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Abstract

One of the most pervasive problems in large-scale
engineering projects is the difficulty in properly fit-
ting all individual parts together. The prohibitively
high investment of using physical mockups has led
to pre-assembly being performed almost entirely
digital. Unfortunately, the vast complexity of full
CAD datasets can not be handled by available high-
end graphics hardware. In this article we present a
ray tracing based software system running on a scal-
able shared-memory architecture, which allows for
interactive high-quality visualization and evaluation
of huge CAD models. Special features like cutting
planes, model interrogation, sophisticated shading,
and collaborative remote visualization are also sup-
ported. The capabilities of our framework will be
demonstrated on a practical example, the collabo-
rative design review of a complete Boeing 777 air-
liner.

1 Introduction

Computer Aided Design (CAD) has practically be-
come ubiquitous in all of today’s large-scale indus-
trial engineering projects. This development has
lead to the purely digital design of complete air-
crafts, ships, cars, etc. In such a process a large
number of concurrently working design teams are

involved 1, resulting in the development of typically
thousands of different parts, each modeled with the
highest possible accuracy.

According to studies the most eminent problems
in large-scale manufacturing are potential overlaps
of assembly parts, as well as the difficulty in prop-
erly fitting all individual components together in fi-
nal assembly. In order to avoid traditional physical
mockups that make planning and construction ex-
tremely expensive, there naturally arises the need to
perform pre-assembly on a completely digital basis.
It would therefore be desirable to directly perform a
3D visualization of the full CAD dataset with all its
detail, thereby providing a greater analysis context
during design reviews.

Unfortunately, CAD models for large-scale en-
gineering projects tend to become extremely large:
Before all individual parts are eventually assem-
bled, each individual component is usually mod-
eled independently at full geometric accuracy af-
fordable on the designer’s workstation. With ev-
ery individual component having full geometric de-
tail, the complete database can contain up to billions
of individual polygons, which cannot be efficiently
handled by the sequential triangle rasterization ap-
proach implemented in todays graphics cards, even
when using the most high-end graphics hardware.

1In the case of the Boeing 777 airplane program more than 230
geographically dispersed groups had to be coordinated.

VMV 2005 Erlangen, Germany, November 16–18, 2005



As a result, usual virtual reality systems only dis-
play manually selected parts of the complete scene,
or rely on geometric simplifications that often re-
quire manual tuning, and are prone to rendering ar-
tifacts.

1.1 Parallel Ray Tracing

For real-time display of highly complex models, ray
tracing provides a better alternative. Ray tracing al-
gorithms [6] closely model physical light transport
by shooting rays into the virtual scene. By employ-
ing spatial index structures, ray-object intersections
can be found efficiently, resulting in a logarithmic
time complexity with respect to scene size. Addi-
tionally, because of the algorithm’s output sensitiv-
ity, only data that is actually visible is eventually
accessed.

Since the colors of different pixels can be calcu-
lated independently of each other, ray tracing offers
an extremely high degree of parallelism. By assign-
ing different pixels to different processing units, it
is therefore possible to reach even real-time perfor-
mance. This was first shown by Muuss [10] and
Parker et al. [11], who demonstrated interactive ray
tracing using massively parallel shared-memory su-
percomputers. More recently Wald et al. [15, 14]
have shown that interactive frame rates can also be
achieved on clusters of low-cost commodity PCs.
Although the use of PC clusters enables linear scal-
ing in performance, memory scalability still re-
mains a problem. Because every cluster node might
potentially need to access the complete model, the
scene database has to be replicated on each PC. For
complex industrial CAD models of dozens or hun-
dreds of GBytes in size, this is not feasible. Special
PC-based out-of-core variants for ray tracing mas-
sively complex models exist as well [16], but cannot
yet deliver the performance and quality demanded
by industrial application scenarios.

1.2 Contributions

In this paper we present a ray tracing based inter-
active visualization system, suited for display and
design evaluation of extremely large CAD models
without approximations, simplifications, or render-
ing artifacts. By efficiently combining a highly op-
timized ray tracing engine with a shared-memory
multiprocessor architecture, it is possible to do real-
time walkthroughs in large-scale highly detailed

scenes, which is demonstrated at the example of a
complete Boeing 777, consisting of more than 350
million individual polygons. Additionally, our sys-
tem incorporates several features required for de-
sign review, such as distance measurement between
arbitrary points, interactive identification and move-
ment of individual model components, and sophis-
ticated shading (including soft shadows and high-
lights).

