
SCI Institute, University of Utah Technical Report UUSCI-2006-022

Interactive Distribution Ray Tracing

Solomon Boulos†, Dave Edwards†, J. Dylan Lacewell†, Joe Kniss†, Jan Kautz⋄, Peter Shirley†, Ingo Wald‡

†School of Computing, University of Utah ⋄University College London ‡SCI Institute, University of Utah

Abstract

Distribution ray tracing uses multiple samples per pixel to produce antialiased images that include soft shad-

ows, glossy reflection, motion blur, and depth-of-field. The two main potential barriers to making distribution ray

tracing interactive are that many rays might be required, and that those rays are not coherent enough to derive

efficiency from tracing them in packets. A new interleaved sampling approach based on the Sudoku puzzle is used

to minimize the number of rays per pixel. An empirical demonstration is used to show that there is still enough

coherence in the rays to allow for a per-ray cost near that of a traditional ray tracer. In addition, a demonstration

is provided that participating media can also be handled interactively in a distribution ray tracer.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Ray tracing

1. Introduction

Over 20 years ago Cook et al. [CPC84] captured the graph-
ics communities’ attention with its stunning distribution ray
tracing (DRT) images (Figure 1). Because DRT is based on
ray tracing, it also allows natural support for participating
media [KH84]. Unfortunately, DRT has remained an exclu-
sively batch algorithm. In this paper, we attempt to make
DRT interactive, or more precisely to demonstrate it can be
interactive on the multicore chips already announced for pro-
duction 2-3 years from now.

Unlike full DRT, Whitted-style [Whi80] ray tracing (re-
stricted to viewing and shadow rays from point sources)
has been made interactive on single CPUs for both static
scenes [WSBW01, RSH05] and dynamic scenes [WBS06,
WIK∗06]. The performance of these systems rely on many
factors including the use of ray packets and SIMD program-
ming. There are three main potential barriers to extending
such systems to DRT in the presence of participating media.
First is that many rays may be needed per pixel for accept-
able image quality. Second is that rays in DRT are less co-
herent than in traditional ray tracing, so it is not clear that ray
packet techniques will continue to yield great efficiency ben-
efits. Third is that even if DRT can be made fast for surfaces,
participating media may dominate performance.

In this paper we attempt to show that those three barri-
ers can be overcome without introducing limitations to the
basic DRT algorithm. This is accomplished first by extend-
ing the use of ray packets and SIMD programming from
Whitted-style ray tracing to DRT, second by using an in-
terleaved sampling scheme that uses tiling inspired by the

Figure 1: A 512 by 512 pixel, 16 sample per pixel, distribu-

tion ray tracing image taken from an interactive session for

an animated scene. The balls are 16,000 moving triangles

and the rest of the scene is 280,000 static triangles. Gener-

ated in our interactive ray tracer running at 2-3 frames per

second on a 16 core system.

popular Sudoku logic puzzles to limit the number of samples
per pixel, and third by a simple method to efficiently trace a
packet of rays through a volume density. We also show how
the performance of the system degrades as the packet coher-

2 Boulos et al. / Interactive Distribution Ray Tracing

lens

pixel

luminaire

Figure 2: The rays generated for one pixel in a DRT pro-

gram. The sphere here is diffuse, so no specular rays are

generated in this example. Note that there is no branching of

rays. In this example, four samples per pixel are used, and

six dimensions are sampled (two each for lens position, pixel

position, and luminaire position). In the general case, there

is an additional dimension for time, and two additional di-

mension for glossy specular reflection.

ence decreases with large lens aperture, large luminaire area,
highly glossy reflection, and motion blur.

2. Background

A DRT program differs from a classic ray tracing program
in that it takes multiple samples on a pixel, and each of these
samples is associated with a different position on the camera
lens, time, reflection direction, and luminaire position (Fig-
ure 2).

Most DRT programs generate samples on a unit hy-
percube rather than directly on on the nine-dimensional
space the rays occupy. Further, most generate four two-
dimensional patterns on [0,1]2 and one one-dimensional pat-
tern on [0,1] and then use a permutation to assemble those
into a set of nine-dimensional samples. These permutations
can be random [KK02, SM03] or based on more sophisti-
cated techniques [Coo86, KK02].

