
EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos
(Guest Editors)

Volume 25 (2006), Number 3

Ray Tracing Animated Scenes using Motion Decomposition
Johannes Günther1, Heiko Friedrich2, Ingo Wald3, Hans-Peter Seidel1, and Philipp Slusallek2

1MPI Informatik, Saarbrücken, Germany
2Saarland University, Saarbrücken, Germany

3University of Utah, Salt Lake City, USA

Figure 1: Example images from animations ray traced in realtime. From left to right: HAND, BEN, CHICKEN, COW, and DOLPHIN.
The color encodes separated clusters generated by our motion decomposition algorithm. All animations combine flexible non-affine body
motion from skinning, and other deformations. They can be ray traced with 5 to 15 frames per second at 10242 on a single CPU.

Abstract

Though ray tracing has recently become interactive, its high precomputation time for building spatial indices
usually limits its applications to walkthroughs of static scenes. This is a major limitation, as most applications
demand support for dynamically animated models. In this paper, we present a new approach to ray trace a special
but important class of dynamic scenes, namely models whose connectivity does not change over time and for which
the space of all possible poses is known in advance.
We support these kinds of models by introducing two new concepts: primary motion decomposition, and fuzzy
kd-trees. We analyze the space of poses and break the model down into submeshes with similar motion. For each
of these submeshes and for every time step, we calculate a best affine transformation through a least square
approach. Any residual motion is then captured in a single “fuzzy kd-tree” for the entire animation.
Together, these techniques allow for ray tracing animations without rebuilding the spatial index structures for the
submeshes, resulting in interactive frame rates of 5 to 15 fps even on a single CPU.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Ray tracing I.3.6 [Method-
ology and Techniques]: Graphics data structures and data types

1. Introduction and Related Work

With recent improvements in PC hardware and ray trac-
ing technology, ray tracing has finally become interactive.
Even realtime frame rates for full-screen images have re-
cently been reported on a single CPU [RSH05] for non-
trivial scenes with millions of triangles. Nevertheless, most
techniques only support static walk-through applications.

On the other hand, many rendering applications require
dynamically changing scenes which is not yet well sup-
ported in realtime ray tracing approaches. In this paper we
focus on an important subset of dynamic scenes, particularly
where all poses of a dynamic object are known in advance
and the mesh connectivity is constant across the animation.

Right know, realtime rendering of animations is essen-

tially the domain of rasterization hardware due to its sup-
port for immediate mode rendering and its strong hardware-
acceleration, e. g. for vertex shaders. Ray tracing, first dis-
covered by Appel et al. [App68], on the other hand is well
known for its high rendering quality but was in the past con-
sidered as too slow for realtime 3D applications. However,
in recent years numerous publications reported interactive
or even realtime rendering frame rates [Muu95, PMS∗99,
WSBW01, RSH05].

However, in order to achieve good ray tracing perfor-
mance it is necessary to make use of spatial index structures
that yield sublinear rendering complexity in the number of
primitives. Many different data structures for accelerating
ray tracing have been proposed including, among others, oc-
trees [Gla84,Arv88], bounding volume hierarchies [RW80],

© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Günther et al. / RT using Motion Decomposition

grids [CWBV83, AW87], ray classification [AK87], binary
space partitioning [FKN80], and kd-trees [Jan86, SF90].

In particular kd-trees built with heuristics to minimize the
expected traversal cost – such as the surface area heuris-
tic (SAH) [MB89] – have shown to work very well. Even
though some variations in scenes remain, extensive sta-
tistical comparisons have shown that in general kd-trees
perform best or are at least highly competitive with the
best one [HPP00]. As a result, most realtime ray trac-
ing systems today use kd-trees including CPU-based sys-
tems [Wal04, RSH05], ray tracing hardware [WSS05], and
GPU-based ray tracers [FS05].

Apart from optimized acceleration structures and hard-
ware improvements, recent rendering speed improvements
are also achieved due to the usage of SIMD extensions
like SSE or Altivec to parallelize traversal, intersection, and
shading operations [WSBW01]. Recently Multilevel Ray
Tracing (MLRT) with inverse frustum culling traversal and
kd-tree entry-point search [RSH05] allows to further im-
prove the performance by almost one order of magnitude.