With the help of the OpenGL Vizserver frame
buffer streaming system, there is even the possibil-
ity to do the compute intensive image generation on
a centralized visualization server, while the walk-
through can be controlled from remote lightweight
clients, even over standard Internet wide-area con-
nections.

1.3 Paper Overview

The remainder of the paper is structured as fol-
lows: Section 2 starts with a brief overview over
some existing massive model walkthrough systems.
Section 3 will then provide some insight into our
ray tracing software, the underlying shared-memory
multiprocessor architecture, and the remote visu-
alization features of the system. We will demon-
strate capabilities and features using the example of
a complete Boeing 777 aircraft in Section 4. We
conclude in Section 5, followed by some thoughts
about future extensions in Section 6.

2 Related Work

Due to its practical relevance, the problem of visu-
alizing massively complex models has already re-
ceived a lot of attention, which we will briefly dis-
cuss.

2.1 Rasterization Based Systems

The UNC GigaWalk system [2] runs on an SGI
Onyx workstation (300 MHz MIPS R12000 CPUs,
16 GByte RAM) with Infinite Reality graphics, and
makes use of two rasterization pipes and three pro-
cesses running in parallel on individual CPUs. The
visible geometry of each frame is treated as poten-
tial occluders for successive frames. Using occlu-
sion culling based on these occluders in combina-
tion with a Hierarchical Z-Buffer [7], the system
is reported to be able to render scenes with up to
82 million triangles at 11-50 frames per second.



Another recently proposed framework is
iWalk [5]. It can handle models consisting of up
to 13 million triangles at 9 frames per second on
a single commodity PC (2.8 GHz Intel Pentium 4
CPU, 512 MByte RAM) with an NVIDIA Quadro
980 XGL card. However, the system relies on
approximated visibility, and uses an object-space
algorithm [9] to estimate a potentially visible
geometry set, which can result in visible polygons
being omitted.

In contrast to the above mentioned applications
that are primarily meant for visualization only, the
Boeing FlyThru [1] system, a proprietary in-house
application originally conceived for the 777 twin-
engine airliner program (see Section 4), comprises a
great number of features aiding collaborative CAD.
Apart from displaying thousands of parts at one
time, it facilitates detection of motion anomalies
and interference between structures, interactive de-
sign reviews across a network, modeling, kinemat-
ics, and remote control by other applications. Un-
fortunately, no detailed information about its inter-
active rendering capabilities is available. It can,
however, not display the full 777 dataset at real-time
rates without geometric simplifications [8].

2.2 Ray Tracing Based Systems

As sketched in Section 1.1, ray tracing technology
efficiently supports interactive visualization of large
unsimplified datasets. The OpenRT real-time ray
tracing engine [15, 14] has been shown to be ca-
pable of handling scenes with up to several million
triangles in real-time. On a setup of 24 commodity
dual-processor PCs (AMD AthlonMP 1800+ CPUs,
512 MByte RAM) this system has been reported to
achieve up to 23 frames per second. Additionally, it
incorporates physically correct and global lighting
simulations [3], and features interactive placement
of geometric parts. It relies, however, on the fact
that each cluster node can keep the complete scene
in main memory.

Wald et al. [17] have also presented an out-of-
core rendering variant of the OpenRT system that
combines explicit memory management, demand-
loading of missing parts, and computation reorder-
ing. While this system has been shown to render
scenes that are much larger than main memory, it
can only handle scenes where only a small fraction
of data has to be loaded between successive frames,

and does not easily scale to scenes of a more realis-
tic complexity.

In a more recent publication [16] it was demon-
strated that even on a single desktop PC (dual
1.8 GHz AMD Opteron 246, 6 GByte RAM), out-
of-core ray tracing can be used for interactively
visualizing a complete Boeing 777 CAD dataset
containing more than 350 million individual sur-
face polygons. Even including the calculation of
pixel-accurate shadows and highlights, the system
reaches up to 5 frames per second. Due to the out-
of-core nature of the approach, model parts are only
loaded on demand, and – as not all missing data can
be loaded within the same frame – an approxima-
tion scheme has to be employed to represent data
not loaded yet. This frequently leads to rendering
artifacts that are not tolerable for practical applica-
tions. Additionally, the framework does not easily
parallelize due to the need to synchronize all mem-
ory operations on all client machines, and thus can-
not deliver sufficient performance.2

3 Visualization System Outline

The presented rendering architecture basically
builds on the system of Wald et al. [16] with
OpenRT as ray tracing core. The rendering arti-
facts introduced through the out-of-core mechanism
required on a PC platform made this system not
applicable for practical applications. In contrast,
the eventual end users of our visualization system
explicitly demanded display of an entire complex
dataset at any time, without any kind of approxima-
tions, demand-loading stalls, or rendering artifacts.

