious model preparation has
to be spent anew for each iteration cycle. Second, the qualitative
limitations of existing, rasterization-based VR systems usually fail
to deliver the realistic appearance that designers and decision mak-
ers depend on, either leading to potentially wrong decisions, or the
construction of costly physical mockups.

1.2 Contribution

This paper describes how current state-of-the-art interactive ray
tracing techniques can be employed to form a virtual reality frame-
work that starts to close the gap between engineers, designers, and
virtual reality. In particular, the proposed system supports direct
ray tracing of trimmed freeform surfaces even for complex models
of thousands of trimmed patches, allows for accurately simulating
reflection and refraction for glass or car paint effects, soft environ-
mental lighting from high dynamic range environment maps, and
even offers support for direct integration of measured materials via
bidirectional texture functions (BTFs). All of these effects can be
rendered interactively, and will be demonstrated on a real-world in-
dustrial dataset, a complete Mercedes C-Class model (Figure 1).

1.3 Outline

In the following, these individual components will be discussed and
assembled step by step: Section 2 briefly sketches the freeform ray
tracing module used for rendering the base geometry. Section 3
discusses the glass and car paint shaders applied for generating a
realistic outside appearance, while Section 4 describes how smooth
shadows from environmental lighting are generated. Section 5 then
discusses how a high-quality car interior can be achieved by using
ray traced BTFs, followed by some notes on our hardware setup
and overall system performance in Section 6. Finally, in Section 7
we conclude with a discussion of some limitations and potential
extensions of our approach.

2 FREEFORM RAY TRACING OF REAL-WORLD DATASETS

Before we can look into realistic surface and lighting simulation,
we first have to be able to directly render the original model at all.
In practice, this usually means having to support non-uniform ra-
tional B-spline (NURBS) surfaces [10], as these – due to their ge-
ometric properties and compact representation – are the de-facto
standard used in CAD engineering. In the last two decades re-
searchers have proposed several approaches for ray tracing NURBS
surfaces [23, 18, 15, 28], but due to the high cost of evaluating
the NURBS equations this is usually too slow for interactive per-
formance. More recently Benthin et al. [4] have demonstrated ray
tracing of bicubic Bézier patches that allowed for interactive frame
rates even on a single CPU. We build on a significantly modified
variant of that framework (see Section 2.2).

2.1 NURBS to Bicubic Bézier Surface Conversion

Since we only support bicubic Bézier patches, we first have to con-
vert the original NURBS surface to an arbitrary-degree, rational
Bézier representation, which can be done without any loss of accu-
racy [19]. This is achieved by increasing the multiplicity of each
knot in the knot vectors of both parameter directions to the or-
der of the NURBS surface in the corresponding parameter direc-
tion [19, 8]. Our model contains only non-rational surfaces, so no
special handling of the rational part was necessary.

As we currently only support non-rational Bézier patches of de-
gree 3× 3, the degree of each Bézier patch must then be either re-
duced or elevated, depending on the initial degree of the patch. This
degree reduction of course may lead to a certain loss of accuracy,
which must be handled by a user-specified tolerance threshold: If
the degree of a Bézier patch cannot be reduced without preserving
the patch geometry below the tolerance threshold, the initial Bézier
patch must be subdivided in the direction where the Bézier reduc-
tion step failed. This degree reduction is then applied recursively
to each of the obtained sub-patches. The same strategy can also be
used for converting the contour trimming curves, which are given
by 2D NURBS curves in the surface’s parameter domain.

In our example of the Mercedes C-Class model, the original data
consists of a total of 69,067 NURBS surfaces with 392,491 2D
NURBS curves that form 73,749 trimming contours. Converting
first yields 308,095 Bézier patches of arbitrary degree, which after
degree reduction with error threshold yields 319,340 bicubic Bézier
patches (illustrated in Figure 2). The resulting number of trimming
curves in the model is 1.46 millions, i.e., an average of 5 trimming
curves per patch.

Obviously, approximating NURBS surfaces by bicubic Bézier
patches also involves a certain loss of accuracy, and thus seems to
conflict with the goal of working on the original CAD data. Nev-
ertheless, typical NURBS ray tracing algorithms [23, 15, 18] are
approximative in nature as well. Moreover, we already achieve sig-
nificantly a higher accuracy in contrast to surface triangulation. In
particular, smooth Bézier patches allow for zooming onto the sur-
face without eventually seeing the triangular discretization at the
silhouettes. Additionally, as the trimming curves are fully inte-
grated into the rendering process, there is no need to cope with
all the problems that usually arise from finding suitable triangu-
lations along the trimming contours. Note that the main strength
of that approach is its full automaticity: Whereas triangulation of-
ten require manual user intervention, i.e. for tuning parameters and
fixing cracks, degeneracies etc. in the triangulated surface, the de-
scribed method can be realized as a fully automatic batch process
that requires no user intervention at all.