The samples themselves can be generated using Monte
Carlo (MC) or quasi-Monte Carlo (QMC) techniques.
Cook has shown that random sampling has visual errors
whose noise properties are not very objectionable to view-
ers [Coo86]. Mitchell has argued that the sampling pattern
should have certain frequency characteristics to minimize
apparent error [Mit91]. Keller and Heidrich developed “in-
terleaved sampling” and showed that creating dependent pat-
terns across pixels could create aliasing that makes error less
obvious because of local correlations [KH01, Kel04]. Inter-
leaved sampling is based on a similar concept to that used
in dithering: in the presence of unavoidable error, the er-
ror of nearby pixels should be anticorrelated, and a regu-

Figure 3: Examples of four sampling strategies for four

samples on the unit square. Top left: regular sampling. To

right: Latin square sampling (each “block” has a sample at

the center, and no two blocks are in the same row or column).

Bottom left: Latin square sampling with the added constraint

that one sample is in each quadrant. Bottom right: any deter-

ministic strategy can be altered by random perturbation of a

sample with a block; for example a latin square distribution

can be randomized to form a “n-rooks” pattern.

pinhole

pixel

luminaire

Figure 4: In a Whitted-style ray tracer, all viewing rays start

at a pinhole, and all shadow rays end at a points. These rays

are more coherent than DRT rays in that they not only have

common origins, but they have less directional spread in

practice. Reflection/refraction rays (not shown) lack a com-

mon origin, but are more coherent in a typical Whiited-style

ray tracer than in a DRT program.

lar structure in the error can improve subjective image qual-
ity [Tho91].

Keller has argued that 2D QMC patterns naturally have
two important properties: uniform distribution in 2D as well
as uniform distribution in each of the two 1D Cartesian
axes [Kel04]. An example of such a pattern is shown in the
bottom left of Figure 3. These good patterns can also be ran-
domized for applications that demand unbiased solutions.

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

Boulos et al. / Interactive Distribution Ray Tracing 3

Whitted-style ray tracers produce “crisp” images because
their rays follow deterministic paths without the random-
ized spread of DRT rays. A consequence of this is that
sets of rays in a Whitted-style ray tracer are likely to be
more coherent than in a DRT program (Figure 4). This
is a cause for some concern for DRT efficiency because
modern efficient ray tracers gain much of their speed from
tracing “packets” of rays† together through the environ-
ment [WSBW01, WIK∗06]. These packets must be some-
what coherent in what objects they visit to help efficiency,
so it is not clear DRT programs can be made fast by borrow-
ing these packet techniques.

3. Implementing Distribution Ray Tracing

For distribution ray tracing to approach interactivity we must
group secondary rays into coherent packets. In our system,
packets are groups of up to 16 rays traced together. One of
the simplest indicators of coherency is shader type, or more
specifically which component of the shading model gener-
ated the ray. Our system supports Phong shading, as well
as refraction. Thus we group secondary rays so that a sin-
gle packet only contains one of the following: shadow rays,
reflection rays, or refraction rays. For example, a primary
packet that hits a Phong-shaded plastic surface generates
a shadow packet and a reflection packet. Purely diffuse or
specular surfaces send only shadow or reflection packets, re-
spectively. It is possible for the child packets to be only par-
tially full, e.g., if a primary packet hits two overlapping sur-
faces, one of which is purely diffuse. There is no hard cod-
ing in our system for a particular shader model, and scene
attributes such as camera aperture and light source size can
be modified at runtime.

In this section we describe how we implemented each type
of secondary ray packet, as well as camera rays and motion
blur, and discuss requirements for acceleration structures.
We assume a set of input sampling points and tile patterns.
Varying these does not significantly affect the ray packet in-
tersection and shading cost, though it can affect how many
rays are needed for visual quality, as discussed in Section 4.

3.1. Camera Model

Recent interactive ray tracing systems have relied on pinhole
cameras, in which all camera rays have a common origin
and common signs, to achieve high performance using a kd-
tree [WSBW01, Wal04, RSH05]. In distribution ray tracing,
we achieve depth of field by jittering ray origins on a lens,
which removes the common origin of primary rays. How-
ever, the bounding volume hierarchy presented by Wald et

† Note that these packets are less constrained than the “beams” of
beam tracing [HH84]. Packets are just arrays of rays and these rays
do not necessarily have any required geometric relationships to each
other.

Figure 5: Left: pinhole camera. Right: thin lens camera.

Figure 6: Left: Hard shadows from a point light source.

Right: Soft shadows from an area light source.

al. [WBS06], which we implemented in our system, does not
have the common origin restriction as both the slabs test and
interval arithmetic allow for differences in ray origins. We
sample a disc-shaped lens by transforming uniform random
variables into polar coordinates on the lens as follows:

θ = 2πξ1, r =
α
√

ξ2

2
,

where α is the aperture or lens diameter. The results of this
are shown in Figure 5.

For increased coherence, we group our rays in a tiled fash-
ion to form ray packets. For example at one sample per pixel,
sixteen rays would be traced in a 4x4 pixel block. When us-
ing 16 samples per pixel, all the rays within a pixel form a
single packet which is assumed to be sufficiently coherent.