To meet these demands, it was decided to port
the initial system to a scalable shared-memory mul-
tiprocessor architecture, and thereby couple the per-
formance scalability of the OpenRT system with the
memory scalability of this platform.

3.1 Hardware Architecture

All our experiments were conducted on an SGI Al-
tix 350 mid-range server [12], composed of 8 dual-
processor nodes. Each of the nodes is equipped with
two Intel Itanium 2 CPUs clocked at 1.4 GHz, and
contains 4 GByte local memory.

2Design reviews are usually considered to require 10-20 frames
per second.



In this setup, the memory banks of the nodes
form a system-wide 32 GByte large, shared-
memory address space. This is made possible by
the Altix NUMAflex architecture (see Figure 1)
that provides a low-latency, high-bandwidth inter-
connect between the distinct nodes, gaining peak
transfer rates of up to 6.4 GByte per second. As
this works completely application transparent, each
CPU can directly access every desired part of the
model in the global memory space. The geomet-
ric database is actually distributed over the nodes’
physical memory banks without any replication of
data.

By just adding new nodes – and connecting them
to the NUMAflex interconnect – the Altix can eas-
ily be scaled in both memory and number of CPUs.
Therefore, the current framework can easily be
scaled to almost arbitrary model sizes and perfor-
mance requirements. Although all of the following
results are reported for a 16-processor setup only,
the same software system is currently also being
evaluated on significantly larger installations.

3.2 OpenRT

The OpenRT real-time ray tracing core [14] serves
as a high-performance rendering back-end for our
3D CAD browser application. It supports phys-
ically correct lighting simulation, plug-and-play
shading by means of dynamically loaded shader li-
braries (i.e. custom programs that perform the ac-
tual light propagation calculations), and handling of
dynamic and complex 3D environments.

3.2.1 Client-Server Rendering

Highly optimized code, and distributing computa-
tion among several parallelly working CPUs, al-
lows the OpenRT engine to reach interactive and
even real-time frame rates. In this client-server ap-
proach a single master process centrally manages a
number of client processes: The image is decom-
posed into a number of disjunct regions that are
asynchronously assigned as tasks to the clients on
demand. After a client has finished computation of
an assigned image-tile, it sends back the respective
pixel color values to the master, which composes
them into the resulting image. Although, the system
has been specifically designed to run on a cluster of
PCs, the setup on the Altix is practically the same.
All client processes are started on the same machine

as the master process, while the operating system
takes care of distributing the processes among the
available CPUs.

3.2.2 Memory Management

Memory management of large CAD databases can
be done in a very straightforward manner. Since
the Altix provides enough RAM to keep the full
model in memory, the whole dataset (including all
spatial index structures) it simply mapped from disk
into the global address space, using Linux memory
mapping facilities. This can be independently done
by each client process because the operating system
takes care that no part is paged into shared memory
more than once. Although OpenRT incorporates a
memory management subsystem that can deal with
scenes larger than main memory in an out-of-core
fashion (see [16] for details), this is not required
here.

3.3 Remote Visualization

For the purpose of collaborative design reviews, the
Altix can also act as a centralized visual server for
multiple clients in geographically diverse locations.
To this end the system make use of the OpenGL
Vizserver [13] technology: A frame rendered on
the visualization server is captured, and the com-
pressed pixel data is sent to the clients over standard
local as well as wide-area networks. Each client
then uncompresses the pixel stream, displays the
uncompressed image, and directs back all user in-
teraction to the server. As only the final image is
transmitted, the clients themselves do not need any
high-performance graphics capabilities at all, and
can thus be lightweight clients such as desktop PCs
or laptops.

In order to be as transparent to the application
as possible the Vizserver installs wrapper libraries
that monitor all calls to the OpenGL or X11 win-
dow system libraries. A buffer swap in a window,
for example, triggers a read back of the frame buffer
on the server, which is then sent to the client. Only
the region of interest used for rendering is trans-
ferred, including GUI widgets and OpenGL render-
ing area. In case of low-quality network connec-
tions, the server can drop and repeat frames, as well
as use several kinds of (lossy and lossless) compres-
sion rates and mechanisms.

