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Faster Isosurface Ray Tracing
using Implicit KD-Trees

Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp Slusallek and Hans-Peter Seidel

Abstract — The visualization of high-quality isosurfaces at interactive rates is an important tool in many simulation and visualization
applications. Today, isosurfaces are most often visualized by extracting a polygonal approximation that is then rendered via graphics
hardware, or by using a special variant of pre-integrated volume rendering. However, these approaches have a number of limitations
in terms of quality of the isosurface, lack of performance for complex data sets, or supported shading models.
An alternative isosurface rendering method that does not suffer from these limitations is to directly ray trace the isosurface. However,
this approach has been much too slow for interactive applications unless massively parallel shared-memory supercomputers have
been used. In this paper, we implement interactive isosurface ray tracing on commodity desktop PCs by building on recent advances
in real-time ray tracing of polygonal scenes, and using those to improve isosurface ray tracing performance as well. The high
performance and scalability of our approach will be demonstrated with several practical examples, including the visualization of
highly complex isosurface data sets, the interactive rendering of hybrid polygonal/isosurface scenes including high-quality ray
traced shading effects, and even interactive global illumination on isosurfaces.

Index Terms — Ray tracing, real-time rendering, isosurface, visualization, global illumination
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1 INTRODUCTION

MANY disciplines require the interactive or real-
time visualization of three-dimensional scalar

fields ρiso = ρ(x,y,z), which are most commonly given as
3D rectilinear grids of discrete density values ρi jk . Such
data sets typically originate from measurement equip-
ment such as CT and MRI scanners, or from simulations
like computational fluid dynamics (CFD).

One particularly important method for visualizing such
data sets is to display one or more isosurfaces of certain
density values, i.e. the surface ρ(x,y,z) = ρiso. In particu-
lar by interactively browsing through the range of pos-
sible isovalues the user can gain a good understanding
of the three-dimensional structure of the data set.

Traditionally, isosurfaces of such data sets have been
displayed by first extracting a polygonal approximation
of the isosurface – usually via a variant of the marching
cubes (MC) algorithm [1], [2] – and then rendering
the resulting polygons using graphics hardware. This
approach however has several drawbacks: First, even
moderately complex data sets result in millions of poly-
gons, which are still challenging for current rasterization
hardware; large-scale data sets then easily result in a
prohibitive amount of triangles. For example, a single
time step of the LLNL volume data set [3] results in
roughly half a billion triangles after tessellation.

Second, the polygonal approximation is only valid for
one single isovalue, and has to be regenerated every time
the user changes the isovalue. Since extracting the iso-
surface is quite costly for non-trivial data sets, the whole
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procedure is problematic for interactive applications in
which the users tend to ’browse’ the data by modifying
the isovalue interactively.

Finally, the set of visual effects that can be simulated
with the standard approaches is limited. In particular, it
is not easily possible to display an isosurface with ad-
vanced lighting effects such as smooth shadows or global
illumination. This is quite unfortunate, as such global
effects add important visual cues that are important for
a good understanding of the data set (see Figure 1).

1.1 Isosurface Ray Tracing

An alternative to isosurface extraction is to directly
compute the isosurface, either by some form of pre-
integrated direct volume rendering [4], [5], or by ray
tracing, i.e., by computing the intersection of rays with
the implicit function ρ(x,y,z) = ρiso. Due to the high
computational cost, isosurface ray tracing was first re-
alized on supercomputers by Parker et al. [6], [7], but
is nowadays also feasible on modern GPUs as well [8].
Compared to extracting an explicit tessellation of the
isosurface, direct ray tracing has several advantages:
First of all, ray tracing directly supports global effects
like shadows, reflections, or global illumination, and can
be used for realizing any desired shading effect.

Second, ray tracing does not rely on a polygonal approx-
imation of the density function, as it computes an inter-
section with the tri-linearly interpolated sample points
themselves. Thus, compared to MC-style algorithms the
surface is always smooth, can be a highly curved cubic
function in each voxel (as compared to a set of flat
polygons), none of the topological ambiguities of MC
can appear, and even higher-order interpolations with
improved quality features are possible [9].
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Fig. 1. Impact of ray traced lighting effects. a.) Bonsai model in a simplified Cornell box, with direct ray casting only (corresponding to an
isosurface extracted via Marching Cubes and rendered via graphics hardware). b.) Ray traced, with (hard) shadows from two point lights.
c.) With smooth shadows from an area light source, d.) including indirect illumination from the surrounding walls. As can be seen, shadows
and global effects add important visual cues that can significantly improve the impression of shape and depth of a model.

Third, ray tracing scales nicely with scene complexity [7],
and thus can efficiently cope with the currently ob-
servable explosion in data set complexity. Additionally,
software ray tracing is not restricted by the the size of
GPU memory, but can rather make use of the usually
much larger main memory of the host computer(s).

Finally, not using a polygonal approximation avoids
any need for extracting a new approximation every
time the isovalue changes, and thus allows for arbitrary
modifications to the isovalue at any time.

Despite all these advantages, ray tracing is also quite
costly, and is commonly considered too slow for inter-
active use except on massively parallel shared-memory
supercomputers [6], [7]. The massive compute power of
modern GPUs now also allows for interactive isosurface
ray casting performance on commodity GPUs [8], [10],
but these approaches are not yet flexible enough for full-
featured ray tracing.

With the recent advances in both ray tracing tech-
nology [11], [12] and CPU compute power, real-time
performance for full-featured ray tracing has recently
become possible also on commodity PCs. However, these
advancements in ray tracing performance so far have
been limited to polygonal ray tracing. In this paper, we
present a combination of algorithms and data structures
that allow for interactive isosurface ray tracing even
on commodity CPUs. Being integrated into the OpenRT
real-time ray tracing engine [12], our approach allows
for interactive isosurface and polygonal rendering on
individual PCs or small PC clusters, including support
for secondary lighting effects, global illumination, and
efficient support for highly complex data sets.