3.2. Soft Shadows

Whitted-style ray tracing uses point light sources and pro-
duces hard shadow boundaries. Previously, packets of coher-
ent shadow rays have been shot from point light sources to-
wards primary ray hit positions. Soft shadows are produced
by using more realistic area light sources, which again re-
moves the common packet origin.

One way to reintroduce a common origin is to shoot a
packet of shadow rays from each hit position in the primary
packet towards distributed sample points on the light source.
However, this oversamples the shadows (i.e., we do not need

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

4 Boulos et al. / Interactive Distribution Ray Tracing

Figure 7: Left: perfect specular Right: glossy reflection.

16 visibility samples each of which uses 16 shadow rays)
and violates the principles of DRT. We therefore continue to
shoot shadow packets from lights toward geometry, with at
most one shadow ray per primary ray.

As with lenses, sample positions on area light sources
are chosen by using a simple mapping from uniform ran-
dom variables to points on the luminaire. As the light source
size grows, this produces a larger packet footprint that may
contain rays with differing signs. For systems based on the
kd-trees and other spatial subdivision techniques with strict
ordering requirements, this requires splitting up what would
otherwise appear to be coherent packets. Imagine a packet of
16 rays with only 1 degree of spread. This packet is certainly
coherent, but for a kd-tree if the packet happens to cross an
axis-aligned boundary it must be split. The BVH does not
have this restriction, so this allows us to use larger packets
and extract more coherence from rays that might be seen as
incoherent for other acceleration structures.

For simplicity, we only usea rectangular luminaires. Al-
though this would seem to be overly restrictive, the lumi-
naire size is more important in determining shadow appear-
ance than the luminaire’s shape [SM03]. An example of a
hard vs. a soft shadow is shown in Figure 6.

3.3. Reflections

Following Cook [CPC84], if an object has a reflective com-
ponent we compute the direction of perfect reflection and
perturb it to produce a glossy reflection. Recent packet based
systems either switched to single ray code for secondary
bounces (like OpenRT [Wal04]) or only handled planar re-
flections in a manner similar to beam tracing [HH84]. How-
ever, the difference between perfectly specular objects and
slightly blurred is quickly apparent and desirable (See Fig-
ure 7).

To construct the blurry reflection direction, for each ray in
the packet we first compute the perfect reflection direction

Figure 8: Left: A moving sphere without motion blur. Right:

With motion blur.

and a coordinate frame around it:

~R =~V − N̂(2N̂ ·~V)

Ŵ = R̂

Û = Ŵ × ê0

V̂ = Ŵ ×Û

where ~V is incident ray direction, N̂ is the unit surface nor-
mal and ê0 is the canonical first basis vector. If R̂ is suffi-
ciently parallel to ê0, however, Û will be close to the zero
vector. In this case, Û becomes Ŵ × ê1. Each of these cross
products reduces to simpler scalar calculations than a full
cross product would entail due to the zeros in the canonical
basis vectors. Note that this computation is done for each ray
in the packet.

Once we have constructed this basis around the reflection
direction, we can use the Phong model [Pho75] to perturb
the direction using uniform random variables:

φ = 2πξ1

cos(θ) = n+1
√

ξ2

Â = 〈cos(φ) sin(θ), sin(φ) sin(θ),cos(θ)〉

~R = Û(Û · Â)+ V̂ (V̂ · Â)+Ŵ (Ŵ · Â),

where n is the specular exponent. For computing the reflec-
tion coefficient, we use Schlick’s approximation to the Fres-
nel equations [Sch93].

3.4. Motion Blur

Motion blur provides for substantially more realism and vi-
sual quality than framed rendering (See Figure 8). To imple-
ment motion blur, we require a random seed for a time value.
If each ray is given a unique time value and multiple samples
are taken within a pixel, we get an averaging effect that pro-
duces motion blur. When intersecting a primitive, each ray’s
time is used to create the primitive at the instance in time the
ray represents. For triangles, this implies interpolating posi-
tions between frames according to the ray time value. While
this approach is simple, it invalidates previous approaches
for fast ray-triangle intersection [Wal04]. In our system, each

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

Boulos et al. / Interactive Distribution Ray Tracing 5

ray interpolates the triangle to its position based on the ray’s
individual time seed. A Moller-Trumbore style triangle test
is then used on the interpolated primitive as the test does not
require precomputation and is relatively fast [MT97].