Figure 2: The Mercedes C-Class model used in all experiments con-
sists of 69,067 trimmed NURBS patches with 392,491 2D NURBS
trimming curves, which are represented using 319,340 trimmed bicu-
bic Bézier patches along with 1.4 million Bézier trimming curves.
Left: Resulting model. Right: Color-coded Bézier patches show-
ing the geometric complexity. Note that the colored regions do not
represent a tesselation, but a smooth Bézier patch each.

2.2 Efficiently Ray Tracing of Freeform Models

Once a Bézier representation is generated, that representation is fed
into the Bézier ray tracing plug-in. Though this framework builds
on earlier work on Benthin et al. [4], the original framework eventu-
ally turned out to be quite problematic for a real-world dataset such
as the C-Class model. This is mainly due to the excessive num-
ber of trimming curves, multiple patches overlapping and intersect-
ing themselves, and untrimmed patches being very large in relation
to their trimmed counterparts. For example, the high accuracy re-
quirements resulted in a high patch refinement level that got quite
costly. Furthermore, most of the traversal steps were performed on
the patch level, which – as overlapping patches have to be inter-
sected one after another – resulted in a huge amount of traversal
steps. This is particularly problematic if these costly traversals then
result in a hitpoint outside the trimming domain. The the original
system already supported trimming curves, but was optimized for
only one or two trimming curves per patch, and could not cope with
the huge amount of trimming curves in the C-Class model.

As a result, the existing system had to be completely re-
engineered. It now combines the original approach of Benthin et
al. with some ideas from ray tracing NURBS by Martin et al. [15]:
Instead of performing a fixed number of de Casteljau subdivisions
during traversal as done in [4], we now also use Newton-Iteration
for computing the ray-patch intersections. In order to obtain good
start values for the Newton-Iteration, we follow Martin at al. and
subdivide the Bézier patches into multiple sub-patches before ren-
dering that are then organized in an additional index structure. Gen-
erating sub-patches for the original 319,340 Bézier patches yields
1.2 million bicubic sub-patches, whose accuracy clearly exceeds
the roughly 1 million triangles in a triangulated counterpart of the
model.

Instead of using a bounding volume hierarchy for these sub-
patches we use kd-trees, which allows for reusing the fast ray traver-
sal algorithms as proposed by Wald et al. [24]. In particular for
regions where multiple patches overlap, we now no longer have to
traverse each of these patches separately, but rather perform a sin-
gle traversal in the 3D kd-tree, and for each encountered sub-patch
only have to perform the final Newton-Iteration.

Once a hitpoint on an Bézier patch is found, the trimming curves
need to be evaluated. As in the given model some patches have up
to several hundred trimming curve segments, an additional hierar-
chy was required for determining these segments as well, which is
realized by yet another 2D kd-tree. Of course, we follow Martin et
al., and determine completely trimmed patches before building the
3D kd-tree. Also, when building the kd-tree we are taking care to
consider the trimming curves when computing the bounding box of
the sub-patch, which minimizes the number of sub-patch intersec-
tions that later get trimmed anyway.

Even with all these optimizations, ray tracing the C-Class model
is still quite demanding, due the huge geometric complexity and the
large number of trimming curves. Nevertheless, interactive perfor-
mance can be achieved: On one dual 2.43 GHz AMD Opteron PC,
the systems runs with 0.86 respectively 3.01 frames per second for
the interior respectively exterior view shown in Figure 2. Note that
the interior view in is one of the most costly views due to the huge
number of patches on the steering wheel, radio, and air vents.

3 REALISTIC SURFACE APPEARANCE

With the ability to accurately render the original CAD geometry, we
next focus on realistic material descriptions. Because ray tracing
accurately simulates the physics of light transport, and automati-
cally accounts for global effects like reflection etc., we can fully
concentrate on local material descriptions, which are realized via
individual surface shader plug-ins.

3.1 Car Paint

As most of a car’s outside is made up of car paint, a realistic ap-
pearance of this material is very important. Car paint exhibits a
wide range of optical effects, including as diverse ingredients as
pearlescence and sparkling effects [9]. However, not all of these
effects are equally important. One of the most obvious character-
istics of car paint is its high specularity, which usually results in
the car reflecting the surrounding environment. In typical VR sys-
tems, this effect is usually achieved by a highly specular Phong or
ClearCoat [21] shader with an appropriately chosen reflection map.

Unfortunately, reflection maps usually result in significant arti-
facts, due to their “infinite distance” assumption that is violated by
nearby geometry. This is particularly the case for highly curved
regions such as at the fenders or door handles. Additionally, the in-
finite distance assumption makes reflection maps notoriously hard
to use for the interior, where special reflection maps have to be
computed for each object supposed to be reflective. Furthermore,
reflection maps do not allow for self-reflection, which is e.g. prob-
lematic for the hood, which when standing in front of a car usually
reflects the roof and windscreen (as can be seen in Figure 3). Plau-
sible reflections must also account for nearby objects such as the
street or other cars. Thus, reflection maps need to be carefully con-
structed anew for each environment, and often have to be manually
post-processed to look acceptable.