2 PREVIOUS WORK

For visualizing 3D scalar data sets, there are two fun-
damentally different approaches; direct volume render-
ing [13], [14] on one side, and isosurfacing on the other.
For the remainder of this paper, we will not consider
direct volume rendering, but instead only concentrate
on visualizing isosurfaces on 3D rectilinear grids.

The interactive visualization of isosurfaces was first

achieved by the seminal work of Lorensen et al.’s
“Marching Cubes” algorithm [1]. Since then, their ap-
proach has been extended in many forms, e.g., in the
better handling of topological ambiguities [2], higher
efficiency for larger data sets [15], [16], view-dependent
methods [17], and adaptive or multi-resolution meth-
ods [18]. Even though all these methods allow for han-
dling larger data sets, they still have to deal with cracks
and reconstruction artifacts, and are usually still far from
interactive for high-resolution data sets.

One way of avoiding to explicitly extract the isosurface
is to exploit novel features of modern GPUs (2D and 3D
texturing, as well as programmable shading) using a spe-
cial form of pre-integrated direct volume rendering [5],
[14], [10]. Applying compression [19] and distributed
rendering across GPU clusters [20] also allows for vi-
sualizing large or time-dependent data set at interactive
rates. Nevertheless, the interactive visualization of large
data sets, in particular with advanced shading effects, is
still problematic with standard approaches.

Interactive Ray Tracing

Another way of avoiding an explicit isosurface extraction
is to directly ray trace the isosurface. In particular for
interactive applications, this approach has first been
followed by Parker et al. [6], who exploited the inherent
parallelism of ray tracing to achieve interactive perfor-
mance even for highly complex data sets. Additionally,
their system allowed for rendering multiple isosurfaces
at the same time, combination with polygonal geometry,
and high-quality shading effects including shadows and
transparency. Recently, DeMarle et al. [21], [22] have
ported this system to also run on PC clusters.

In the related field of interactive polygonal ray tracing,
Wald et al. [23], [12] have explicitly targeted commodity
CPUs, which nowadays offer floating point performance
of several GigaFlops per CPU. However, in order to get
but close to this peak performance, one has to explicitly
optimize for the architectural strengths and limitations
of such CPUs. In particular, this includes optimizing for
memory and caching effects and to exploit SIMD exten-
sions such as Intel’s SSE, which is now also available on
AMDs 64-bit Opteron CPUs [24], [25], [12].
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3 EFFICIENT ISOSURFACE RAY TRACING US-
ING IMPLICIT KD-TREES

In this paper, we investigate how the ideas of “Coherent
Ray Tracing” for polygonal ray tracing can also be
applied to isosurface data sets. In particular, this requires

• an acceleration data structure that adapts to the data
set and minimizes the number of operations to be
performed, if possible in a hierarchical way,

• efficient and CPU-friendly algorithms, if possible
using processor-specific (SIMD) extensions, and

• special care for a cache- and memory-friendly data-
layout and implementation.

In Coherent Ray Tracing, SIMD extensions could be
successfully exploited by traversing packets of rays in
a parallel. This however can be realized efficiently only
with kd-trees, which require only one binary decision
per ray in each traversal step. For grid-like data struc-
tures – which seem much more intuitive for volumetric
data sets – this approach cannot easily be realized.

3.1 Kd-Trees for Isosurface Ray Tracing

Kd-trees are well-known for representing polygonal
scenes, where they often outperform other data struc-
tures, as they can much better adapt to the scene’s
geometry [26]. This is particularly the case for scenes
with highly varying primitive density, as these usually
contain large regions of empty space that a well-built
kd-tree can traverse with very few traversal steps.

For highly regular scenes such as a 3D volume grid
of density values however these advantages cannot be
exploited, and the large amount of inner nodes in a kd-
tree is usually detrimental in both memory overhead and
number of traversal steps. Thus, grid-like data structures
are usually better traversed from cell to cell with a voxel
walking algorithm such as by Amanatides et al. [27]. For
example, just finding the starting voxel of a ray incurs
logarithmic cost for a kd-tree, while in a grid it can be
found in constant time. Similarly, regular data sets are
also badly suited for the afore-mentioned data-parallel
packet traversal, as all of the voxels in a regular data
set are small. This makes it likely that the rays in a
packet diverge and traverse/intersect different voxels,
thus offering little traversal coherency.

While these arguments are undoubtedly true for regular
(volume) data sets, they do not necessarily hold for the
specific task of rendering isosurfaces defined by such a
volume data set: While the set of data points in fact is a
regular 3D grid, the isosurface defined by that data set is
only located within a small subset of all cells. These cells
– which in the following we will call “boundary cells” –
again share many properties of primitives in polygonal
ray tracing: They are irregularly distributed, sparse, and
are enclosed by large regions of “empty space”. This
once again is the environment for which a kd-tree is
ideally suited (also see Figure 2).

Fig. 2. The small, regular voxels in a regular volume data set offer few
potential for exploiting the advantages of kd-trees and packet traversal,
as rays have to perform many traversal steps, and diverge quickly.
However, considering only the boundary cells of an isovalue, a kd-tree
allows for quickly skipping large regions of space, and SIMD packet
traversal can still be applied.