Motion blur requires that acceleration structures can han-
dle moving primitives. We are using a Bounding Volume
Hierarchy as our acceleration structure, so this can easily
be handled by ensuring that the bounding box of the primi-
tive encloses the primitive for any interpolated position. For
simplicity, we are using linear interpolation of positions be-
tween frames, so a primitive’s bounds is simply the union
the bounds from the previous frame with the current frame.
Other acceleration structures that handle ray tracing of dy-
namic scenes might also handle motion blur in a similar fash-
ion [WIK∗06].

3.5. Refraction

If a primary packet containing N rays hits a dielectric, it
splits into two secondary packets, one for reflection and one
for refraction, which contain N rays between them. Rays
from the primary packet reflect with constant probability P

and refract with probability (1−P), and receive weights R/P

and (1−R)/(1−P), where R is the Schlick approximation
to the Fresnel term. For example, with N = 16 and P = 0.25
the first reflection packet would receive about 2 rays. In prac-
tice we found that a maximum refraction depth of 3 was suf-
ficient for visually compelling glass, such as the ashtray in
the pool table scene in Figure 9. Each bounce is attenuated
according to the distance it travels (e.g, using Beer’s Law).
If a packet exceeds the maximum refraction depth we use
its direction to lookup into a prefiltered environment map.
Packets that are reflected or refracted through a dielectric
have similar coherency as blurry reflection packets, but con-
tain less rays on average due to splitting.

3.6. Participating Media

Participating media adds an additional level of realism that
provides a sense of depth and atmosphere. In outdoor scenes,
an atmospheric skylight model is essential for communicat-
ing distance and turbidity. Amorphic, yet dynamic phenom-
ena like smoke, clouds, and mist are intrinsically volumetric
in nature and not easily handled using surface-based primi-
tives.

General volumetric models are rendered by integrating the
volume rendering equation using discrete ray marching. In
our system, volume primitives are rendered after geometric
ray intersection and shading. One nice aspect of volume ren-
dering is that it rarely requires anti-aliasing, as volume mod-
els tend to be smooth and fuzzy. As such, multi-sampling
volume primitives provides little or no qualitative improve-
ment when compared to single ray integration. When the
scene is rendered using multiple samples per-pixel, a single
volume ray is shot for the entire ray packet. Each ray from

Figure 9: A glass ashtray with maximum 3 refractions and

a prefiltered environment map.

the packet is composited with the volume as the volume ray
marches past the multi-sample ray’s intersection point. Nat-
urally, if a ray does not intersect any geometry, it’s inter-
section point will be infinity. In this case the ray’s color is
composited with the complete volume ray solution.

Mist in the fairy scene and cigarette smoke in the pool hall
are dynamically generated volume primitives. They utilize
a simple analytic base volume that is perturbed by a noise
vector field, which is represented as a tiled 3D texture. The
mist and smoke are animated by moving the texture coordi-
nates of the noise texture. Both of these volumetric effects
represent phenomena that do not necessarily require exten-
sive self shadowing. The mist is a thin, high albedo media,
and the smoke is a small scale thin, yet low albedo media.
Since the base volume structure for each volume is known,
the subtle volume shading required can be computed analyt-
ically based on depth and lighting angle. Shadows cast by
geometric objects are computed in the traditional way, using
shadow rays. Just as with other parts of the system, we send
numerous rays simultaneously as packets. Our implementa-
tion of volume ray marching is straight forward with simple
optimizations such as early ray termination based on opac-
ity, and jittered volume ray starting points to remove obvious
aliasing artifacts in shadows cast through the volume.

The skylight model does not require ray marching. It is an
analytic approximation that handles chromatic atmospheric
extinction and skylight inscattering. The sky model uses a
stratified, depth dependent atmospheric density and a sim-
ple Rayleigh and Mie scattering approximation. High-level
controls include turbidity and pollution content, allowing the
scene impact to vary from clear and dry to humid to smoggy.

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

6 Boulos et al. / Interactive Distribution Ray Tracing

Figure 10: Left: A scene without participating media. Right: The same scene with participating media, including an analytic

skylight approximation and a dynamic mist layer.

4 pixels

luminaire

uncooperative

luminaire samples

cooperative

luminaire samples

Figure 11: Four adjacent pixels each generate samples on

the luminaire. If these samples “cooperate” they can be

overlaid and still make a good pattern.

The fairy scene in Figure 10 has high turbidity and low, yet
non-zero pollution.

4. Sample Generation

In an interactive program our random seeds cannot come
from random number generators at runtime. If we were to

1

2

2

3

3

4

4

1

1

1

1

2

2

2

2

3

3

3

34

4

4

4

Figure 12: Left: an order-2 sudoku puzzle. Right: the solu-

tion to the puzzle where every row, column, and quadrant

has exactly one of each digit.

fill the random seeds from a generator, our renderings would
exhibit temporal scintillation, because the sample pattern
would change whether or not the camera were still. Although
reseeding the random number generator per frame sounds
like a reasonable solution, it is only viable in the case of a
single threaded system. In a multi-threaded system, the dif-
ferences in work assignments per frame will cause a similar
scintillation effect. To solve this problem, we use stable sam-
ple patterns for each dimension.

