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Figure 1: Our example scenes, from purely diffuse illumination to highly detailed caustics: a) Direct visualization of a diffuse photon
map in the “Conference” scene, using 2.1 million photons, b) the “GlassEgg” with a sharp, compact caustic, c) the “MetalRing”,
with highly detailed caustics distributed over the entire room, and d) a visualization of the illumination patterns generated by the highly
complex “HeadLight” model, using a total of 2.3 million photons. In these four scenes, our presented technique improves the performance
of photon map queries by a factor of 1.3 to 5.8, resulting in overall speedups (including ray tracing) of 35, 65, 55, and 83 percent,
respectively.

Abstract

Photon mapping is one of the most important algorithms for computing global illumination. Especially for effi-
ciently producing convincing caustics, there are no real alternatives to photon mapping. On the other hand, photon
mapping is also quite costly: Each radiance lookup requires to find the k nearest neighbors in a kd-tree, which can
be more costly than shooting several rays. Therefore, the nearest-neighbor queries often dominate the rendering
time of a photon map based renderer.
In this paper, we present a method that reorganizes – i.e.unbalances – the kd-tree for storing the photons in a way
that allows for finding the k-nearest neighbors much more efficiently, thereby accelerating the radiance estimates
by a factor of 1.2–3.4. Most importantly, our method still finds exactly the same k-nearest-neighbors as the original
method,without introducing any approximations or loss of accuracy. The impact of our method is demonstrated
with several practical examples.
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Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Global Illumination I.3.7
[Computer Graphics]: Raytracing

1. Introduction

Fast and high-quality global illumination is a long-standing
goal in computer graphics. Over the last twenty years, a large
variety of algorithms have been developed, such as (bidi-
rectional) path tracing [Kaj86, LW93, VG94], Metropolis
Light Transport [VG97], many different types of radios-

ity algorithms [HSA91, SAG94, Kel97], and photon map-
ping [Jen96, Jen97, Jen01].

At least for restricted lighting models, the
recent improvements in ray tracing perfor-
mance [WSBW01, WPSBS03, Wal04] now allow for
computing global illumination at interactive frame
rates [WKBKS02, BWS03]. However, these algorithms
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support only a subset of all possible light transport paths,
which is particularly problematic for accurately rendering
caustics.

Today, the most efficient technique for producing con-
vincing caustics is photon mapping. In fact, photon map-
ping is a relatively simple technique: In a preprocessing
step, particles are shot from the light sources into the scene,
and their hit points (including position, direction, and pho-
ton power) are recorded. These photons are then organized
in a kd-tree for efficient lookups. This kd-tree is usually
stored in a left-balanced form. After the preprocessing step,
the (ir-)radiance at any given surface point can be estimated
via density estimation among the k nearest neighbor (kNN)
photons, which can be determined by traversing the kd-
tree[Jen01, Ben75].

Though photon mapping is both simple and able to pro-
duce smooth, convincing caustics, it is unfortunately also
quite costly: even when ignoring all preprocessing cost for
generating the photons and for building the kd-tree, each ra-
diance lookup requires a traversal of the index structure in
order to find the k nearest neighbors. This can easily be more
costly than shooting several rays (especially when using a
fast ray tracer), and can easily become the bottleneck. For
example, on a 2.2GHz Pentium IV the conference scene in
Figure 1a can be ray traced at 3.6 frames per second (us-
ing ray casting and simple shading). However, when directly
visualizing a 2M photon map – i.e. performing exactly one
radiance estimate per primary ray – the frame rate drops to
0.1 fps.

In this paper, we are going to present a technique that
explicitly unbalances the kd-tree by recalling some of the
lessons learned in building high-quality BSP trees for ray
tracing. Applying some of these lessons to the kd-trees used
in photon mapping, we can significantly reduce the time
spent in nearest neighbor queries, and thus increase the per-
formance of the photon map’s radiance estimate by roughly
a factor of 1.3–3.5.

2. Background and Previous Work

For global illumination, there has been vast amount of
previous work, e.g. [Kaj86, LW93, VG94, VG97, HSA91]-
[Kel97, SAG94, Jen96, Jen97], which we cannot cover in
more detail. Instead, we concentrate only on work that is
directly related to our proposed technique: Photon mapping
on one hand, and the construction of optimized kd-trees in
ray tracing on the other hand.

2.1. Photon Mapping

Since its original publication by Jensen et al. [Jen96, Jen97],
photon mapping has become one of the most widely used
techniques for global illumination, mostly because of its
ability to efficiently generate smooth, high-quality caustics.

This is achieved by shooting photons into the scene, storing
their hit points, and using these photons to estimate the radi-
ance at any given point. This estimate is performed by locat-
ing the k nearest neighboring photons to this surface point,
and using those for density estimation [Jen01].

Using the k nearest photons for reconstructing the irra-
diance, the size of the reconstruction filter automatically
adapts to the local photon density. This enables a highly de-
tailed reconstruction of caustics (where the photon density
is high) while still giving a smooth estimate of the diffuse
illumination (for which the filter automatically gets larger).