When building on a ray tracer, these limitations can be easily
avoided by exact computation of real, accurate reflections. In order
to improve realism, we usually surround the car by fully modeled
environments. We still use an environment map for very distant ge-
ometry such as the sky, but due to a ray tracer’s good scalability
in geometric complexity one can represent a large part of the sur-
roundings by real geometry. Its easily possible to switch between
different environments during runtime, while all reflections will be
fully accurate and correct, without any manual effort.

The reflectivity of car paint varies depending on the angle at
which the surface is seen, which cannot be captured with a stan-
dard Phong BRDF model. For this reason, its better to use a shader
based on a slightly more accurate variant of the ClearCoat model,

Figure 3: As most of a car’s outside body is covered with car paint, a
realistic simulation of its optical properties is quite important. Left:
Car with a typical Phong shader, illuminated by the HDR environ-
ment map. Right: With a ClearCoat shader that simulates Fresnel
effects in the car paint and computes the resulting reflections. Note
the accurate reflections (as opposed to a reflection map), as well as
the varying reflectivity depending on the viewing angle.

which essentially simulates a small layer of glass (the transparent
coating) on an otherwise Phong-style material. The angular depen-
dent reflectivity then is a result of the Fresnel factors for the coating.

Of course, this relatively simple model for car paint is still not
perfect. For example, it supports neither glossy reflections nor
pearlescence or sparkles. However, in practice the current set of
effects has shown to be sufficient, while the computation can be
done very fast. The difference between such a model and a Phong
shader can be seen in Figure 3. Note that though these effects seem
very subtle (in particular for still images and when printed on pa-
per), there is explicit industrial demand for these features.

3.2 Glass

Of even higher importance for design reviews, in particular for cars,
is Glass. Many other materials can – at least after enough manual
tuning and hand-painting of textures – still be reasonably well rep-
resented by appropriately textured Phong models, or specially de-
signed fragment shaders on rasterization hardware. For glass how-
ever, this is not the case.

This because glass is “recursive” in nature, as the color seen by
an incoming ray hardly depends on the hit object at all, but almost
entirely on what is seen in the reflected and refracted directions.
Thus, accurately rendering realistic glass with anything other but
recursive ray tracing is next to impossible. Therefore, in typical
VR systems glass is usually modeled by a simple semi-transparent
plane, with a slight gray-blue tint to make the glassy object visible
at all.

This simplistic model is still state-of-the-art in most of todays
industrial grade VR systems, but is almost useless for reliable de-
sign decisions. For glass, even very subtle effects, such as its
slight reflectivity, can have a critical influence. For example, re-
flections of bright parts in the windshield or side windows can re-
sult in significant security issues (e.g., glare, occlusion, or distrac-
tion). Accurately simulating such effects, in particular during inter-
action, where different configurations can be evaluated from differ-
ent views, are extremely important for designers. In practice this is
especially important for the head and rear lights, due to the complex
optical light paths inside these objects.

For a ray tracer on the other hand, glass is a pretty straightfor-
ward material to compute. Its physical behavior is well understood,
and essentially only at most two new rays (for reflection and re-
fraction, given that dispersion is not accounted for) have to be shot.
For this reason, Glass simulation was one of the first industrial ap-
plications for real-time ray tracing [2]. Essentially, we use exactly
the same concepts, except for a few minor optimizations. All the
effects described in [2] – reflection, refraction, Fresnel terms, and

most importantly termination of low-contributing light paths – are
supported in our current framework as well.

The impact of a realistic glass simulation can be seen in Fig-
ure 4, which compares the rendering quality of a ray traced glass
shader with the quality achieved by a semi-transparent plane as
used in standard industrial VR systems. Unfortunately, we could
not demonstrate this effect for the car lights as well, because geo-
metric data for the lamps was not available for this model.

4 SMOOTH SHADOWS AND HIGH DYNAMIC RANGE ENVI-
RONMENTAL LIGHTING

Apart from materials, a realistic appearance of a car also depends
strongly on the incident illumination. For datasets such as cars the
most natural source of illumination is its surrounding environment.
For a clear, sunny sky, illumination can be simulated by just placing
a single directional light source into the respective sun direction.

However, in reality environmental illumination usually is much
more complex, resulting in smooth shadows and other effects. Be-
cause soft shadows are costly to compute, typical VR systems either
use sharp shadows only (if at all), or confine themselves to a hand-
made shadow texture placed below the car. Both methods involve
manual effort, have to be re-done for every change of the environ-
ment, often create inconsistencies between the shadows shown and
the shadows as expected by the given environment, and generally
fail to produce a physically-correct appearance.

4.1 Discretizing Environmental Lighting

Environmental lighting can be efficiently realized based on high dy-
namic range environment maps in the spirit of [14, 1]. This ideally
should work fully automatic, and without any user invention ex-
cept for specifying the environment map to be used. The respective
light shader (a plug-in that controls light source behavior, similar to
a surface shader) will access the same HDR environment map that
is also used to determine the resulting color for rays that do not hit
any geometry. Thus, the shadows always stay consistent with the
chosen environment.