Current computational power does not allow enough sam-
ples to obtain convergence. It would be preferable for the er-
ror that remains to be as unobjectionable as possible. For this
reason we employ interleaved sampling [KH01]. Perform-
ing interleaved sampling for antialiasing involves two basic
choices: the choice of sampling patterns, and the choice of
how these patterns tiled on the screen. For DRT, we must
also choose how the non-screen dimensions such as lumi-
naire position should be sampled. This section describes
techniques for both sample generation and tiling. We believe
that our tiling technique is the more critical innovation.

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

Boulos et al. / Interactive Distribution Ray Tracing 7

1

1

1

1

2

2

2

2

3

3

3

34

4

4

4

Figure 13: An order-2 sudoku solution can be used to make

four Latin square patterns that share no samples. Upper

right: When all four patterns are merged they make a 16-

sample regular grid. We refer to such sample patterns as

“cooperative” samples.

4.1. Cooperative Sampling

In the original work on interleaved sampling, motion blur
was computed by using a well-distributed set of time sam-
ples over a multi-pixel tile. For example, if each pixel in a
four-pixel tile used four time samples, then all sixteen time
samples on the tile formed a well-distributed sample pat-
tern. Although not explicitly explored in that work, the same
principle is valuable for sampling other dimensions, as il-
lustrated in Figure 11. We use the adjective “cooperative” to
refer to sample patterns on a tile that can be merged to obtain
well-distributed samples. In this sense, the the time samples
used by Keller and Heidrich are cooperative [KH01]. The
image space samples they used are not cooperative, although
that was not a limitation for their antialiasing application.

One method for generating cooperative sample pat-
terns in two dimensions is based on the popular Sudoku
game [Hay06]. We start with a solution as shown on the right
of Figure 12. If we look at an individual digit in a solution,
it defines a Latin-square pattern that is also stratified in 2D.
Each of the N digits defines such a pattern, and the N pat-
terns together define a pattern of N2 samples that is a regular
lattice (Figure 13).

For an order-4 puzzle, we can get 16 cooperative patterns
of 16 samples each. The particular solution we use is shown
in Figure 14. These sample patterns can be used in 4x4-pixel

 9 1 3 8 13 14 10 11 2 15 12 0 5 7 6 4

11 6 5 15 3 9 2 8 10 1 4 7 14 13 0 12

 0 12 14 10 7 4 6 1 5 3 9 13 15 2 8 11

 2 13 4 7 12 0 15 5 14 6 8 11 1 3 10 9

10 5 2 12 15 8 11 9 4 13 6 14 7 0 1 3

 7 0 9 3 5 6 13 14 1 2 10 15 11 12 4 8

 8 14 11 6 1 2 3 4 9 0 7 12 13 10 15 5

 4 15 13 1 0 12 7 10 3 5 11 8 2 6 9 14

 6 8 0 9 10 11 4 13 7 14 15 3 12 5 2 1

12 3 15 13 2 1 14 6 0 4 5 10 8 9 11 7

 5 7 1 2 8 15 12 3 11 9 13 6 0 4 14 10

14 4 10 11 9 5 0 7 8 12 1 2 6 15 3 13

 1 2 7 5 14 13 8 0 15 10 3 9 4 11 12 6

15 9 8 4 6 10 5 12 13 11 0 1 3 14 7 2

13 10 6 14 11 3 1 15 12 7 2 4 9 8 5 0

 3 11 12 0 4 7 9 2 6 8 14 5 10 1 13 15

Figure 14: The order-4 sudoku solution we use for both our

sample distribution and our tiling. Note that each bordered

block contains the numbers 0 through 15 exactly once, but

other four by four blocks (such as the grey one) may include

the same number twice.

tiles, and should be good for interleaved pixel samples as
well as cooperative luminaire samples. However, we found
that sampling strategies using 4x4-pixel tiles exhibit notice-
able aliasing (see left half of Figure 16).