Dynamic Scenes

In general, various different types of motion can be ob-
served. In this paper we will distinguish between four kinds
of dynamics in 3D mesh-based computer graphics. First,
there are static objects that are not deformed nor is their
position in space altered. In ray tracing, static objects can
be rendered very quickly using kd-trees [RSH05,WSBW01,
Hav01]. Second, there are objects which undergo simple
affine transformations like translation or rotation. Lext et
al. [LAM01] proposed a hierarchy of oriented bounding
boxes to minimize reconstruction times via lazy rebuilds for
this kind of dynamics. Furthermore, Wald et al. [WBS03]
have proposed a two-level kd-tree scheme based on hierar-
chically affine transforming submeshes. Though this is suf-
ficient for several engineering-style VR applications, more
general animations cannot be handled. Thirdly, there is com-
pletely random motion like in particle systems and turbu-
lence simulations. The rendering of random motion, as de-
scribed, can be achieved using interactive grids by Reinhard
et al.’s [RSH00] using an SGI Onyx 2000 with 32 processors.
Finally our last category is (piecewise) continuous dynamics
(PCD). This last type of motion is in our real world abound
and in graphical systems like games and animated movies
widely simulated. PCD for example can be observed if wind
bends a tree and the leaves are waving or if fingers are moved
and its skin is stretched or squeezed.

While kd-trees are well suited for static scenes, consider-
able effort is required for building them well. Though effi-
cient algorithms with O(N logN) complexity exist [WH06]
they often require seconds to minutes even for moderately
complex scenes. This pre-processing time is almost negli-
gible for walk-through applications with a static geometry

environment, but it is not acceptable to update or rebuild
the kd-trees at runtime due to changes in the scene. Eventu-
ally, this leaves but three choices: Speed up kd-tree building
to make it suitable for interactive applications, abandon kd-
trees for dynamic scenes and try to develop competing data
structures to yield similar performance, or extend kd-trees
such as to allow for certain kinds of motion.

It is important to note that any support for dynamic scenes
is inherently based on assumptions or specific knowledge
about the types of dynamics contained in a scenes. If no in-
formation were available, e.g. in completely random motion,
we would have to rebuilt the spatial index for every frame as
any geometry may have seen random transformations in any
frame.

In this paper, we will investigate the usage of kd-trees for
(piecewise) continuous dynamic objects. For the course of
this paper, we will assume that objects are defined as de-
formations of a base mesh i.e. the connectivity of the mesh
remains the same for every pose of the mesh, e.g. the anima-
tion is given by a set of different poses. Second, we assume
that the set of possible deformations of that mesh is bounded
and known in advance. A good example is a game character
defined through skinning of a base skeleton, for which the
set of valid poses is defined through the valid parameteri-
zations of the underlying skeleton, but we do not need this
bone information.

2. Method Overview

For these kinds of dynamic scenes, our new method still
allows for utilizing the performance and advantages of kd-
trees by compensating the deformations of the model. We
use a motion decomposition approach for this purpose. It
breaks the deformations into two parts: an affine transforma-
tion, and the residual motion. Subtracting the affine transfor-
mation from the animation yields a local coordinate system
in which the (residual) motion of the vertices is typically
much smaller (see also Figure 2).

The residual motion of each triangle is then bounded by a
fuzzy box, a box bounding the motion of each vertex in the
local coordinate system. The kd-tree is then build over the
fuzzy boxes of the triangles instead of the triangles themself,
resulting in a fuzzy kd-tree. This needs to be done only once
in a preprocessing phase as the fuzzy kd-trees are valid for
the entire animation sequence (see Figure 3).

As the efficiency of a fuzzy kd-trees obviously deterio-
rates quickly with increasing size of the fuzzy boxes we do
not build a single fuzzy kd-tree for the entire scene. Instead,
we cluster the mesh into sub-meshes of coherent motion by
using the amount of residual motion as a cost function that
must be minimized.

A huge number of mesh segmentation algorithms have
been proposed in the past. However, most of these meth-

© The Eurographics Association and Blackwell Publishing 2006.

Günther et al. / RT using Motion Decomposition

�����������������������
�����������������������
�����������������������
����������������������� �����������������������

�����������������������
�����������������������
��

�������������������������
�����������������������
�����������������������

Figure 2: Example of a motion decomposition. Top row:
Three frames of an example animation where a ball is thrown
onto a floor. The bounding boxes and local coordinate sys-
tems of the two separated objects are shown. The motion
of these objects is encoded by affine transformations ex-
tracted from the animation. Bottom row: Visualization of the
bounded residual motion in the local coordinate system of
the ball. Note that the affine transformations can also com-
pensate the shearing of the ball in the third frame yielding
smaller fuzzy boxes.

