
(sketches102)

Interactive Ray Tracing of Point-based Models

Ingo Wald and Hans-Peter Seidel, MPI Informatik, Saarbrücken, Germany

Figure 1: Interactive ray tracing of point-based scenes: a) ”Iphigenia” head, each point represented by a disc. b) The splats blendet to an
implicit function and intersected using an acceleration structure (6.8 f ps@512×512 pixels). c) The full model (15.9 f ps@512×512 pixels).
d) A complex scene of 24 Iphigenias (24 million points) with phong shader and shadows (∼ 2 f ps@640×480 pixels). e) Iphigenia, displayed
interactively with a (precomputed) global illumination solution (∼ 4 f ps@400×600 pixels). All frame rates measured on a single PC.

1 Introduction

In recent years, point-based methods have gained significant in-
terest, as their simplicity and independence of connectivity make
them a simple and powerful tool in both modelling and rendering.
Still, their use for high-quality and photorealistic rendering is still
in its infancy, in particular for interactive applications. This paper
sketches new developments in interactively ray tracing point based
models, including both complex models and photorealistic shading.

2 System Overview

Our method consists of several, inter-playing ingredients:

Part I: Implicit Surface Model. Given a model with only (sin-
gular) points and normals, computing an intersection with a ray re-
quires to either traverse “thick” rays or to construct a non-singular
surface out of those points. We use the implicit surface model pro-
posed by [Adamson and Alexa 2003]: Each pointpi is equipped
with a spherical supportwi(x) (with radiusr i). An implicit func-
tion f (x) = 0 is then defined asf (x) = (x− P̄(x))N̄(x), where

P̄(x) = ∑i wi(x)pi

∑i wi(x)
and N̄(x) = ∑i wi(x)ni

∑i wi(x)
are the weighted averages

of the positions resp. normals of all points(pi ,ni , r i) overlappingx.

Part II: Choosing optimal “Splat” Radii. Instead of having
the user decide on the “optimal” splat radius, we used the method
by [Wu and Kobbelt 2004]. This method computes a radius for
each point such that a) the model’s surface is completely covered,
and b) the radii are minimized (see Figure 1a). This not only avoids
holes in the model, but additionally minimizes the overlap of dif-
ferent splat supports, which is crucial for fast surface intersection.

Part III: Fast Surface Intersection. Given an implicit surface
model, we compute the ray-surface intersection using a two-step
method: First, we subdivide space using a kd-tree, and determine
whether a voxel may contain the surface at all. For those voxel-s,
we store a list of all splats whose support overlaps the given voxel.

Once a ray reaches a voxel, it has to be intersected (only) with
the splats contained in that voxel. Instead of an iterative proce-
dure (like Newton-iteration), regularly sampling the ray interval in-
side the voxel has shown to work best: Taking N samplest0, t1, ...
along the ray, there is a surface intersection if there is ani with
sign(f (ti)) 6= sign(f (ti+1)), and the hitpoint is linearly interpolated
betweenti andti+1 depending onf (ti) and f (ti+1), respectively.

In practice, we use a fixed numberN of sample points, which allows
for computingf (t) for all ti in parallel using a very fast data-parallel
SIMD implementation. As the kd-tree already encloses the surface
quite tightly, even a smallN = 4 in practice reaches good results.

Part IV: Efficient Ray Traversal For building the kd-tree, we
use a kd-tree construction method that is specifically targeted to-
wards point-based methods, and which aims at enclosing the sur-
face as tightly as possible. This results – almost independent of
model size – in less than two ray-surface intersection per ray.

Traversal steps aresignificantlycheaper than even the highly opti-
mized voxel intersection method described above, and total render-
ing cost is usually still dominated by the surface intersection cost.
As the latter is almost constant, the total rendering cost depends
only very weakly on model complexity, yielding comparable per-
formance for both a 32,000-point version and the 1-million-point
version of the Iphigenia model.

3 Results and Conclusion

Figures 1b+c show two views of the Iphigenia model (1 million
points) with pure ray casting, running at 4.5 and 8.7 frames per sec-
ond (at 512×512 pixels), respectively. As a stress test, Figure 1d
shows a scene with 24 such statues in various poses, totalling 24
million points. Even with additional shadows, we achieve interac-
tive performance of 2.1 frames per second at 640×480 pixels. All
experiments are performed on asingledual-2.4GHz Opteron PC.

Finally, Figure 1e shows the Iphigenia model with a specially de-
signed method that precomputes global illumination in a direction-
ally dependent way. Using this method we can render this model
with direct and indirect illumination, shadows, and highlights at∼ 4
frames per second at 400×600 pixels.

In summary, we have sketched a complete interactive point-based
ray tracing framework that – on a single PC – allows for interac-
tive ray tracing performance even for highly complex point-based
models and sophisticated ray traced effects.

References

ADAMSON, A., AND ALEXA , M. 2003. Ray tracing point set surfaces. In
SMI ’03: Proceedings of the Shape Modeling International 2003, IEEE
Computer Society, Washington, DC, USA, 272.

WU, J., AND KOBBELT, L. 2004. Optimized sub-sampling of point sets
for surface splatting. InProceedings of Eurographics 2004, 643–652.

1