3.2 The Implicit Kd-Tree

This only leaves the question how to best use a kd-tree
for representing the isosurface. If one were willing to
restrict oneself to rendering a fixed isovalue only, one
could identify all boundary cells in advance, build a kd-
tree only over those “primitives”, and expect to reap all
the benefits of kd-trees also for isosurface ray tracing.
Unfortunately this would no longer allow for interac-
tively browsing the isovalue. Instead, we build a kd-tree
that contains all possible isosurfaces at the same time,
annotate each kd-tree node with information on what
isosurfaces it contains, and perform the classification
implicitly during traversal. Knowing which isovalues are
contained within a subtree allows to easily skip entire
subtrees of cells that do not contain the requires isovalue,
and thus – implicitly – traverse a kd-tree only containing
boundary cells of the current isovalue.

In order to realize this “implicit kd-tree”, only two ingre-
dients are required: First, a kd-tree in which each node
maintains information on what isosurfaces are contained
within its subtree. Second, a modified traversal algo-
rithm that traverses a kd-tree, but implicitly classifies
each visited node for whether it can actually contain the
queried isovalue, and skips it if that is not the case. As
the tree still encodes the whole data set, the isovalue can
still be changed on the fly. As a side effect, this approach
also allows for searching for several different isosurfaces
concurrently within the same traversal operation, as
one can trivially base the culling operation on multiple
isovalues at the same time. This is particularly important
for scenes in which multiple isosurfaces – e.g., both skin
and bone – are of equal interest (see Figure 3).

Fig. 3. Implicitly culling non-contributing branches of the implicit
kd-tree during traversal also allows for rendering multiple isosurfaces
at the same time. Left: The bonsai tree, with a green isosurface for
the leaves, and a brown one for the trunk. Right: The Visible Female’s
head, with bones shining through a semitransparent skin surface.
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3.3 Building the Implicit Kd-Tree

Building the implicit kd-tree in fact is quite easy. First,
we build a kd-tree over all the voxels of the entire
data set. This is done in a way that a kd-tree split
plane always coincides with the cell boundaries of the
volume cells, yielding a one-to-one mapping between the
volume’s cells and the voxels of the kd-tree. Currently,
we always split the volume at the cell boundary that is
closest in the center of the largest dimension.

Second, we annotate each cell with the range of iso-
surfaces contained within its subtree. In fact, this can
be shown to simply be the minimum and maximum
of all the densities contained within the subtree, which
can be computed recursively: Each leaf node stores the
min/max values of its corner densities, and each inner
node stores the min/max values of its children.

Note that this data structure is similar to the one used
by Wilhelm and van Gelder [28], except for that we use
a kd-tree instead of an octree, and for that we use it for
efficient ray traversal instead of for isosurface extraction.

4 EFFICIENT TRAVERSAL AND INTERSECTION

Once we have defined our basic data structure and
overall approach, we need to take a closer look at the
core algorithms, namely ray traversal and intersection.

4.1 Single-Ray Traversal

The data structure outlined above is – except for the
min/max values stored per node – very similar to
the polygonal case. Thus, the already-existent polygonal
traversal code requires only minimal modifications: Dur-
ing each traversal step we first test whether the current
isovalue lies in the min/max range specified by the cur-
rent node. If this is not the case, we immediately cull this
subtree, and jump to the next one on the traversal stack.
Otherwise, we perform exactly the same operations as
in the polygonal case: Compute the distance td to the
splitting plane, and compare the current ray segment
[tnear, t f ar] for whether it a) overlaps the node’s split plane
(tnear < td < t f ar); b) lies entirely in front of it (t f ar ≤ td), or
c) entirely behind it (tnear≥ td). Just as in the polygonal
case we then traverse both sides, front side only, or back
side only, respectively, and update tnear, t f ar accordingly
for the next traversal step (see e.g. [12], [26]).

The culling can be realized by two simple integer-
compares (“ρiso ≥ ρmin(node)” and “ρiso ≤ ρmax(node)”)
and one additional branch in each traversal step. Al-
though these tests have to be performed in every traver-
sal step, they are still quite affordable (see below).

4.2 Voxel Intersection

While traversing the data structure is almost the same
as in polygonal ray tracing, when reaching a voxel the

situation changes. While in polygonal ray tracing a voxel
contains a list of triangle IDs, in isosurface ray tracing
each voxel contains exactly one “primitive”, i.e., a cell
with a density function ρ(x,y,z) that is trilinearly inter-
polated among its eight voxel corner densities ρi jk , i, j,k∈
0,1. As this ray-voxel intersection is considerably more
costly than a ray-triangle intersection we have to take
special care to implement this operation efficiently.

Our system supports several different ray-voxel in-
tersection algorithms: linear interpolation, Schwarzes’s
method, Neubauer iteration, and the correct root finding
method by Marmitt et al. These methods are described
in detail in a related publication [29], and will not be
discussed here in detail.

In practice, the performance impact of the voxel intersec-
tion is usually less than 10%. Though each intersection
is much more costly than a traversal step, traversals are
much more common, and usually dominate the time
spent on voxel intersection. Even for a closeup onto the
Bonsai data set, profiling revealed only 9% of compute
time spent on the voxel intersection, 67% on traversal,
and the rest on shading and normal calculation.

4.3 SIMD Traversal

The same argument as for single-ray traversal holds
similarly for SIMD packet traversal: Since we eventually
have a kd-tree, we can again take the ideas of Coherent
Ray Tracing [23], [12], and also traverse packets of rays
through the kd-tree in SIMD-style.

Again, the existing code for the traversal loop (from [23])
could be mostly reused, with the same small modifica-
tions for culling as in the single-ray traversal step. In fact,
the culling overhead for the SSE version is even less than
for the single-ray version, as the culling overhead can be
amortized over all rays in the packet.