4.2. Tiling Arrangement

To remove the tiling artifacts we observe, we use the same
principle that makes QMC sampling superior to uniform
sampling: random noise is usually a less objectionable ar-
tifact than frequency aliasing. If we have 16 cooperative pat-
terns of 16 samples each, we can assign these patterns to
pixels in a deterministic but non-uniform way to remove
some of the regularity caused by 4x4-pixel tiling. Conve-
niently, we can also use a sudoku puzzle solution to deter-
mine which sample pattern to use on pixels within a tile (see
Figure 15 for an order-2 example). Using our method with
an order-4 sudoku puzzle yields 16x16-pixel tiles, which re-
move some of the frequency artifacts from smaller tiles. We
refer to this method of tiling sample patterns onto pixels as
“sudoku tiling.” In general, the results from sudoku tiling
are superior to results using regular 4x4-pixel tiles (see Fig-
ure 16).

We show several combinations of sampling and tiling
strategies for luminaire sampling in Figure 16. In our experi-
ence, the tiling method affects the final image more than the
sampling method, as long as the sample sets are not uncoop-
erative. All of the figures are generated using 16 patterns of
16 samples each (i.e., 16 samples per pixel). The left column

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

8 Boulos et al. / Interactive Distribution Ray Tracing

1

1

1

1

2

2

2

2

3

3

3

34

4

4

4

1

43

2

1

13

1

1

4 3

34

42

3 4

2

2

2

Figure 15: The four sample patterns from the order 2-

sudoku solution from Figure 12 can be trivially arranged

into a 2x2-pixel tile (bottom left). Instead, we use the puzzle

solution again to arrange the sample sets into a 4x4-pixel

tile. Sample set 1 (generated from the locations of 1s in the

puzzle) is placed wherever there is a 1 in the puzzle (right).

uses 4x4-pixel tiles; each pixel in the tile uses one of the 16
patterns. The right column uses 16x16-pixel tiles, where the
sample pattern used is determined by the index in the Su-
doku solution shown in Figure 14. The particular sampling
startegies shown are:

Uncooperative Hammersley: A 256-sample Hammersley
pattern is generated on the unit square [0,1]2. The unit
square is divided regularly into 16 square cells (i.e., 4 cells
by 4 cells), each of which contain 16 samples. A sample
pattern consists of all samples within a given cell, rescaled
to fit within the unit square. These patterns turn out to be
particularly uncooperative.

Independent jittered: 16 independently generated jittered
(stratified random) sample sets. These are not explicitly
cooperative, but in practice they work better than the pre-
vious sample patterns.

Independent sudoku: 16 Latin-square stratified sudoku
patterns taken from 16 different sudoku puzzle solutions.
Because they come from different puzzles, these patterns
are not necessarily cooperative.

Cooperative sudoku: 16 Latin square stratified sudoku
patterns taken from the same puzzle analogous to the four
patterns in Figure 13. These points cooperate to form a
regular 256-sample lattice when merged.

Cooperative Latin-square sudoku: Here the points in the
cooperative sudoku solution are slightly perturbed, so that
when merged they form a 256-sample Latin square pat-
tern.

Cooperative Hammersley: The same as the initial method,
except that sample patterns consist of one unique sample
point from each cell in the unit square (rather than all sam-
ples from one cell). These16 patterns cooperate to form a
256-point Hammersley pattern.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

50

Aperture

T
ri
a

n
g

le
 I

n
te

rs
e

c
ti
o

n
 T

e
s
ts

 p
e

r
R

a
y

Primary rays

Shadow rays

Reflection rays

Refraction rays

Figure 17: Number of triangle intersections per ray type as

aperture is increased from a pinhole through extreme blur.

It is not clear which strategy in Figure 16 produces the best
images, but the uncoopertive Hammersley patterns on the
top row are clearly the worst. All of the methods shown are
stable, in that they do not produce any scintillation when the
viewpoint and objects are static. This is superior to jitter-
ing with 16 new random samples per pixel in every frame,
which has objectionable time-dependent noise in our expe-
rience. The bottom two rows of the figure are both similarly
good; this implies that there are probably many good ways
to generate cooperative samples. It is likely that other tiling
methods work well, but we have not investigated that.

5. Empirical Evaluation of Ray Coherence

In this section, we examine our system with respect to each
feature of distribution ray tracing over a 200 frame anima-
tion path of the billiards scene. This allows us to investigate
ray coherence in an empirical setting. Each of these tests
was chosen to examine a particular feature that would be
expected to greatly reduce ray coherence and therefore in-
crease the number of primitive intersections. All tests in this
section manipulate a single variable to differ from the set-
tings used in the video. Please see the accompanying video
for a demonstration of this path with what we believe to be
suitable settings for aperture, light source size and Phong
exponents.