Figure 3: The residual motion of each triangle (green) is
bounded by a fuzzy box (red). Although the triangles move
a little bit in the local coordinate system their fuzzy boxes
do not change. As the fuzzy kd-tree is build over these fuzzy
boxes instead of the triangles it is valid for all time steps.

ods work only on statics meshes. Nevertheless, for anima-
tion data Sattler et al. [SSK05] used a variant of Principal
Component Analysis (PCA) to segment the mesh into parts
that are “coherent” over time prior to compression. Although
promising it showed that their algorithm produced unusable
clusters for our purpose as it was designed with mesh com-
pression in mind and not for ray tracing.

Recently Lee et. al [LLYL05] proposed a mesh decompo-
sition method using information from animation sequences.
After applying PCA only once for the mesh they analyze the
resulting PCA-weights to derive a motion similarity mea-
sure of vertices. This measure is then used to guide a region
growing algorithm to cluster the mesh.

As an intermediate step to skin mesh animations James
and Twigg [JT05] used mean shift clustering of rotation
sequences of triangles to segment an animated mesh into
near-rigid structures. However, the vertices are expressed as
weights of several transformations and thus this method can
not be used for ray tracing animations.

Therefore we decided to develop our own clustering al-
gorithm specifically designed for the purpose of ray tracing
animated meshes.

The motion of the mesh is analyzed to segment the mesh
into clusters of similar motion and we find affine transforma-
tions for each cluster to express this common motion (Sec-
tion 3.1).

Because in our approach the relationship between the
clusters and their motion is determined by affine-only
transformations we can use a two-level scheme similar to
[WBS03]. For each frame to be rendered we update the
transformations of our clusters and rebuild a small top-level
kd-tree over the current bounding boxes of the clusters (Fig-
ure 4).

Figure 4: To ray trace a frame of an animation we first build
a small kd-tree over the current bounding boxes of each clus-
ter. These boxes are shown for three frames of the CHICKEN

animation. Rays hitting a cluster get inversely transformed
into the local coordinate system of this cluster and traverse
its fuzzy kd-tree.

Then ray traversal starts in the top-level kd-tree. For every
intersected clusters the rays are transformed into the local
coordinate system of the hit cluster where they traverse the
associated fuzzy kd-tree.

When the ray traverses a leaf it must be tested against the
current instantiation of any contained triangle. This triangle
intersection test can be done in world coordinate system with
the untransformed rays. Thus the positions of the triangles
in the local coordinate system are not explicitly required for
rendering thus saving memory. Our approach is summarized
in Figure 5.

3. Motion Decomposition and Fuzzy KD-Trees

This section discusses the details of the motion decomposi-
tion approach and fuzzy kd-trees and provides a more formal
description of the techniques involved.

Our method requires that the animation is defined as de-
formations of a base mesh, i.e. that the connectivity of the
mesh remains the same for every time step. Thus the anima-
tion is given by a constant set of triangles {∆} and their ver-
tex positions {v}. vi(t) ∈ R

3 describes the motion of a ver-
tex over time. No additional knowledge about the deform-
ing mesh is necessary but we inherently assume coherent lo-

© The Eurographics Association and Blackwell Publishing 2006.

Günther et al. / RT using Motion Decomposition

(a) (b) (c) (d) (e)

Figure 5: Motion decomposition together with fuzzy kd-trees allow for ray tracing animated models with continuous defor-
mation by decomposing the motion of the mesh into an affine transformation plus some residual motion. (a) One frame of the
HAND animation, modelled with “Poser”. (b) The deforming mesh is split into submeshes of similar motion, shown in the rest
pose. (c) Reconstruction of frame (a) using the affine transformations of each cluster only. (d) Close-up view of (c) revealing
the erroneous mesh when approximated only by an affine transformation. (e) Adding the residual motion handled by the fuzzy
kd-trees yields the original mesh.

cal motion, i.e., vertices that are topologically close to each
other should have similar trajectories.

We exploit this coherent motion of the mesh to “subtract”
common motion because the resulting smaller residual mo-
tion can then be better handled by fuzzy kd-trees, thus im-
proving performance for ray tracing the animation. Mathe-
matically this motion decomposition can be described as fol-
lows. The position v at time t of the vertices in world space
can then be expressed by applying the appropriate affine
transformation X to a rest pose M̃ = {ṽ} plus a residual mo-
tion δ:

vi(t) = X(t) · ṽi +δi(t) (1)

The rest pose of an animated object is a mesh where usually
all parts of the object are in a relaxed position.