As already discussed in the Coherent Ray Tracing pa-
per [23], the efficiency of the SIMD packet traversal code
to a large degree depends on the average utilization of
the SIMD units, i.e., on the average number of rays that
are active in a packet. As the voxels of a volume data
set are often quite small in comparison to the screen

Screen Res. 512x512 1024x1024
Data Set Res. “C” SIMD Ratio “C” SIMD Ratio
Aneurism 2563 19.7 5.73 3.41 78.9 21.5 3.66
Bonsai 2563 14.7 4.73 3.10 58.7 16.8 3.49
ML 323 7.93 2.17 3.64 31.7 8.33 3.81
ML 1283 11.8 3.73 3.15 47.2 13.4 3.51
ML 5123 15.5 6.39 2.42 61.9 2.71 2.95
Female 5122 ∗1734 5.57 2.82 1.97 22.3 9.56 2.33
” (zoom) 5122 ∗1734 8.33 2.08 3.99 33.3 8.36 3.99

LLNL 20482 ∗1920 15.9 9.47 1.68 65.5 31.9 1.99
” (zoom) 20482 ∗1920 13.3 3.32 4.00 53.2 13.3 4.00

Tab. I. Number of traversal steps (in millions) for both single-ray
and SIMD traversal, for various scenes and resolutions. While SIMD
effiency is quite low (down to an average of 1.99 active rays out of
4 rays) for distant views of high-resolution data sets, larger screen
resolutions or zooms into an object result in a reduction of 3.5-4.
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Fig. 4. The data sets used for our experiments: The bonsai tree (2563), the Aneurism (2563), various resolutions of the synthetic Marschner-Lobb
data set (from 323 to 10243), the Visible Female (5122×1734), and the Lawrence-Livermore (LLNL) Richtmyer-Meshkov simulation (20482×1920)
These data sets have been carefully selected to cover a wide range of different data, from low (ML) to high surface frequency (bonsai, LLNL),
from medical (aneurism and female) to scientific data (LLNL), and from very small (ML32) to extremely large data sets (female, LLNL).

resolution one could naı̈vely expect the SIMD efficiency
to be small as well, as different rays may traverse
different voxels. Using a kd-tree however most of the
traversal operations are performed in the upper levels
of the kd-tree, for which the rays still stay together (see
Table I). As expected, the SIMD traversal suffers from
a lack of coherence for distant views of high-resolution
data sets, in particular for low screen resolutions. For
less extreme settings however, the SIMD code allows for
reducing the number of traversal steps by up to a factor
of 4, and in practice works quite well.

4.4 SIMD Voxel Intersection

After SIMD traversal allows for significantly reducing
the number of traversal steps, it would be highly benefi-
cial to use a SIMD variant for voxel intersections as well.
Due to the high computational density of the ray-voxel
intersection, a SIMD variant that intersects a packet of
four rays in parallel can be implemented quite efficiently,
and achieves good speedups [29]. Nonetheless, there are
two (related) issues that at first made the SIMD voxel
intersection problematic in practice.

First, the SIMD efficiency for voxel intersection is usually
much lower than for packet traversal, as – in contrast
to traversal – voxel intersection is always performed at
the level where the rays are most incoherent. Therefore,
“intersection coherence” is usually much lower than
“voxel coherence”, and often very few rays are actually
still active in a ray packet when reaching the leaf cells
(see Table II). Unfortunately SIMD code often bears some
overhead as compared to a single-ray variant, which
only pays off if the SIMD code can be used for many
rays in parallel. If however only a single ray is active,
any potential overhead of the SIMD implementation may
even result in a reduction of the overall performance.

Second, upon successful intersection a large number of
values have to be stored to update the current hitpoint
information: hit flag, hit distance, local cell coordinates,
and normal – for a total of 8 values per ray (128 bytes
total). As we may store these values only for those rays
that actually had an intersection, each of these stores
in SIMD mode has to be realized with several masking
operations to implement “conditional moves” [25]. These
turned out to consume a significant portion of compute
time in the original implementation [29], and led to
significant overhead, which – combined with the low in-

tersection coherence described above – made the original
implementation quite problematic for certain settings.

Therefore, we have split the voxel intersection code
into its computational core and into a result storage
phase. The computational core is implemented entirely
in SIMD mode using SSE “intrinsics” [30]. Due to the
high computational density of this code, combined with
the high floating point efficiency of intrinsics-code, this
part of the code never gets slower than the single-ray
“C” code, and thus can be safely used even if only a
low degree of coherence is present.

The high cost of the result storage phase can be sig-
nificantly reduced as well. Even if the overall SIMD
efficiency is quite low, it often happens that either none,
or all four of the rays had an intersection. Though
checking these special cases separately is very much
unlike typical SIMD coding, it significantly reduces the
amount of the costly conditional moves. In combination,
these two measures make the current SIMD intersection
code well applicable in practice.

5 EFFICIENT MEMORY REPRESENTATION

So far, we have only discussed the structure of our kd-
tree on an abstract level, but have not yet discussed
its memory-efficient realization. In a naı̈ve implementa-
tion, one would simply use the same optimized node
layout as in [23], and simply add the two min/max
values (either 8-bit or 16-bit unsigned ints) to each node.
Assuming a default of 16-bit density values this naı̈ve
approach however requires 12 bytes for each node: 8

Screen Res. 512x512 1024x1024
Data Set Res. “C” SIMD Ratio “C” SIMD Ratio
Aneurism 2563 307 186 1.65 1229 545 2.25
Bonsai 2563 544 360 1.51 2184 1027 2.12
ML 323 215 79 3.20 3451 927 3.55
ML 1283 786 381 2.06 786 381 2.06
ML 5123 680 646 1.05 2718 1863 1.46
Female 5122 ∗1734 179 177 1.01 716 708 1.01
” (zoom) 5122 ∗1734 384 98 3.99 1535 390 3.99