Although a simple video streaming approach
could have been more efficient, especially since we
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Figure 1: Altix global shared memory. Using an application transparent NUMAflex interconnect between
individual nodes, a large global shared memory address space is formed, which can be directly accessed by
each CPU. Though our example setup uses only 8 nodes, the architecture can also be scaled to much larger
configurations.

do not require support for hardware accelerated ren-
dering, we opted for the Vizerserver because it pro-
vides a stable, mature, and widely used industrial
remote visualization framework.

4 Application: Design Review of a
Complete Boeing 777

One of the main objectives we targeted was the in-
teractive walkthrough of a fully-detailed 3D model
of a Boeing 777 twin-engine airplane. There should
not only be the possibility to directly render every
single part of the original CAD data without any
kind of geometric simplification, visual approxima-
tion, or artifacts. The system should also be suited
for engineering design review sessions.

4.1 The Boeing 777 Model

The Boeing 777 model used in our experiments re-
sults from a direct export of the original construc-
tion CAD data out of the CATIA CAD/CAM sys-
tem. Although some components are missing, the
model already consists of more than 350 million in-
dividual surface triangles. Organized in over 13,000
compressed files, all components, including cables,
screws, valves etc., have been modeled at extremely
high accuracy. Without any additional spatial in-
dex structures, the raw model requires more than
12 GByte of hard disk space. Because the polygons
were provided without any mesh connectivity infor-
mation (i.e. coming as a “soup of triangles”), and
with all vertices being randomly displaced to pre-

vent data theft, the model is extremely difficult to
handle for surface simplification algorithms found
in most large model rendering systems.

4.2 Visualization Workflow

For the purpose of efficient model access during ray
traversal calculations, spacial index structures are
needed in addition to the geometric triangular sur-
face information. In a first step, the original files
are decompressed, parsed, and transformed into an
unordered triangle stream. This stream gets then
sorted into a k-d tree [4], which is stored in binary
form. Like the ray tracing engine, the preprocess-
ing tool chain can make use of multiple processors.
Thus, it is able to preprocess the incoming data in a
parallel manner during approximately 2 hours.

Including all additional index data, the resulting
binary data files cover roughly 20 GByte of hard
disk space. Since the files fit completely into main
memory, they can then be copied into the Altix
RAM disk, from where they are mapped into main
memory. This enables the ray tracing engine to vir-
tually start in an instant, and to provide the first im-
ages after less than 30 seconds.

Upon startup of the 3D browser application, all
the binary files are mapped into the Altix global
shared memory space, and are therefore immedi-
ately visible in the address space of each client
process. A user can now freely browse the fully-
detailed model, without having to wait for data be-
ing fetched from disk, and without encountering vi-
sual artifacts caused by not yet loaded data.



Figure 2: 3D CAD review features: (a) Measuring the diameter of a Boeing 777 engine. (b) All components
can be pixel-accurately identified by simply moving the mouse pointer over them.

4.3 Design Review Functionality

The prime requisite for our system to be useful for
design reviews is to deliver high-quality real-time
rendering performance. In particular, these goals
were specified by the users as: 1. The system should
achieve at least 10 frames per second at a resolution
of 640 × 480 pixels, even for complex views and
during interaction. 2. It should not generate any vi-
sual artifacts at all during rendering, especially it
should not generate any approximate views (as done
in [16]). 3. It should have maximum startup times
of only a few seconds. Using the afore-mentioned
visualization system, where the distributed ray trac-
ing engine delivers real-time performance, and the
global shared memory of the Altix allows for keep-
ing the entire model data in main memory, these de-
mands can be fulfilled.

Apart from the capability of interactively dis-
playing arbitrary parts of the Boeing 777 model,
our visualization framework offers a number of ad-
ditional functions required for collaborative CAD
evaluation.

4.3.1 Distance Measurement

A very important feature that eases fitting together
a model’s components, is the ability to measure the
exact distance between arbitrary three-dimensional
points in the dataset. The user simply has to click
at two different points in the browser window. By
shooting rays from the projection center through the
respective pixels into the scene, the ray tracer can
easily find the distance between the visible surface

points and the observer. The application can op-
tionally insert a line object into the scene that helps
visualizing the connection between the two points
in question. The distance value is also shown be-
sides the line (Figure 2a). Because this line object
(actually a slim box) behaves like any other geo-
metric object, it too can cast shadows that provide
important visual cues on the exact location of that
measuring line.