Figure 4: Realistic simulation of glass effects has a strong impact on
the level of realism of a rendered image. Left: Rendering glass ma-
terials as semi-transparent surfaces as usually done in rasterization-
based VR systems. Right: With a physically-correct, ray traced glass
shader. Top: View from drivers seat (effect slightly emphasized to
reproduce on paper). Note the reflection of the car interior over the
left rear-view mirror. Bottom: View from the outside.

Figure 5: Smooth environmental lighting: Left: Using 3 samples only, producing sharp shadows. Center: With interleaved sampling and
discontinuity buffering at roughly frames/s. Right: After accumulation of more samples. Also note the shadows in the background.

Unfortunately, producing smooth environmental lighting by ran-
domly sampling an environment map often produces Monte Carlo
noise [1]. As a result this becomes quite costly due to the large
number of samples required to reduce the noise. An alternative is
to discretize the illumination from the environment by placing “vir-
tual” directional as shown in [1, 14] that are then used to illuminate
the scene (see Figure 5.

In order to support progressive image enhancement (see next sec-
tion), for each loaded environment map we generate N such sam-
ples in a progressive way, i.e., one can always take the first k of
these N samples, and by simply scaling their power by N

k , can use
these k samples to get a coarser but nonetheless consistent repre-
sentation of the environmental illumination.

4.2 Interleaved Sampling and Discontinuity Buffering

For reasonable quality of the environmental lighting, at least 20 to
40 samples (i.e. directional lights) would have to be computed, and
high-quality images would require even more samples. Unfortu-
nately, due to the high cost of tracing the corresponding shadow
rays, even using only 20 samples per pixel is not affordable during
interaction.

To maintain interactive performance, we use interleaved sam-
pling and discontinuity buffering as originally proposed for the In-
stant Global Illumination method [26, 3]. In that approach, not ev-
ery pixel computes every shadow sample, but every other pixel in a
3×3 or 5×5 pattern uses a different set of directional lights, whose
contributions are then combined in images space in an a-posteriori
filtering step. As this filtering step only filters the irradiance (and
not the final pixel colors), and additionally restricts filtering to pix-
els whose respective surface points pass certain continuity criteria,
blurring over material or geometric discontinuities is minimized.
Note that this technique was also already used in [14].

Using this method, the effective number of samples used per
pixel after filtering is 9 respectively 25 times the number of sam-
ples for each individual pixel, achieving almost the same quality as
when actually using that many samples per pixel. Thus, a reason-
ably good quality can be achieved even during interaction, where
only a few (2–5) shadow rays are affordable per pixel. The dif-
ference can be seen in Figure 5. As soon as camera motion stops,
we progressively improve image quality by computing successive
images of the same viewpoint with new random samples, and accu-
mulate the resulting images (see Figure 5).

In summary, with only 2–5 samples we achieve reasonably
smooth shadows and environmental lighting even during inter-
action, and high-quality shadows after accumulating only a few
frames . In practice, this has shown to not to be that problematic, as
the coarser shadow quality without accumulation is less percepti-
ble during interaction. Note that the shadows not only comprise the

shadows of the car cast onto the floor, but also include the shadows
the environment and the car cast onto themselves.

5 SUPPORT FOR MEASURED REAL-WORLD MATERIALS
USING BIDIRECTIONAL TEXTURE FUNCTIONS

While the outside appearance can be reasonably well handled with
the techniques described above, the car’s interior is more complex,
including materials such as cloth, (structured) plastic, carpet, metal,
leather, and wood. Most automotive companies have extremely
high quality requirements for realistically rendering “their” mate-
rials, which cannot be satisfied using a common Phong reflection
model with textures. Even bump mapping (i.e. simply perturbing
surface normals) can only insufficiently capture the intricate light-
ing effects happening at the microstructure level of these materials.
As a consequence, there is a huge demand to acquire the surface
characteristics of samples of real materials, and to use those during
rendering.

5.1 Bidirectional Texture Functions

Even if more complex BRDF functions are used instead of a sim-
ple Phong model this typically assumes a homogeneous surface,
and cannot capture the complex surface patterns of the materi-
als we are most interested in. Dana et al. [6] have proposed to
sample the texture of the material for many different light- and
viewing-directions, yielding so-called bidirectional texture func-
tions (BTFs). This approach has later been refined by Müller et
al., who proposed to compress BTFs using clustered principle com-
ponent analysis (PCA) [16, 17]. They also described an automatic
BTF acquisition setup.

For the given Mercedes C-Class model, all of the surfaces had
already been scanned by Bonn University in the course of the Real-
Reflect project [20]. The resulting BTF data has been made avail-
able to us, courtesy of DaimlerChrysler AG. These BTFs are orig-
inally provided as 256× 256 pixel textures for every combination
of the 81× 81 samples of the possible viewing and incident light-
ing directions. Due to the HDR acquisition process, each of these
256× 256× 81× 81 samples contains an RGB float triple. This
huge amount of data (12 GByte per material) is compressed us-
ing clustered PCA with 32 clusters and 8 components per clus-
ter. In addition to a reference to one of the PCA clusters, each
of the 256× 256 texels contain the 8 float weights for reconstruct-
ing the PCA, while each of the 32 clusters contains eight 81× 81-
dimensional base components, resulting in only roughly 24 MByte
per material. During rendering, the BTF data for each (u,v,ωi,ωo)
sample (surface parameters, incident and outgoing light direction)
is then decompressed on the fly from that PCA data.