Transforming into the coordinate system of the rest pose
by multiplying (1) with the inverse Transformation X−1(t)
and substituting δ̃i(t) = X−1(t) ·δi(t) yields

ṽi(t) = ṽi + δ̃i(t) = X−1(t) ·vi(t), (2)

the fuzzy position ṽi(t) of vertex i at time t. The fuzzy
box FB(∆abc) of triangle ∆abc with vertices a,b,c is the
axis-aligned bounding box (AABB) of all fuzzy positions
ṽa(t), ṽb(t), ṽc(t)∀t and bounds the local residual motion
δ̃(t). The fuzzy kd-tree is then build over these fuzzy boxes
instead of the triangles and is thus valid for all time steps.

3.1. Clustering of Coherent Motion

Obviously the performance of the fuzzy kd-tree for ray trac-
ing is strongly dependent on the size of the fuzzy boxes. If
all fuzzy boxes are quite big and overlap themselves signifi-
cantly the acceleration structure can hardly discard triangles
for intersection, resulting in many costly ray-triangle inter-
sections.

Therefore we like to keep the residual motion relatively
small, or equivalently we want to subtract as much common
motion as possible. This can only achieved by exploiting the

local coherence in motion, which requires a clustering of the
mesh into submeshes that deform coherently.

To partition the triangles of the mesh into clusters we ap-
ply a generalized Lloyd Relaxation [Llo82] algorithm (see
e.g. [DFG99] for an introduction). Note that we need to
cluster triangles and not vertices because the triangles will
be tested for intersections with rays.

In each iteration step we first find affine transformations
that minimize the residual motion of each clusters and sec-
ond reassign each triangle to the cluster where its residual
motion is smallest.

The iteration process stops when the clustering converged,
i.e. when no triangle change its cluster anymore. Practically
we stop when the decrease in the overall residual motion
drops below some threshold, e.g. below 1‰.

As Lloyd relaxation is prone to find local minima and the
optimal number of clusters is not known in advance we start
with one cluster and iteratively insert a new cluster until the
cost function converges.

A new cluster is inserted in the following way. We take
as seed triangle the triangle with the largest residual motion.
We also also include its neighboring triangles such that they
define a coordinate system. The existing clusters are also
newly initialized with the seed triangles that have the small-
est residual motion. These seed triangles act as prototypes of
the common motion of the (currently) clustered triangles and
ensure a stable clustering procedure. We stop adding clusters
when the the overall residual motion cannot be reduced sig-
nificantly anymore. See next Section for our cost function.

The clustering process is shown in Figure 6. Note that the
most similar moving parts of the mesh are clustered first.
One can find the proposed clustering algorithm in pseudo
code summarized in Algorithm 1.

3.2. Finding “Good” Transformations

For the motion decomposition and the clustering we need
to find affine transformations between the rest pose and all

© The Eurographics Association and Blackwell Publishing 2006.

Günther et al. / RT using Motion Decomposition

Figure 6: Top row: Several frames of the HAND animation. Bottom row: Clustering of the HAND animation with 1, 2, 4, 8,
and 12 clusters, respectively. Triangles with the same color belong to the same cluster. The out lined boxes denote the bounding
box of each cluster. Note how the cost-driven clustering approach automatically segments the hand into clusters in which the
triangles perform roughly the same motion. For example the pinky and the ring finger are clustered first as they perform similar
motion.

Algorithm 1 Clustering
start with one cluster containing all triangles of the scene
while global cost still changes significantly do

while cost not converged for current #clusters do
find transformations, minimizing δ̃ ∀cluster
recluster triangles, minimizing δ̃

end while
create new cluster
choose seed ∆s

end while

other poses that minimize the residual motion ‖δ̃i(t)‖ =
‖X−1

t ·vi(t)− ṽi‖ ∀t.

The affine-only 3×3 transformation matrix and its trans-
lation can be combined to a 4 × 4 transformation matrix
using the homogeneous coordinate system. Thus X−1 has
12 unknown elements and we need (at least) 4 linear inde-
pendent vertex positions for a unique solution. With more
than 4 vertex positions (the general case) we solve the
linear least squares problem that minimizes the L2-norm
‖X−1 ·vi(t)− ṽi‖2 of the residual motion δ̃.

Instead of minimizing the L2-norm of the residual motion
we really want to optimize the surface area of the resulting
fuzzy boxes. This is more closely linked to L∞-norm, but
we found that this approach is already giving the right results
while guarantying convergence.