LLNL 20482 ∗1920 631 632 0.98 2523 2520 1.02
” (zoom) 20482 ∗1920 907 228 3.98 3630 909 3.99

Tab. II. Number of surface intersection tests (in thousands) for both
single-ray and SIMD traversal code, for various scenes and screen
resolutions. The “ratio” column reveals the average number of active
rays in a 4-ray packet. Due to the loss of coherency at the leaves, for
extreme settings the number of intersections can even be slightly higher
than in the single-ray code. For less extreme setting however the SIMD
code can still achieve reasonable reductions in the the number of voxel
intersections computed.
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bytes for specifying the plane and pointers, plus 4 bytes
for the min/max values. As a kd-tree of N leaves has an
additional N−1 inner nodes, for N 16-bit data points we
require (2N−1)×12 bytes for the kd-tree. At 2 bytes per
input data value, the size of the acceleration structure
would then be 12 times the size of the input data.
Obviously, this 12-fold memory overhead is too high
except for small data sets. For 8-bit values, the relative
overhead would be even worse (20 bytes per 1 byte input
data). This of course is not practical.

5.1 Reducing Node Storage

Fortunately the memory overhead can be significantly
reduced: If we assume for a moment that the number
of voxels in each dimension is a power of two (we will
relax that constraint below), the resulting kd-tree would
be a balanced binary tree, i.e., all its leaves are on the
same level. In a balanced binary tree however it is easy
to show that all the nodes in the same level l will use
the same splitting dimension dl . Therefore, we do not
have to store that value once for each node, but rather
can store a single dimension-value per level.

Similarly, we do not have to store the split plane position
in each node, either: If level l splits Rx,l ×Ry,l ×Rz,l voxels
in the dl = x dimension, then there are only Rx,l − 1
possible split locations, and each node (i, j,k, l)1 will use
the split plane x = xi,l . Thus, instead of storing a split in
each node, we only have to store Rx,l floats per level l .
The same argument holds for dl = y and dl = z.

Finally, having a balanced tree allows for performing
all address computations without pointers: The address
of node (i, j,k, l) is basel + (x + Rx,l (y + Ry,l )), and the
children of (i, j,k, l) (for splits in d = x dimension) will
be (2i, j,k, l +1) and (2i +1, j,k, l +1), respectively.

As a side effect of not storing any pointers, this approach
will work unmodified (and even without any additional
memory) also on a 64-bit architecture, and can thus
handle extremely large data sets. In summary, we can get
rid of all node description data except for the min/max
values, thus save two thirds of our kd-tree data, and
reduce the memory overhead from 12 to 4 (respectively
from 16 to 4 for 8-bit densities).

5.2 Getting Rid of Leaves

Additionally to these savings, we can avoid storing the
min/max values for leaf nodes as well, and instead
compute the leaf’s min/max values on the fly from the
cell’s corner densities. This on the fly computation of
the leaves is quite tolerable, as min/max operations can
be implemented quite efficiently with both C Code and
SIMD extensions. Furthermore, these min/max opera-
tions have to be performed only for leaf traversals, which

1(i, j,k, l) denotes the node (i, j,k) in level l .

are much less common than inner node traversals. Fi-
nally, as our min/max values allow for effienctly culling
non-boundary cells, almost all visited leaves also require
a ray/voxel intersection, whose cost totally dominates
the cheap min/max computations. As in a binary tree
half of all nodes are leaves, getting rid of the leaves
allows for reducing our memory requirements by an-
other factor of two, reducing the total overhead from 12
(respectively 20 for 8-bit values) to a mere 2. Of course,
a memory overhead of two is still significant, in par-
ticular when compared to the 0.5% overhead achieved
by Parker et al [7]. Nonetheless, we believe a factor of
two to be quite tolerable already, in particular as our
hierarchical traversal scheme touches only a fraction of
the overall data.

The memory overhead could be further reduced by
discretizing the min/max values to, e.g., 4 bits only. So
far however this compression scheme has not been inves-
tigated in full detail, and is not used in our framework.

5.3 Relaxing the “power-of-two” Constraint

As mentioned before, our memory reduction scheme
requires that each level of the tree has 2i cells, i.e. that
the original data set has a resolution of 2i + 1 in each
dimension. One simple method of making arbitrary data
sets comply to this constraint would be to “pad” them
to a suitable resolution.

Instead, a better solution is to imagine that all nodes were
embedded in a larger, virtual grid of a suitable size that
exceeds the scene’s original bounding box of [0..1]3, and
to build the kd-tree over that virtual grid (see Figure 5).

By properly assigning the split-plane positions, we can
make sure that all virtual nodes lie outside the “real”
scene’s bounding box of [0..1]3. As the kd-tree traversal
code always first clips the ray to that bounding box
(see [12]), we know that rays will never be traversed
outside that box, and thus can guarantee that no ray will
ever touch any of these virtual nodes. As such, we do not
have to store them, either. Obviously, the same argument
also holds for nodes on inner levels as well.

All that has to be done to use this scheme for a data set
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Fig. 5. Using “virtual” nodes to relax the power-of-two constraint:
This example shows a 3x5 data set embedded in a virtual 4x8 grid with
a balanced kd-tree. By cleverly choosing the split plane positions we
can make sure that virtual voxels lie outside the scene bounds [0..1]2,
and thus will never be traversed by a ray. Thus, these nodes do not
have to be stored, and thus do not consume any memory, either.
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of Rx×Ry×Rz cells is to find R′x,y,z = min{2i |Rx,y,z≤ 2i}, and
just build the kd-tree over this virtually padded volume
R′x×R′y×R′z, while still doing the address computations
and memory allocation with the (unpadded) original
resolutions of Rx, Ry, and Rz.