5.2 Smooth Reconstruction using Quadrilinear Interpolation

Unfortunately, the dataset contains only values for 81×81 discrete
(ωi,ωo) pairs. Thus, for any two given view and light direction vec-
tors, some value has to be reconstructed from these spares samples.
With only 81 samples on the hemisphere, simply taking the nearest
available sample results in severe discretization artifacts. To ob-
tain visually pleasing results, it is therefore necessary to smoothly
interpolate the data from multiple adjacent sample directions.

The BTFs are sampled on a hemisphere, where the elevation an-
gle θ is discretized into 15 degree steps, at θ = 0,15,30,45,60,75
degrees. The BTF does not actually represent a discretized
BRDF fr(x,ωi,ωo), but rather its cosine-weighted counterpart
fr(x,ωi,ωo)cosθi. Thus, for the θ = 90 ring all samples are zero,
and need not to be stored.

The azimuth angle φ discretization on each such θ ring is chosen
proportional to sin(θ), ranging from 24 15-degree steps for θ = 75,
to a single sample at the pole . This highly irregular sampling com-
plicates interpolation (see Figure 6). We experimented with both a
triangulating of the sample points, and with weighted distance in-
terpolation, but have finally chosen to first linearly interpolate on
each of the two nearest θ rings, and then to interpolate the result in
θ direction, yielding a smooth reconstruction.

Unfortunately, this bilinear interpolation is very expensive: First,
determining the correct sample indices and weights is costly, since
many special cases have to be considered for each lookup (e.g., the
missing samples for θ > 75). Second, extracting a sample from the
BTF dataset requires a costly PCA-decompression for each sample
(i.e., accumulation of several terms addressed through many indi-
rections). Third, we have to smoothly interpolate for both in- and
outgoing direction, and thus have to perform a quadrilinear inter-
polation, which means we have to perform these PCA lookups 16
times for each pair of directions, and have to filter the resulting 16
values. Finally, as the incident direction ωi varies for each light
source, this procedure has to be performed anew for every light
source. As a result, BTF evaluation is extremely demanding, and
the weighting of the light samples is often more expensive than
shooting the shadow ray itself.

5.3 Interior Lighting

As discussed in the previous section, we use environmental light-
ing to produce a realistic outside appearance. For the interior of
the car, one would actually have to compute a full global illumina-
tion solution. In principle, it would be possible to use an interactive
global illumination algorithm as proposed in [26, 3]. These meth-
ods however are specially optimized for mostly-diffuse scenes, and
do not easily work for as complex shaders as glass or BTFs. Fur-
thermore, the complex lighting in the car interior would require too

φ=0 φ=180 φ=360

θ=0

θ=15

θ=30

θ=45

θ=60

Figure 6: Quadrilinear interpolation for reconstructing a smooth rep-
resentation from the sampled BTF using successive linear interpo-
lation in each dimension. This example shows a two-dimensional
example, while the BTF interpolation across two surface parameter
directions is four-dimensional.

Figure 7: Comparison of using BTFs vs. the usual textured Phong
surfaces by a view into the car’s cockpit. Left: Textured Phong.
Right: Using measured BTFs. Top: Entire cockpit. Bottom: Zoom
onto the wood and leather.

many virtual light sources for achieving reasonable quality, which
would probably not allow for interactive performance anymore.

Precomputing global illumination using a Radiosity method [5]
is not helpful either, as Radiosity is a directionally independent
quantity, and is thus useless for illuminating BTFs. Precomputed
Radiance Transfer methods [22, 13, 7] might be a reasonably alter-
native, but have never been applied to such models, yet.

We therefore do not compute global illumination in the car inte-
rior, but only the direct environmental illumination, plus a manually
placed point light that approximates indirect lighting. In practice,
most of the illumination patterns (such as shadows) are due to di-
rect illumination, anyway, so the level of realism is still sufficiently
high, even without supporting indirect illumination so far. Nev-
ertheless, in order to remove this final limitation in physical cor-
rectness, we are looking into precomputing global illumination in a
directionally dependent way. Preliminary results are available and
look promising, but are not yet available for practical use, and will
not be discussed in this paper.

5.4 BTF Quality

While the high computational costs of BTFs is obviously a strong
disadvantage, the increased level of realism makes more than up
for that. Figure 7 shows a comparison of the measured BTF mate-
rial versus a textured Phong material. Note that the textures on the
Phong model have already been provided with the original model.
These are photographs from the original materials, and have been
optimized to produce a better image quality. Even in comparison
to this already high quality, BTFs further increase the quality, in
particular for cloth, wood, and leather (Figure 7). Although this
effect can hardly be seen in still images, it becomes clearly appar-
ent during interaction, when the viewing and/or lighting directions
change. To our knowledge, this is the first time that BTFs have been
ray traced or used in virtual reality applications at all.