3.3. Selecting the Rest Pose

So far we have not yet defined the rest pose M̃ = {ṽ}. To
avoid an expensive general optimization problem we simply

take the positions {ṽi(t)} of one of the key frames of the
animation as M̃. During the clustering we try all key frames
and take the one that minimizes the sum over all cluster c
and all time steps t:

t̃ = argmin
t′

∑
t

∑
c

∑
i∈c

‖X−1
c (t) ·vi(t)− vi(t

′)‖ (3)

If the animation consists of a large number of frames we
uniformly subsample the set of frames while searching for
an optimal rest pose in order to reduce the search space.

3.4. Optimizing Local Bounding Boxes

We can make two observations that can lead to better ray
tracing performance if exploited properly.

First, when rays hit the axis-aligned bounding boxes of
the clusters in the top-level kd-tree they get inversely trans-
formed to the local coordinate system of that cluster. The
following traversal of its fuzzy kd-tree starts by clipping the
transformed rays to the local axis-aligned bounding box of
the cluster. This is meaningful because the affine transforma-
tion can rotate the coordinate systems and thus rays hitting
the globally axis-aligned box do necessarily also hit the lo-
cally axis-aligned box.

Second, the vertices of each cluster can be rotated arbi-
trary in the local coordinate system because this rotation can
be compensated by multiplying the affine transformations of
the corresponding cluster with a rotation matrix.

We can take advantage of these facts to make tighter lo-
cal axis-aligned bounding boxes of clusters. By calculating
an oriented bounding box (OBB) of the fuzzy positions and

© The Eurographics Association and Blackwell Publishing 2006.

Günther et al. / RT using Motion Decomposition

rotating this box to make it axis-aligned we can directly min-
imize the local bounding boxes.

To approximately compute the OBB of each cluster (in
local coordinates) we apply PCA to the fuzzy positions and
take the first three PCA vectors as new coordinate system
axes. Exactly finding the OBB [BHP01] could be used as
well.

4. Implementation and Results

We implemented our motion decomposition approach and
the ray tracer with fuzzy kd-trees using C++, SSE [Int02],
and the LAPACK [ABB∗99] library for fast matrix opera-
tions and linear algebra computations. The ray tracer imple-
mentation is equivalent to the approach in OpenRT [Wal04]
with some extensions of MLRT [RSH05], namely the in-
verse frustum culling for kd-tree traversal. No further op-
timizations such as empty occluders or an efficient entry-
point search are included. The measurements were done on a
workstation equipped with two AMD Opteron 2.8GHz pro-
cessors and a GeForce 6800 GT PCIe graphics board.

Figure 1 shows several of our example scenes. They cover
different amounts of animation complexity and contain be-
tween approximately 10k and 80k triangles.

The HAND and BEN scenes are examples of hierarchi-
cal animations and were created with Poser [Pos] using a a
skeleton with vertex skinning. Because this directly matches
our assumptions we expect that our motion decomposition
approach will perform well. Although the motion of the
DOLPHIN is not controlled by a skeleton but by a mass-
spring simulation it still moves naturally and thus also meets
our assumptions.

The COW scene, on the contrary, shows highly unnatu-
ral motion. It is an example of an animation generated by a
physics-based simulation of a cow consisting of very elastic
material, resulting in “jelly-like”, unnatural poses. Finally,
as a stress test for our algorithm, we choose the CHICKEN

animation. This section of an animated film is difficult be-
cause of the extreme, cartoon-like sequences around frame
250 (see Figure 1c and the left of Figure 4) that include
strong stretching of the chickens’ neck and oozing of its
eyes. Even though the motion in the last two scenes violates
the assumptions our method still works surprisingly well as
demonstrated in the following sections.

4.1. Clustering

Our proposed clustering algorithm minimizes the residual
motion by using the least square distances of the vertex po-
sitions in the local coordinate system as a cost measure.
However, the surface area of the fuzzy boxes is the better
measure for the expected ray tracing performance [MB89].
Figure 7 compares these two measures during clustering. It
shows that the least square distances by the relaxation-based

clustering is highly correlated with the surface area of the
fuzzy boxes and both are minimized. Furthermore it can be
seen that adding new clusters is not beneficial anymore at
some point and clustering is automatically terminated by a
threshold on the change of the least square distances.

Also note that a number of clusters around 20–25 is suf-
ficient for our example animations. The clustering process
takes from about 20 minutes for the HAND to about 95 min-
utes for the CHICKEN when 25 poses were tested for the rest
pose. The clustering time increases linear with the number of
time steps and is also linear in the number of candidate rest
poses. Thus it can be shortened drastically by subsampling
the time steps during the clustering process with a negligable
effect on clustering quality.