5.1. Depth of Field

As aperture increases from a pinhole to an extreme blur, co-
herence is decreased due to separated ray origins . These in-
coherent primary rays produce incoherent hitpoints, which
produce incoherent secondary rays. Shadow rays are not as
strongly influenced, because incoherent hitpoints are still be-
ing linked to coherent locations on the luminaire. Figure 17

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

Boulos et al. / Interactive Distribution Ray Tracing 9

uncooperative

Hammersley

independent

jittered

independent

sudoku

cooperative

sudoku

cooperative

latin square

sudoku

cooperative

Hammersley

regular tiles sudoku tiles

Figure 16: Left two columns: using regular 4x4 tiles with 16 sample patterns. Right two columns: using 16x16 sudoku tiles with

16 sample patterns. Please see full resultion image in supplementary materials.

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

10 Boulos et al. / Interactive Distribution Ray Tracing

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Light Source Diameter

T
ri
a

n
g

le
 I

n
te

rs
e

c
ti
o

n
 T

e
s
ts

 p
e

r
S

h
a

d
o

w
 R

a
y

Figure 18: Number of triangle intersections for shadow rays

as luminaire diameter is increased from 0 to approximately

the scene box size.

demonstrates an approximately linear increase in the num-
ber of triangles intersected for each ray type with respect to
the aperture size.

5.2. Soft Shadows

Increasing the size of luminaires produces softer shadows,
but also spreads the ray origins for shadow rays (shadow
rays are shot from luminaires to hit points). While an in-
crease in aperture decreases the coherence of all ray types,
larger luminaires only affect shadow rays. It should be noted,
however, that despite this wide range of luminaire size the
number of primitives intersected by shadow rays does not
increase wildly (See Figure 18).

5.3. Reflection

Perfectly specular reflection, especially for planes, is highly
coherent. As the specular exponent decreases divergence
would be expected for reflection rays. We tested the diver-
gence of reflection rays by setting the Phong exponent for
the billiard balls between 32 and 4096. For reference, the
exponent used in the video is 2048. Figure 19 demonstrates
that coherence does not change as greatly as we would ex-
pect. However, the performance of reflection rays may be
negatively impacted by the motion blur of the billiard balls.

5.4. Motion Blur

Motion blur is the most interesting of the features as it relates
to ray coherence. Motion blur, like camera aperture, is able
to extend its influence past primary rays to both shadow rays
and reflection rays (See Figure 20). For these rays the impact
of motion blur is approximately a factor of two. It should
be noted that without motion blur, the reflection rays in the
scene are approximately as coherent as other types of rays.

500 1000 1500 2000 2500 3000 3500 4000
30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

Phong Exponent

T
ri
a

n
g

le
 I

n
te

rs
e

c
ti
o

n
 T

e
s
ts

 p
e

r
R

e
fl
e

c
ti
o

n
 R

a
y

Figure 19: Number of triangle intersections for reflection

rays as Phong exponent is increased from 32 to 4096 by dou-

bling.

0

5

10

15

20

25

30

35

Primary Rays Shadow Rays Reflection Rays Refraction Rays

T
ri
a

n
g

le
 I

n
te

rs
e

c
ti
o

n
 T

e
s
ts

 p
e

r
R

a
y

No blur

Blur

Figure 20: Number of triangle intersections for each ray

type both with and without motion blur.

5.5. Participating Media

The average impact of our dynamic volumes on rendering
performance is approximately a factor of two. The perfor-
mance varies depending on the portion of the view filled
by the volume and it’s density. Higher density volumes will
benefit from early ray termination, while low density vol-
umes may require full ray marching throuth the volume do-
main. The average number of volume ray march steps in both
scenes is approximately 200. Since the skylight model does
not require marching, it’s impact on rendering performance
is low; approximately ten percent reduction in framerate.

6. Conclusion

Interactive distribution ray tracing, including rich visual ef-
fects such as depth of field, soft shadows, glossy reflec-

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

Boulos et al. / Interactive Distribution Ray Tracing 11

tions, motion blur and participating media is available now
on high-end multicore systems. The main contributions of
our work are a novel tiling scheme that generates reasonable
animation quality at 16 samples per pixel, and a demonstra-
tion that a careful DRT implementation that groups rays into
packets based on ray type alone can derive almost the same
benefits from ray packets that Whitted-style ray tracers do.
By using an acceleration structure that does not rely on com-
mon origin, common sign, or other restrictions that are re-
quired by the features of DRT, we achieve high performance.
Currently our performance is limited to around 1-20 frames
per second (depending on the model and scene settings) at
resolutions of 5122 for 16 samples per pixel. Because multi-
core systems are becoming the de facto architecture, we hope
that an order of magnitude increase in performance will be
delivered by the parallelism from new, larger multi-core ar-
chitectures.