6 FINAL INTEGRATION AND OVERALL RESULTS

In the preceding sections, we have discussed all the individual com-
ponents of our framework, starting with directly ray tracing the
complex, trimmed freeform geometry of the car, over various sur-
face shaders (including glass and car paint), an efficient method for

computing environmental illumination, and support for measured
materials using bidirectional texture functions.

Using a ray tracing based framework, combining all these indi-
vidual effects works mostly automatic: For example, a view of the
inside will not only show the BTFs directly, moreover such surfaces
will be correctly reflected in the mirrors or off the glass. Similarly,
the environment – which is to a large degree modeled by real ge-
ometry – correctly casts smooth shadows like the car as well, and
is correctly visible through the glass shaders, and is also correctly
reflected in the car paint, on the mirrors, etc. Some examples of
the final rendering quality can be seen in Figure 8 and on the color
page at the end of the paper (Figures 9–12). Note that although
these images look like offline renderings, they can be computed at
interactive rates.

Our implementation is realized via shaders and plug-ins for the
OpenRT engine [24], all the features of an existing OpenRT-based
VR application are available for our framework as well. For exam-
ple, the user can define lighting, geometry, and shading scenarios,
can specify and interactively edit cutting planes, surface shaders,
and light sources, can switch variants and move objects, etc.

6.1 Hardware Setup

As already discussed in the previous sections, the targeted level of
accuracy and quality does not come for free: For a model as com-
plex as the Mercedes C-Class, the freeform ray tracing incurs a high
computational cost (see Section 2). The complex shaders further
add to this cost. Furthermore, due to the complexity of the em-
ployed shaders we cannot use fast packet-traversal code described
in [27], and rather have to use slower single-ray traversal code. Fi-
nally, the extensive use of secondary rays for computing shadows,
reflection, refraction, etc. additionally affects performance. In or-
der to achieve interactive performance, we used the parallelization
capabilities of the OpenRT engine, and ran the system on multiple
PCs.

As a dedicated ray tracing cluster unfortunately was not avail-
able, we used the commodity PCs in our lab for our experiments.
More precisely, we used a mix of 4 dual Intel Xeon (3 GHz)
machines, 1 quad AMD Opteron (2.4 GHz), and 9 various dual-
Opteron machines ranging from 1.8 to 2.4 GHz (30 CPUs in to-
tal). All machines were connected via multiple switches, some via
100 MBit Fast Ethernet, others via Gigabit Ethernet. Neither the
machines nor the network were available for the ray tracer exclu-
sively, and were used by other applications as well.

6.2 Rendering Performance

On average we achieve interactive performance of 1.5 up to more
than 20 frames per second at a screen resolution of 640×480 pixels,
depending on viewpoint and complexity of features seen. The views
in Figure 8 can be rendered at 1.5 and more than 10 frames per
second, respectively, and even the accumulated images are gained
after only a few frames of progressive rendering . Note that the
interior view is one of the most expensive viewing situations in the
entire car. Though it could not be tested, it can be expected that
a dedicated ray tracing cluster, with a better network and available
for exclusive use by the ray tracing application, would yield even
better results.

Although the compute power employed for these experiments
may at first seem quite considerable, for industrial standards it is
actually not significant. For example, a dedicated ray tracing clus-
ter of 50 dual-Opteron nodes has recently been set up at a major
German car manufacturer, where it is used to drive a 3200× 1200
pixel PowerWall for ray tracing based design reviews. We estimate
the compute power of such a setup to be sufficient for running our
complete framework also in fullscreen mode.

Figure 8: The final system. Top: Driver’s view of the interior. Bot-
tom: Outside view. Note the smooth shadows, the correct reflections
in the car’s paint, the subtle glass effects in the windshield, as well
as the detailed interior. These views can be ray traced at 1.5 (top
row), and more than 10 frames per second (bottom row) at 640×480
pixels, respectively. Left: During camera motion. Right: After accu-
mulating several frames.

7 SUMMARY AND CONCLUSION

In this paper, we have described a novel VR framework that is en-
tirely based on real-time ray tracing, and that particularly targets
a very high level of visual realism. The presented system offers
direct ray tracing of freeform surfaces, high-quality rendering of
car paint and glass materials, smooth shadows from high dynamic
range environment maps, and support for measured materials using
bidirectional texture functions.

7.1 Comparison to Existing VR Solutions

In comparison to existing rasterization-based VR solutions, the pro-
posed methods offer a number of advantages. Directly ray tracing a
freeform model allows for significantly improved geometric accu-
racy of millions smooth Bézier sub-patches. Apart from this pure
geometric complexity, directly ray tracing trimmed Bézier patches
removes the need for generating a complex triangulation of the
model, which significantly simplifies the VR workflow.

Using ray traced surface shaders for glass and car paint delivers
accurate and reliable images, and for the first time allows for pre-
dictive rendering even during interactive design reviews. Similarly,
smooth environmental illumination greatly exceeds the realism pre-
viously available in VR applications.