Although our algorithm only sees the animated vertex po-
sitions of the mesh and has no knowledge about the un-
derlying skeleton, the resulting clusters correspond well to
the bones of the HAND and BEN model (see Figure 1a
and 1b). Also for the DOLPHIN and even for the COW and
CHICKEN animations meaningful submeshes that move co-
herently were found (see Figure 1c, 1d and 1e).

4.2. Comparison to Static KD-Tree

To evaluate the efficiency of our proposed fuzzy kd-tree for
ray tracing animated scenes we compare it to a static kd-tree.

Table 1 lists two characteristic values for acceleration
structures, namely the number of traversal steps and the
number of ray-triangle intersections. We compare our two-
level fuzzy kd-tree with an one-level kd-tree that is re-built
and optimized for every time step. Apart from the structure
of the resulting tree the traversal and intersection routines
are the same for both kd-trees.

The measurements show that the number of traversal
steps increases by only 50% to 100% for the fuzzy kd-
tree. The ray-triangle intersections increase only by 15% for
the HAND and typically up to 100%, except for the COW

and CHICKEN scene. Because these two animations do not
strictly obey our assumption of local coherent motion the
motion decomposition cannot work optimally resulting in a
larger residual motion and overlap of the fuzzy boxes. This
increased overlap affects the efficiency of the kd-tree and
leads to an increased number of intersections. Although the
increase in intersections of a factor of 6 for the CHICKEN

may seem high, overall ray tracing performance is much less
affected as shown in the following section and ray tracing
this animation is still reasonably fast.

Obviously the memory consumption of a separate static
kd-tree per time step will linearly increase with the number
of frames whereas the memory consumption of our fuzzy
kd-tree will be roughly the same largely independent of the
length of the animation.

© The Eurographics Association and Blackwell Publishing 2006.

Günther et al. / RT using Motion Decomposition

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

re
si

du
al

 m
ot

io
n

number of clusters

Residual Motion

Ben
Chicken

Cow
Dolphin

Hand

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18

su
rfa

ce
 a

re
a

number of clusters

Surface Area of Fuzzy Boxes

Ben
Chicken

Cow
Dolphin

Hand

Figure 7: The sum of all residual motion and the accumulated surface area of the fuzzy boxes during the clustering process.
The residual motion is minimized by our clustering algorithm while the surface area of the fuzzy boxes is proportional to the
ray-intersection probability and thus a reasinable measure for ray tracing performance. Still both measures converge well.

#traversal steps #intersections average fps
scene #tris #frames #cluster static fuzzy ratio static fuzzy ratio static fuzzy ratio
BEN 78029 30 20 722,068 1,111,808 1.54 1.2 2.28 1.9 20.98 10.77 1.94
CHICKEN 5664 400 21 210,458 379,466 1.80 0.80 4.96 6.2 39.24 15.03 2.61
COW 5804 204 20 634,173 946,558 1.49 0.92 3.68 4.0 19.21 12.49 1.53
DOLPHIN 12377 101 16 534,156 1,020,469 1.91 1.08 1.72 1.59 22.56 19.31 1.16
HAND 15855 30 21 1,330,951 2,307,758 1.76 1.28 1.48 1.15 17.98 10.94 1.64

Table 1: Comparison of our proposed fuzzy kd-tree acceleration structure with a classic static kd-tree in numbers of intersec-
tions and traversal steps. As we use frustum traversal on entire packets the numbers given are amortized per ray. One static
kd-tree is pre-built for every time step of the animation and the results are averaged over the animation. We pay only a factor
between 1.5 and 2 in the number of traversal steps and typically a factor of about 2 in the number of intersections for the ability
to ray trace animations . Although the difficult and non-conforming CHICKEN and COW animation do not strictly fulfil our
assumption of local smooth motion the ratio drops only to 6 and 4, respectively. Nevertheless, even these animations can be ray
traced at interactive rates.

4.3. Absolute Performance

In this section we present the overall performance of our
ray tracing system for animated scenes. All renderings were
done on a single CPU at a resolution of 1024× 1024 pixels
with a simple diffuse shader and a packet size of 4×4 rays.

Figure 8 shows the frame rate achieved by our system over
the course of each animation. As can be seen we achieve
interactive frame rates of 5 to 15 frames per second at
fullscreen resolution.