Using our compression scheme, we can reduce the mem-
ory overhead of our kd-tree from 12–20 to a mere 2 (see
Table III), independent of the data set’s resolution. This
has shown to be quite tolerable for being able to use our
fast, kd-tree based algorithms.

Slim
Scene Data Raw Fat w Leaves w/o Leaves

Bits Data Mem Mem Ratio Mem Ratio
Bonsai 8 16MB 316MB 64MB 5 32MB 10
Aneurism 8 16MB 316MB 64MB 5 32MB 10
ML 323 16 65KB 680KB 220KB 3 110KB 6
ML 1283 16 4MB 46MB 15MB 3 7.8MB 6
ML 5123 16 256MB 3GB 1GB 3 509MB 6
Female 12(16) 900MB – 3.4GB – 1.7GB –
LLNL 8 8GB – 36GB – 18GB –

Tab. III. Memory savings of the compressed (“slim”) vs. the naı̈ve
(“fat”) implementation. The slim representation can achieve memory
reductions of up to a factor of 10. Note that both the female and LLNL
data sets cannot be rendered at all with the naı̈ve representation, as
the address bits in the fat node layout do not suffice for addressing as
large data sets. The slim variant does not use any pointers at all, and
thus can be used for arbitrarily sized data sets.

5.4 Traversal Overhead of the Compressed Kd-Tree

Unfortunately, such significant memory savings rarely
come for free: Whereas the uncompressed “fat” vari-
ant can use almost exactly the same traversal code as
the original implementation [23], the compressed “slim”
variant requires additional operations in each traversal
step for the address computations. In particular, it re-
quires tracking and updating the four (i, j,k, l) indices of
the current node, as well as several integer multiplica-
tions and additions for computing the childrens’ address.
Additionally, tracking a voxel by four indices instead of
only one address requires additional stack operations.
As these additional operations have to be performed for
each traversal step, they can have a notable impact on
total rendering performance.

As can be seen in Table IV, the slim variant shows an
overhead of roughly 40 to 60 percent as compared to the
fat variant. As expected, the overhead is slightly less for
the SIMD code, as the latter allows for amortizing ad-
dress computation overhead over all rays in the packet.

Overall, an overhead of at most 68 percent is quite a
reasonable price for a memory reduction by a factor of

Scene C SIMD
Fat Slim Overhead Fat Slim Overhead

Aneurism 1.57 0.99 1.59 3.44 2.24 1.54
Bonsai 1.79 1.14 1.57 2.91 2.1 1.39
ML 323 2.47 1.47 1.68 4.92 3.41 1.44
ML 1283 1.86 1.14 1.63 2.93 2.14 1.37
ML 5123 1.30 0.91 1.43 1.62 1.24 1.31

Tab. IV. Performance (in fps) of the compressed (“slim”) vs. the
naı̈ve (“fat”) kd-tree, for both single rays and SIMD code, measured at
512×512pixels. Larger scenes (such as female and LLNL) could not be
rendered with the fat kd-tree, due to too high memory requirements.

Fig. 6. Ray tracing in a hybrid polygonal/isosurface scene, showing
the “bonsai” isosurface data set in the polygonal “office” scene. Note
how shadows and reflections are computed correctly between both
isosurfaces and polygons. a.) Overview. b.) Zoom onto the bonsai
tree. On a single PC, these scenes render at 0.9 and 1.4 fps including
shadows and reflections at 640×480 pixel, and higher frame rates can
be achieved by using the parallelization features of OpenRT.

up to 10. In particular for large models such as the visible
female or the LLNL data set, the slim representation
is the only reasonable alternative, as the high memory
requirements of these scenes did not allow for rendering
using the fat node layout at all. Therefore, we usually use
the slim variant, except for very small data sets.

6 INTEGRATION INTO THE OPENRT ENGINE

Using similar algorithms and data structures as the orig-
inal coherent ray tracing system, the implicit kd-tree can
be seamlessly integrated into the RTRT/OpenRT frame-
work [12]: In order to support dynamically changing
scenes, the OpenRT system uses a two-level hierarchy
in which the lower levels of the hierarchy represent
polygonal meshes, which have then been efficiently or-
ganized in an upper-level kd-tree [12]. This two-level
structure has been modified to also support isosurface
“objects” in the lower hierarchy level. Most core data
structures (e.g. ray, hit info, shader and scene access)
are shared between the polygonal and the isosurface
part. Similarly, both parts share exactly the same external
interface, e.g. for shooting secondary rays. This allowed
the integration to be minimally intrusive, and most
parts of the overall system (e.g., shaders and application
frontend) do not know about different object types at all.

Obviously, a tight integration implies that all aspects of
the OpenRT framework continue to function as before:
Picking, parallelization, indirect effects like shadows and
reflections, occlusion culling and early ray termination,
all kinds of shaders (including even global illumination)
etc. all continue to function on isosurfaces as they did
on polygons. In particular, isosurfaces and polygons fit
seamlessly together, i.e., a polygon may be reflected off
of an isosurface, and an isosurface may cast a shadow
on any other kind of geometry (see Figure 6).

7 EXPERIMENTS AND RESULTS

Once all the ingredients of our real-time isosurfacing
system are available, we can start evaluating its perfor-
mance. In particular, we are interested in its absolute per-
formance, its scalability behavior, and in its applicability
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for practical applications. If not mentioned otherwise,
for the following experiments we use a single dual-1.8
GHz AMD Opteron 246 desktop PC with 6 GB RAM,
rendering at a default resolution of 512×512 pixels.