4.3.2 Object Identification

By applying the same technique, i.e. firing a ray
through the pixel the mouse pointer is currently
hovering above, not only the distance to a surface
point can be determined. Because the ray tracing
core can provide the front-end application with an
identification of the object being hit by the ray, arbi-
trary information regarding this part can be looked
up and displayed (Figure 2b). Few application-
specific code (except displaying the identification
windows) was required for that feature, as the usu-
ally complex picking-operation could easily be re-
alized by using the ray tracer.

4.3.3 Cutting Planes

One of the advanced features of the ray tracing core
is its ability to instantly cut away large parts of a
model by specifying a number of freely orientable
clipping planes. This works most efficiently for a
ray tracer since it simply has to clip rays, whereas
rasterization techniques need to clip all potentially
visible polygons. Although inserting a cutting plane



Figure 3: Advanced rendering features: (a) An axis-aligned cutting plane slicing the airplane in half. The
resulting cross-section view gives a much better insight into the model’s overall structure. Multiple freely
orientable cutting planes can be placed interactively. (b) Soft shadow effects in the cockpit providing a
better impression of the relative placement of components.

can completely change the set of visible triangles,
this is not a problem at all for our system: Since all
scene data completely resides in memory, even such
a drastic change of the visible set does not introduce
any loading cost.

Cutting planes are particularly useful for struc-
tural analysis. For example, they easily allow for
producing cross-sectional views (Figure 3a) that
may, for example, serve as technical illustrations.
Note that these cutting planes do not simply cut
away the geometry, but can be configured to only
affect viewing rays, therefore making it possible to
look into the airplane without influencing e.g. the
shadow computations inside.

4.3.4 Sophisticated Shading

Due to accurate simulation of physical light trans-
port, sophisticated shading and lighting (e.g. pixel-
accurate shadows, highlights, or reflections off of
curved surfaces) can easily be incorporated in a
plug-and-play fashion. In particular for complex
geometry, the projection of 3D data onto a 2D dis-
play often incurs an undesired loss of depth im-
pression. In that case, shadows often significantly
help in the perception of the relative position of ob-
jects. Especially soft shadows help in judging the
distance between shadow caster and receiver. Fig-
ure 3b shows the impact of rendering soft shad-
ows that can significantly enhance the impression
of shape and depth (see also Figure 2a).

5 Summary and Conclusions

In this paper we have shown that the combina-
tion of a shared-memory multiprocessor architec-
ture and a high-performance ray tracing implemen-
tation can be efficiently used for real-time walk-
throughs of highly detailed, large-scale industrial
CAD databases. We have demonstrated that even a
complete model of a Boeing 777 aircraft can be han-
dled without approximation, simplification, or ren-
dering artifacts. Our system supports several fea-
tures important for virtual design review sessions,
like distance measurement, identification, interac-
tive placement of individual model components,
and sophisticated shading.

The proposed system is currently being evaluated
at Boeing, SGI, and Dassault on how it can best be
integrated into the digital design workflow of large-
scale engineering projects, even more complex than
the 777 program.

6 Future Work

One possible direction of further research is to en-
hance the current setup into a “visualization ser-
vice” similar to the grid computing philosophy. For
example, instead of using one fixed visualization
server, it would be possible to transparently provide
a visualization service onto which the clients could
connect without even knowing which machine they
are communicating with.



Another field is the investigation of real-time
lighting simulation algorithms that build on the cur-
rent architecture. In particular the Altix’s shared
memory model and facile scaling in available com-
pute performance provides a huge potential for
interactive global illumination, even in extremely
complex datasets.
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Cross-section view of a Boeing 777 airplane. The model contains more than 350 million individual poly-
gons, and has been directly exported from the original CAD database. Using fast ray tracing, every single
part of the aircraft can be interactively inspected without any kind of simplification or approximation.

Figure 2: 3D CAD review features: (a) Measuring the diameter of a Boeing 777 engine. (b) All components
can be pixel-accurately identified by simply moving the mouse pointer over them.

Figure 3: Advanced rendering features: (a) An axis-aligned cutting plane slicing the airplane in half. The
resulting cross-section view gives a much better insight into the model’s overall structure. Multiple freely
orientable cutting planes can be placed interactively. (b) Soft shadow effects in the cockpit providing a
better impression of the relative placement of components.