Additionally, Table 1 also compares the average frame
rate achieved by ray tracing with the fuzzy kd-tree versus to
the performance of ray tracing with optimized static kd-trees
pre-built for every frame. Note that simply by switching to
a two-level kd-tree without any other changes already de-
creases ray tracing performance about 30% due to the costs
of transforming the rays to the local coordinate system.

5. Discussion and Conclusions

We presented a novel approach to ray trace animated scenes
where we used motion decomposition and fuzzy kd-trees to
build a single two-level kd-tree for the residual motion after
having compensated any affine motion component.

Although the number of traversal steps and intersection
tests is higher compared to an optimized static kd-tree of
a single time step we still achieve interactive frame rates
for moderately complex models, although we have not op-
timized our complete ray tracing pipeline to the same ex-
tend as in [RSH05]. Furthermore, a massive amount of main
memory is saved due to the usage of just one acceleration
structure for the complete animation. Additional memory
could be saved by compressing the triangle information us-
ing e.g. principal component analysis [AM00].

Animations that violate our implicit assumption of locally
coherent motion will still be ray traced correctly but with
non-optimal performance.

© The Eurographics Association and Blackwell Publishing 2006.

Günther et al. / RT using Motion Decomposition

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400

FP
S

Time Step

Frames per Second

ben
chicken

cow
dolphin

hand

Figure 8: Ray tracing performance for our example anima-
tions in frames per second on a single CPU including shad-
ing at 1024×1024 pixels. For all scenes at least interactive
frames rates of 5 frames per second are achieved.

6. Future Work

One promising direction of future research is to enhance the
quality of the clusters by clustering also in the time domain.
This would be quite helpful e.g. for the CHICKEN sequence
where the difficult extreme poses could then be separated.

Additionally we like to extend our approach to also han-
dle the interpolation between key frames of an animation.
This may be possible by interpolating the computed affine
transformations similar to [Ale02].

Currently our approach requires that we know all poses
occuring in an animation. This limitation could be elimi-
nated by harnessing more information of e.g. the modelling
applications, such as the bone structure, joint angles with
their limits, and skinning operators. With these additional
informations the residual motion could be conservatively
bounded and on the fly modifications on the geometry could
be ray traced without prior knowledge of each pose.

References

[ABB∗99] ANDERSON E., BAI Z., BISCHOF C., BLACKFORD

S., DEMMEL J., DONGARRA J., DU CROZ J., GREENBAUM

A., HAMMARLING S., MCKENNEY A., SORENSEN D.: LA-
PACK Users’ Guide, third ed. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1999. 6

[AK87] ARVO J., KIRK D.: Fast ray tracing by ray classifica-
tion. Computer Graphics (Proceedings of ACM SIGGRAPH) 21,
4 (1987), 55–64. 2

[Ale02] ALEXA M.: Linear Combination of Transformations. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 2002), ACM Press, pp. 380–387. 8

[AM00] ALEXA M., MÜLLER W.: Representing Animations by
Principal Components. Computer Graphics Forum 19, 3 (2000),
411–418. 7

[App68] APPEL A.: Some Techniques for Shading Machine Ren-
derings of Solids. SJCC (1968), 27–45. 1

[Arv88] ARVO J.: Linear-time voxel walking for octrees. Ray
Tracing News (available at htpp://www.acm.org/tog/resources/-
RTNews/html/rtnews2d.html 1, 5 (Mar. 1988). 1

[AW87] AMANATIDES J., WOO A.: A Fast Voxel Traversal Al-
gorithm for Ray Tracing. In Proceedings of Eurographics. Euro-
graphics Association, 1987, pp. 3–10. 2

[BHP01] BAREQUET G., HAR-PELED S.: Efficiently Approx-
imating the Minimum-Volume Bounding Box of a Point Set in
Three Dimensions. J. Algorithms 38 (2001), 91–109. 6

[CWBV83] CLEARY J., WYVILL B., BIRTWISTLE G., VATTI

R.: A Parallel Ray Tracing Computer. In Proceedings of the
Association of Simula Users Conference (1983), pp. 77–80. 2

[DFG99] DU Q., FABER V., GUNZBURGER M.: Centroidal
voronoi tessellations: Applications and algorithms. SIAM Rev.
41, 4 (1999), 637–676. 4

[FKN80] FUCHS H., KEDEM Z. M., NAYLOR B. F.: On visible
surface generation by a priori tree structures. In SIGGRAPH ’80:
Proceedings of the 7th annual conference on Computer graphics
and interactive techniques (1980), ACM Press, pp. 124–133. 2

[FS05] FOLEY T., SUGERMAN J.: KD-tree Acceleration Struc-
tures for a GPU Raytracer. In HWWS ’05 Proceedings (2005),
ACM Press, pp. 15–22. 2