7.1 Overall Performance Data

First of all, we quantify the overall performance of
our system for different data set. As can be seen from
Table V, at a default resolution of 512× 512 pixels we
can achieve interactive performance for all tested scenes
even on a single PC. Note that this PC is not even state
of the art any more, as 2.4 GHz Opterons and quad-PCs
are already available, and even dual-core CPUs are about
to enter the market soon.

Additionally, higher performance can be achieved by
running our framework on multiple PCs in parallel.
To this end we have built a “mini-cluster” of 5 dual-
1.8 GHz Opteron PCs of 2GB RAM each, linked via
Gigabit Ethernet. Unfortunately, scalability could not be
measured beyond that number, as only 5 such dual-
Opterons have been available for testing. As can be seen
from Table V, this setup allows for frame rates of up to
39 frames per second, even including the most complex
data sets. Note that this compares quite favorably to
previous approaches (e.g. [31], [32], [21], [22]).

Scene Single PC 5-Node Cluster
C SIMD Ratio C SIMD Ratio

Bonsai fat 3.4 5.2 1.5 16.2 24.6 1.5
Aneurism fat 3.0 6.2 2.0 14.6 29.8 2.0
ML 643 fat 4.3 7.8 1.8 20.1 35.7 1.7
ML 5123 slim 1.2 2.3 1.8 6.1 11.3 1.8
Female slim 2.7 4.2 1.5 13.6 20.7 1.5
” (zoom) slim 2.3 7.9 3.5 11.2 39.1 3.5

LLNL slim 0.9 1.3 1.5 – – –
” (zoom) slim 1.6 5.4 3.9 7.6 28.7 3.8

Tab. V. Overall rendering performance data when running our
framework in various scenes including diffuse shading, for both a
single (dual-CPU) PC, as well as with a 5-node dual-Opteron cluster.
The overview of the LLNL data set could not be rendered, because
the memory footprint at this view was larger than the 2GB RAM per
client in the cluster setup.

7.2 SIMD Speedup

From Table V, we can also deduce the average speedup
achieved through the SIMD variants of our algorithms.
As expected, this speedup varies significantly, and
strongly depends on the average projected cell size.
Nonetheless, the SIMD variant for suitable configura-
tions achieves speedups of up to 3.9, and still achieves
noteable speedups even for the most extreme settings.

7.3 Scalability in Data Set Complexity

In polygonal ray tracing, one of the biggest advantages
of ray tracing is its sublinear (i.e., logarithmic) scalability
in model size, which is due to the use of hierarchical data
structures such as kd-trees [26], [7].

As we now use such a hierarchical data structure as well,
the same properties should also apply to our isosurface
ray tracing framework. To verify this, we have generated
various resolutions of the synthetic Marschner-Lobb data
set, and measured both number of traversal steps and
overall rendering performance. As expected, Figure 7
shows that our implicit kd-tree exhibits roughly log-
arithmic scalability in model size – the slight rise of
the curve beyond 2563 is most likely due to caching
effects for such large models, as can be seen by the
number of traversal steps (also given in Figure 7) which
exhibits a perfectly logarithmic behavior. This logarith-
mic scalability makes our method highly suitable for
extremely complex datasets: Even for an increase in data
set complexity from 323 (3.2×104 cells) to a full 10243

(109 cells) – corresponding to 41
2 orders of magnitude

in scene complexity – the performance only drops by a
mere factor of 2.1.
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Fig. 7. Scalability of our implicit kd-tree with increasing data set reso-
lution, measured with various resolutions of the synthetic Marschner-
Lobb data set. Note the exponential scale (23x) on the x-axis, which
for a roughly linear graph implies a logarithmic curve (the slight rise
of the curve beyond 2563 is most likely due to caching effects, as can
be seen by the almost perfectly logarithmic number of traversal steps).
Due to this logarithmic scalability, performance drops by a mere factor
of 2.1 for an increase in data of 41

2 orders of magnitude. .

8 APPLICATIONS

After having both described our framework and ana-
lyzed its performance, we want to briefly discuss some
of the practical applications that it allows for.

8.1 Interactive Exploration of Complex Isosurfaces

Due to the logarithmic scalability in data set size (see
Section 7.3), one obvious application of our framework
is the interactive visualization of highly complex data
sets. For example, Figure 8 shows the 512× 512× 1920
“Visible Female” data set, rendered with different shader
configurations. Except for the transparent skin example,
we can use the fast SIMD code for visualizing the model,
and achieve frame rates of 8.6, 5.0, and 4.0 frames per
second at 640×480 pixels, respectively, even on a single
PC. Due to splitting up of the rays, for the transparent
skin example we had to use the single-ray code, but
still – including all secondary rays – achieve 0.8 frames
per second per PC. Using the distribution features of
OpenRT, higher frame rates can easily be achieved by
running the system in parallel (see Table V).
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Fig. 8. The “Visible Female” (512× 512× 1920), rendered at 640×
480 pixels on a single dual-1.8 GHz Opteron PC a) Overall model
with direct display of the skin isosurface (8.6fps/1PC). b) Zoom onto
the head with bones isovalue (5FPS/1PC). c) with additional shadows
(4FPS/1PC). d.) The same, plus semi-transparent skin (0.8fps/1PC).

8.1.1 Interactive Out-of-Core Ray Tracing

As an even more interesting example, we have also ren-
dered several slices of the Lawrence Livermore (LLNL)
data set, a time dependent simulation of a Richtmyer-
Meshkov instability [3], with a resolution of 2048×
2048×1920voxels for each time step.