All of these features have so far only been possible during offline
rendering, and are usually not available in industrial VR systems at
all. Some of these features are already being worked on also for
rasterization hardware (see e.g. [16, 12]), but few of such research
results are actually used in industry. Finally, we believe our system
to be the only one to support all of these effects at the same time
and in a fully integrated way.

7.2 Shortcomings and Limitations

Even though the presented system qualitatively exceeds existing
VR solutions, there are also several open issues.

First of all, due to the high computational cost of the freeform
geometry, complex surface shaders, and illumination effects, we

are currently restricted to relatively low resolutions (640×480 pix-
els) and frame rates (less than 10 fps), while already requiring a
considerable amount of aggregate compute power. On the other
hand, hardware cost is often one of the lesser problems for indus-
trial applications, and much larger clusters than the one used in
our experiments have already been installed for similar purposes.
On such a hardware platform, it should even be possible to reach
fullscreen resolutions at interactive frame rates. Even so, the com-
pute power required for driving a fully interactive VR setup (includ-
ing high-resolution output devices) is still significant, and consider-
ably higher than that for typical rasterization-based VR systems.

On the quality side, there is lot of room for improvements: For
example, the simple logarithmic tone mapping used in our sys-
tem works well in practice, but is far from state-of-the-art in of-
fline rendering technology, where much better tone mapping algo-
rithms are being used. Although such tone mapping techniques are
well-known, in particular the global operators are difficult to im-
plement in a distributed rendering environment. Similarly, the car
paint shader we used is a rather trivial shader. Much better car paint
models – often generated via acquisition of real car paint BRDFs –
are well known.

While the quality far exceeds typical VR setups, we do not of-
fer all the rendering effects that high-end offline renderers provide.
Not supporting global illumination, in particular in the interior of
the car, is a severe limitation. Offline rendering packages typically
feature global illumination effects, and thus generate far more ac-
curate and photo-realistic images than we do.

Developments into these areas are already under way. A pro-
totypical implementation of a precomputation-based technique for
rendering the given model with full global illumination (includ-
ing caustics, highlights, glossiness, BTFs, illumination through the
windshield etc.) is already available [25]. Right now, however,
this method is not yet fully integrated into the given system.. Simi-
larly, in a related project Günther et al. [11] have shown that a much
higher realism for car paint can be realized with specially designed
shaders that are based on acquisition, digitalization, and fitting of
real-world car paint samples.

In summary, we reach neither the quality standards of high-end
offline renderers, nor the interactivity of standard VR applications.
We do, however, offer significantly more realistic images than ex-
isting VR applications that are at least close to offline renderings –
and still at interactive rates.

ACKNOWLEDGMENTS

This paper would not have been possible without the gracious sup-
port of DaimlerChrysler AG, who provided the C-Class Model in
both triangulated and NURBS versions, and who have granted per-
mission to use the measured BTF data. We would also like to
thank the RealReflect project, in particular the Computer Graph-
ics Group at Bonn University, for providing the BTF data and help
in numerous ways. Finally, we have to thank the system adminis-
tration groups of the Max-Planck-Institute for Computer Science
Saarbrücken and Saarland University for providing the required
compute power.

REFERENCES

[1] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie, and Hen-
rik Wann Jensen. Structured Importance Sampling of Environ-
ment Maps. Computer Graphics (Proceedings of ACM SIGGRAPH),
22(3):605–612, 2003.

[2] Carsten Benthin, Ingo Wald, Tim Dahmen, and Philipp Slusallek. In-
teractive Headlight Simulation – A Case Study of Distributed Interac-
tive Ray Tracing. In Proceedings of the 4th Eurographics Workshop
on Parallel Graphics and Visualization (PGV), pages 81–88, 2002.

[3] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A Scalable Ap-
proach to Interactive Global Illumination. Computer Graphics Forum
(Proceedings of Eurographics), 22(3):621–630, 2003.

[4] Carsten Benthin, Ingo Wald, and Philipp Slusallek. Interactive Ray
Tracing of Free-Form Surfaces. In Proceedings of Afrigraph, pages
99–106, November 2004.

[5] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image
Synthesis. Morgan Kaufmann Publishers, 1993.

[6] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Kon-
derink. Reflectance and Texture of Real-World Surfaces. ACM Trans-
actions on Graphics, 18(1):1–34, 1999.

[7] Kirill Dmitriev, Thomas Annen, Grzegorz Krawczyk, Karol
Myszkowski, and Hans-Peter Seidel. A CAVE System for Interactive
Modeling of Global Illumination in Car Interior. In ACM Symposium
on Virtual Reality Software and Technology, pages 137–145, 2004.

[8] Alexander Efremov. Efficient Ray Tracing of Trimmed NURBS Sur-
faces. Master’s thesis, Computer Science Department, University of
Saarland, 2005.

[9] Sergey Ershov, Konstantin Kolchin, and Karol Myszkowski. Render-
ing Pearlescent Appearance Based on Paint-Composition Modeling.
In Computer Graphics Forum, Proceedings of Eurographics 2001,
pages 227–238, 2001.