[Gla84] GLASSNER A. S.: Space Subdivision For Fast Ray Trac-
ing. IEEE Computer Graphics and Applications 4, 10 (1984),
15–22. 1

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD
thesis, Faculty of Electrical Engineering, Czech Technical Uni-
versity in Prague, 2001. 2

[HPP00] HAVRAN V., PRIKRYL J., PURGATHOFER W.: Statisti-
cal Comparison of Ray-Shooting Efficiency Schemes. Tech. Rep.
TR-186-2-00-14, Department of Computer Science, Czech Tech-
nical University; Vienna University of Technology, July 2000. 2

[Int02] INTEL CORP.: Intel Pentium III Streaming SIMD Exten-
sions. http://developer.intel.com/vtune/cbts/simd.htm, 2002. 6

[Jan86] JANSEN F. W.: Data structures for ray tracing. In Pro-
ceedings of the workshop on Data structures for Raster Graphics
(1986), pp. 57–73. 2

[JT05] JAMES D., TWIGG C. D.: Skinning mesh animations.
ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3 (Au-
gust 2005). 3

[LAM01] LEXT J., AKENINE-MÖLLER T.: Towards Rapid Re-
construction for Animated Ray Tracing. In Eurographics 2001 –
Short Presentations (2001), pp. 311–318. 2

[Llo82] LLOYD S. P.: Least Squares Quantization in PCM. IEEE
Transactions on Information Theory 28, 2 (1982), 129–137. 4

[LLYL05] LEE T.-Y., LIN P.-H., YAN S.-U., LIN C.-H.: Mesh
decomposition using motion information from animation se-
quences. 519–529. 3

[MB89] MACDONALD J. D., BOOTH K. S.: Heuristics for Ray
Tracing using Space Subdivision. In Proceedings of Graphics
Interface (1989), pp. 152–63. 2, 6

[Muu95] MUUSS M. J.: Towards Real-Time Ray-Tracing of

© The Eurographics Association and Blackwell Publishing 2006.

Günther et al. / RT using Motion Decomposition

Combinatorial Solid Geometric Models. In Proceedings of BRL-
CAD Symposium (1995). 1

[PMS∗99] PARKER S., MARTIN W., SLOAN P.-P., SHIRLEY P.,
SMITS B., HANSEN C.: Interactive Ray Tracing. In Proceedings
of Interactive 3D Graphics (1999), pp. 119–126. 1

[Pos] POSER:. http://www.e-frontier.com/. 6

[RSH00] REINHARD E., SMITS B., HANSEN C.: Dynamic Ac-
celeration Structures for Interactive Ray Tracing. In Proceedings
of the Eurographics Workshop on Rendering (Brno, Czech Re-
public, June 2000), pp. 299–306. 2

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-
Level Ray Tracing Algorithm. ACM Transaction of Graphics
24, 3 (2005), 1176–1185. (Proceedings of ACM SIGGRAPH).
1, 2, 6, 7

[RW80] RUBIN S. M., WHITTED T.: A three-dimensional repre-
sentation for fast rendering of complex scenes. Computer Graph-
ics 14, 3 (July 1980), 110–116. 1

[SF90] SUBRAMANIAN K. R., FUSSEL D. S.: A Search Structure
based on K-d Trees for Efficient Ray Tracing. Tech. Rep. PhD
Dissertation, Tx 78712-1188, The University of Texas at Austin,
Dec. 1990. 2

[SSK05] SATTLER M., SARLETTE R., KLEIN R.: Simpler and
Efficient Compression of Animation Sequences. In SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (2005), ACM Press, pp. 209–217.
3

[Wal04] WALD I.: Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group, Saarland
University, 2004. 2, 6

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Distributed
Interactive Ray Tracing of Dynamic Scenes. In Proceedings of
the IEEE Symposium on Parallel and Large-Data Visualization
and Graphics (PVG) (2003). 2, 3

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for ray
tracing, and on doing that in O(N log N). Tech. rep., SCI Institute,
University of Utah, 2006. (submitted for publication). 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER

M.: Interactive Rendering with Coherent Ray Tracing. Com-
puter Graphics Forum 20, 3 (2001), 153–164. (Proceedings of
Eurographics). 1, 2

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.: RPU: A
Programmable Ray Processing Unit for Realtime Ray Tracing.
Proceedings of ACM SIGGRAPH (2005). 2

© The Eurographics Association and Blackwell Publishing 2006.