Figure 9 shows the slice for time step 250. In tessellated
form, this time step alone corresponds to roughly 470
million triangles, which cannot easily be rendered in-
teractively even on the most up-to-date graphics hard-
ware. For our implicit kd-tree, the logarithmic scalability
makes data sets of even this size quite tractable. How-
ever, even with the compressed form of the kd-tree each
slice still consumes 24GB of memory, which is usually
not available on off-the-shelf PCs.

Fortunately, here again we can reuse features of the
polygonal system: Using the same techniques developed
for polygonal out-of-core ray tracing [33], we can also
render this massively complex data set on a single PC
with 6 GB RAM only. At 640× 480 pixels with pure
ray casting, we achieve 0.9 frames per second for the
complete overview shown in Figure 9a, and 2.1 FPS
when zooming in. Even when turning on shadows, we
still achieve 0.3 and 1.1 frames per second, respectively.

Fig. 9. The LLNL data set, a 2048× 2048× 1920 simulation of a
Richtmyer-Meshkov Instability. a) entire data set, with ray casting only.
b) Same view with shadows. c) Zoom onto the surface, to show the
effect of shadows. Even such a complex data set of 24GB total can
still be rendered interactively on a single PC. At 640×480pixels, these
images render at 0.9, 0.3, and 1.1 FPS, respectively, on a single 1.8 GHz
dual-Opteron with 6 GB RAM.

8.1.2 Comparison to Graphics Hardware

In order to fully appreciate this level of performance
for the complex data sets, one must compare to the
standard approach of extracting a polygonal isosurface
to be rendered via graphics hardware. For example,
a GForce FX4000 currently delivers a theoretical peak
performance of 133 million shaded and lit triangles per
second. However, for the LLNL data set the tessellated
isosurface consists of 470 million triangles, which would
require several seconds to rasterize even under best-
case assumptions. Additionally, by directly ray tracing
the isosurface we can still interactively adjust the iso-
value, which is not easily possible using a pre-tessellated
model.

Also note that this level of performance clearly outper-
forms previously published isosurface ray tracing results
on similar hardware [21].

8.2 Interactive Global Illumination on Iso-Surfaces

Once being able to handle shadows and reflections, it is
an obvious next step to also support global illumination
on isosurfaces. For that purpose, we use the “Instant
Global Illumination” technique [34], [35], [12], in which
the illumination in a scene is approximated using “Vir-
tual Point Lights” generated by tracing light particles
into a scene and using those for illuminating the scene.

The Instant Global Illumination algorithm is completely
independent of geometry, only requires the ability to
shoot rays, and thus is ideally suited for our hybrid poly-
gon/isosurface setting. As we support four-ray packet-
traversal, even the fast implementation of Benthin et
al. [35] could be used without major modifications.

Figure 10 once again shows the bonsai model on the
desk of the office scene, now with global illumination
from three area lights turned on. As can be seen, all
indirect interactions between the polygonal scene and
the isosurface data set work as expected. Note that we
have chosen the relatively simple bonsai model only
because it best fitted the rest of the scene. More complex
data sets could have been used just as well.

Fig. 10. Instant global illumination on isosurfaces. a) The aneurism
data set in a Cornell box. Note the slight color bleeding on the ceiling,
as well as the smooth shadows on the walls and the floor. b) Bonsai
tree in the office scene, with smooth shadows and indirect illumination.
As our method is tightly integrated into the RTRT/OpenRT system,
the Instant Global Illumination implementation can be applied to our
isosurfaces just as easily as originally proposed for polygons.
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9 SUMMARY AND CONCLUSIONS

In this paper, we have shown how the recent advance-
ments in polygonal ray tracing performance can be lever-
aged to also significantly increase interactive isosurface
ray tracing performance on off-the-shelf PCs.

To this end, we have proposed using an “implicit kd-
tree” for storing the data set in a hierarchical way
that is well suited for efficient ray traversal, and have
discussed an efficient realization of that data structure
as well as the corresponding algorithms for traversing
and intersecting both single rays and packets of rays.

The presented data structure and its corresponding al-
gorithms together allow for achieving interactive iso-
surface ray tracing performance on individual PCs, and
furthermore allow for scaling performance by running
in parallel on multiple PCs. Even for highly non-trivial
data sets, interactive performance can be achieved on a
single dual-processor desktop PC only. Due to the good
scalability in data set complexity, this level of perfor-
mance can be maintained even for massively complex
data sets of several Gigabytes. The new hierarchical,
kd-tree based data structure, as well as the thereby-
enabled processor-friendly implementation thus allow
our approach to clearly outperform previously published
isosurface ray tracing approaches.

While on a single PC GPU-based methods can achieve
higher frame rates for small datasets, they usually do
not easily scale to larger datasets, and for datasets as
used in our system are often not applicable at all. Note
however that our proposed methods are not limited to a
CPU implementation only, but should similarly benefit
GPU-based ray tracing approaches (e.g., [8]) as well.

Having never made any assumption on the isovalue, the
isovalue can be interactively changed any time, and even
multiple isosurfaces of the same data set can be easily
rendered concurrently.

Finally, being tightly integrated into the OpenRT en-
gine, the presented framework allows for augmenting
isosurfaces with ray traced lighting effects such as trans-
parency, shadows, reflections, refraction, and even global
illumination. At the given level of performance, all these
effects can be fully recomputed every frame even under
interactive changes to camera, isovalue(s), or scene.

Future Work

As next steps, we want to investigate how to further
reduce the memory overhead. We will also investigate
further low-level optimizations. In particular, the exact
caching behavior requires closer attention, in particular
for complex data sets.

Finally, it is an obvious next challenge to investigate
complex time-varying data sets such as the full 1.5TB
LLNL dataset. In particular the hierarchical nature of our
approach seems promising for this specific application.
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