It is not clear whether our sampling techniques have
reached diminishing returns at low sampling densities. Bet-
ter tiling or QMC patterns might yield further image quality
benefits. In our system, we currently use a simple box filter
for reconstruction of samples. A higher order filter may pro-
duce better images. Similarly, sophisticated ray scheduling
based on more than just ray type may be able to improve
performance; however, this is certainly an area for future
work. We are interested in ambient occlusion and diffuse in-
terreflection as future extensions to this work. Diffuse inter-
reflection would likely require many more samples per pixel
than we take, but it seems that localized ambient occlusion
might be practical because the associated rays are coherent
in spatial extent if not direction.

We have not yet compared directly with the interleaved
sampling that employs incremental QMC sampling for mul-
tiple dimensions as used by Keller et al. [Kel04]. Their tech-
niques can implicitly provide coopertive sampling patterns
for shadows and reflection. We plan to perform an empirical
comparison with Keller et al.’s techniques.

We believe the most important open question is what ap-
plications would benefit from DRT. If DRT turns out to be
highly desirable in video games for example, there would be
incentive to design special purpose DRT hardware. If DRT
is desired by high-end applications, then our approach can
yield full screen fluid interactivity today given a more ex-
pensive machine. In the near future, we anticipate this per-
formance to be accessible at workstation-level pricetags.

Acknowledgements

This work was partially supported by NSF grant 03-06151
and the State of Utah Center of Excellence Program. The
first author was also supported by the Barry M. Goldwater
Scholarship. The last author was supported by the U.S. De-
partment of Energy through the Center for the Simulation of
Accidental Fires and Explosions under grant W-7405-ENG-
48.

References

[Coo86] COOK R. L.: Stochastic sampling in computer graph-
ics. ACM Transactions on Graphics 5, 1 (1986), 51–
72.

[CPC84] COOK R., PORTER T., CARPENTER L.: Distributed
Ray Tracing. Computer Graphics (Proceeding of SIG-

GRAPH 84) 18, 3 (1984), 137–144.

[Hay06] HAYES B.: Unwed numbers - the mathematics of su-
doku. American Scientist 94, 1 (2006).

[HH84] HECKBERT P. S., HANRAHAN P.: Beam tracing
polygonal objects. In Proceedings of SIGGRAPH

(1984), pp. 119–127.

[Kel04] KELLER A.: Myths of computer graphics. In Monte

Carlo and Quasi-Monte Carlo Methods, Talay D.,
Niederreiter H., (Eds.). 2004.

[KH84] KAJIYA J. T., HERZEN B. P. V.: Ray tracing vol-
ume densities. In Proceedings of SIGGRAPH (1984),
pp. 165–174.

[KH01] KELLER A., HEIDRICH W.: Interleaved Sampling.
Rendering Techniques (2001), 269–276. (Proceedings
of the 12th Eurographics Workshop on Rendering).

[KK02] KOLLIG T., KELLER A.: Efficient Multidimensional
Sampling. Computer Graphics Forum 21, 3 (2002),
557–563. (Proceedings of Eurographics 2002).

[Mit91] MITCHELL D. P.: Spectrally optimal sampling for
distributed ray tracing. In Proceedings of SIGGRAPH

(1991), pp. 157–164.

[MT97] MÖLLER T., TRUMBORE B.: Fast, minimum storage
ray triangle intersection. JGT 2, 1 (1997), 21–28.

[Pho75] PHONG B. T.: Illumination for computer generated
pictures. Commun. ACM 18, 6 (1975), 311–317.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-
level ray tracing algorithm. In (Proceedings of SIG-

GRAPH (2005), pp. 1176–1185.

[Sch93] SCHLICK C.: A customizable reflectance model for
everyday rendering. In Fourth Eurographics Workshop

on Rendering (1993), pp. 73–84.

[SM03] SHIRLEY P., MORLEY R. K.: Realistic Ray Tracing,
second ed. A K Peters, 2003. ISBN 1-56881-198-5.

[Tho91] THOMAS S. W.: Color dithering. In Graphics Gems

II. 1991, pp. 72–77.

[Wal04] WALD I.: Realtime Ray Tracing and Interactive

Global Illumination. PhD thesis, Saarland University,
2004.

[WBS06] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using bounding volume hierarchies.
ACM Transactions on Graphics (conditionally ac-

cepted, under revision) (2006).

[Whi80] WHITTED T.: An improved illumination model for
shaded display. CACM 23, 6 (1980), 343–349.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

12 Boulos et al. / Interactive Distribution Ray Tracing

S. G.: Ray tracing animated scenes using coherent
grid traversal. ACM Transactions on Graphics (to

appear) (2006). (Proceedings of ACM SIGGRAPH
2006).

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER

M.: Interactive rendering with coherent ray tracing.
In Proceedings of Eurographics (2001), pp. 153–164.

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-022