[10] A. R. Forrest. The Twisted Cubic Curve: A Computer-Aided Geo-
metric Design Approach. Computer Aided Design, 12(4):165–172,
1980.

[11] Johannes Günther, Tongbo Chen, Michael Goesele, Ingo Wald, and
Hans-Peter Seidel. Efficient Acquisition and Realistic Rendering
of Car Paint. In Günther Greiner, Joachim Hornegger, Heinrich
Niemann, and Marc Stamminger, editors, Proceedings of 10th In-
ternational Fall Workshop - Vision, Modeling, and Visualization
(VMV) 2005, pages 487–494, Erlangen, Germany, November 2005.
Akademische Verlagsgesellschaft Aka.

[12] M. Guthe, Á. Balázs, and R. Klein. Real-time out-of-core trimmed
NURBS rendering and editing. In Vision, Modeling and Visualisation
2004, pages 323–330, November 2004.

[13] Jan Kautz, Peter-Pike Sloan, and John Snyder. Fast, Arbitrary BRDF
Shading for Low-Frequency Lighting Using Spherical Harmonics. In
Rendering Techniques 2002, pages 301–308, 2002. (Proceedings of
the 13th Eurographics Workshop on Rendering).

[14] Thomas Kollig and Alexander Keller. Efficient Illumination by High
Dynamic Range Images. In EGRW ’03: Proceedings of the 14th Eu-
rographics workshop on Rendering, pages 45–50. Eurographics Asso-
ciation, 2003.

[15] W. Martin, E. Cohen, R. Fish, and P. Shirley. Practical Ray Tracing
of Trimmed NURBS Surfaces. Journal of Graphics Tools, 5:27–52,
2000.

[16] G. Müller, J. Meseth, and R. Klein. Compression and Real-Time Ren-
dering of Measured BTFs using Local PCA. In Vision, Modeling and
Visualisation 2003, pages 271–280, November 2003.

[17] Gero Müller, Jan Meseth, Mirko Sattler, Ralf Sarlette, and Reinhard
Klein. Acquisition, Synthesis and Rendering of Bidirectional Texture
Functions. In Eurographics 2004, State of the Art Reports, pages 69–
94, 2004.

[18] Steven Parker, William Martin, Peter-Pike Sloan, Peter Shirley, Brian
Smits, and Charles Hansen. Interactive Ray Tracing. In Proceedings
of Interactive 3D Graphics, pages 119–126, 1999.

[19] Les Piegl and Wayne Tiller. The NURBS book, 2nd edition. Springer-
Verlag, Inc., 1997.

[20] RealReflect. The Real Reflect Project. http://www.realreflect.org.
[21] Silicon Graphics, Inc. ClearCoat360. http://-

www.sgi.com/products/software/clearcoat, 1998.
[22] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed Radiance

Transfer for Real-Time Rendering in Dynamic, Low-Frequency Light-
ing Environments. In ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH), pages 527–536, 2002.

[23] M. Sweeney and R. Bartels. Ray Tracing Free-Form B-Spline Sur-
faces. IEEE Computer Graphics and Applications, 6(3):41–49, 1986.

[24] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Computer Graphics Group, Saarland University, 2004.

[25] Ingo Wald. High-Quality Global Illumination Walkthroughs us-

ing Discretized Incident Radiance Maps. Technical Report UUSCI-
2005-010, SCI Institute, University of Utah, 2005. available at
http://www.sci.utah.edu/∼wald.

[26] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and
Philipp Slusallek. Interactive Global Illumination using Fast Ray
Tracing. In Paul Debevec and Simon Gibson, editors, Rendering Tech-
niques 2002, pages 15–24, Pisa, Italy, June 2002. Eurographics Asso-
ciation, Eurographics. (Proceedings of the 13th Eurographics Work-
shop on Rendering).

[27] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.
Interactive Rendering with Coherent Ray Tracing. Computer Graph-
ics Forum, 20(3):153–164, 2001. (Proceedings of Eurographics).

[28] S. Wang, Z. Shih, and R. Chang. An Efficient and Stable Ray Trac-
ing Algorithm for Parametric Surfaces. 18th Journal of Information
Science and Engineering, pages 541–561, 2001.

Examples

Figure 9: Progressively turning on the rendering features. (a) Freeform model, in plain gray Phong. (b) After adding an environment and
assigning the car paint shader, but still with hard shadows and without glass shaders. (c) After adding glass and computing environmental
illumination, after accumulation.

Figure 10: Interior of the car modeled via bidirectional texture functions (BTFs). (a) Entire cockpit (without external lighting). (b) Zoom
onto some wood and leather materials. (c) In comparison, the view with textured Phong materials. The distortions in both variants result from
distorted texture coordinates supplied with the model.

Figure 11: Exterior views of the car. Note the smooth shadows and accurate reflections. (a) Distant view. (b) Closeup, during user interaction.
(c) After accumulating several frames.

Figure 12: (a) Reflections of the interior in the windshield and side windows, when evaluating effects like glare, occlusion, or distraction (effects
artificially emphasized to reproduce on paper). (b) Zoom onto the mirror, during interaction. (c) After accumulating several frames.