2.2. Efficient k-Nearest Neighbor Queries

In order to efficiently find these k nearest neighbors, the pho-
tons are stored in a special kd-tree: Each node in the kd-tree
represents both a photon and an axis-aligned splitting plane
passing through that photon. In order to keep the memory
consumption low, this kd-tree is represented in a very com-
pact form [Jen01]: First, the direction and power of each
photon is stored in a discretized form, using 2 bytes for the
discretized direction, and a 4-byte RGBE [War92] represen-
tation for the energy. The splitting plane is stored as an ad-
ditional 16-bitshort for alignment reasons.

Second, the kd-tree is stored in a left-balanced form,
for which the children of a node can be addressed im-
plicitly without pointers. Taken together, this allows for a
very memory-efficient representation using only 20 bytes
per photon [Jen01]. Virtually all photon map implementa-
tions today follow this scheme.

As the kNN query is quite expensive, several re-
searchers have recently proposed other, faster ways of
performing the radiance estimate, usually in the con-
text of interactive visualizations of the photon map
(e.g. [WKBKS02, PDCJH03, MM02, WS03]). However,
these techniques usually rely on approximations, e.g. by only
approximating the k-nearest neighbors, or by using a fixed
query radius that does not automatically adapt to the photon
density. In contrast to these approaches, we are taking care
not to introduce any approximations, but rather find exactly
the same set of nearest neighbors as the original technique.

2.3. Cost Functions for Building BSP Trees

Kd-trees are not only used in photon mapping, but also quite
extensively in ray tracing. In order to stress the difference to
the kd-trees used in photon mapping, we will in the follow-
ing denote these with “BSP trees”. Though there are some
minor differences (see below), in principle both kd-trees and
BSP trees refer to the same kind of three-dimensional, binary
search trees with axis-aligned splitting planes.

Though both kd-trees and BSPs are used for similar ap-
plications, the exact way that they are stored and built varies
significantly: In photon mapping, virtually all photon map
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implementations use the left-balanced tree without point-
ers as described above. In ray tracing, however, it is a
well-known fact that splitting at the median – i.e. balanc-
ing the tree – actually performsworsethan any other tech-
nique [Hav01]. Though balancing the tree appeals to intu-
ition (as it guarantees a minimum average node depth), it
is a common misconception that this structure would also
yield minimal traversal times. Balancing is optimalonly for
binary searching, and if all nodes have equal access probabil-
ities. Neither of these two prerequisites is fulfilled for range
queries (such as ray traversal and kNN queries), nor for un-
evenly distributed primitives such as photons or triangles.

Thus, in ray tracing researchers have thoroughly inves-
tigated how to build BSP trees in other – more optimal –
ways (e.g. [MB90, Sub90, Hav01, HKRS02]). In fact, using
an optimized BSP tree can result in significant performance
improvements. For example, using better BSP trees recently
allowed for improving the performance of the (already quite
fast) RTRT/OpenRT realtime ray tracing system by almost a
factor of two [WPSBS03, Wal04].

2.3.1. Surface Area Heuristic (SAH)

Today, the best traversal performance in ray tracing can be
achieved using the “Surface Area Heuristic” (SAH). This
heuristicestimatesthe cost of all potential splitting planes,
thereby allowing for placing the planes where they are most
effective. To estimate the cost of splitting a voxelV into
two halvesVL andVR, two factors have to be considered:
First, the costC(VL) andC(VR) of traversing each of the two
children, and second, the probabilitiesP(VL) andP(VR) of
traversing the respective children assuming that the parent
node has been hit. Then, the costC(V) of splittingV by plane
Scan be estimated as

C(S: V →{VL,VR}) = Ctrav +P(VL)C(VL)+P(VR)C(VR),

whereCtrav is the (measured) cost for performing a single
traversal step. As this is a recursive definition ofC, one usu-
ally approximates the cost for the leaves as

C(VL)≈CisecNL and C(VR)≈CisecNR,

whereCisec is the cost for a ray-primitive intersection, and
NL,NR are the number of primitives overlappingVL andVR,
respectively.

In order to determine the probabilitiesP(VL) andP(VR)
of traversing the left and right children, respectively, one as-
sumes that the rays are equally distributed and do not termi-
nate inside the voxel. Then, it can be shown [MB90, San02]
that the probability of traversingVL andVR is

P(VL) =
SA(VL)
SA(V)

and P(VR) =
SA(VR)
SA(V)

,

whereSA(V) is the surface area (hence the name) of the
voxel V (see [San02]: The “conditional probability of in-
tersecting two convex bodies one inside the other knowing

that we intersect the biggest is the ratio of surfaces”). Note
that for the BSP trees used in ray tracing, in general neither
P(VL) + P(VR) = 1 (since a ray can intersect both halves),
norNL +NR = NV (since triangles may overlap both sides) !

Using this heuristic to estimate the cost of all potential
splitting planesS, it is possible to place the splitting plane
whereC(S) reaches a minimum.

Additionally, this cost estimate can be used to automat-
ically determine when to stop the subdivision: As soon as
min C(S) >CisecNV , further subdivision will not pay off. Us-
ing such optimized BSP trees, the average number of nodes,
leaves, and primitives visited during traversal of a ray is usu-
ally much smaller than for BSPs built with other techniques
(see [Hav01, Wal04]).

3. The Voxel Volume Heuristic (VVH)

With the positive results that optimized BSPs achieve in ray
tracing, it seems promising to investigate whether – and how
– similar heuristics can be used to speed up the notoriously
slow kNN queries used in photon mapping. Obviously, once
we are no longer using balanced kd-trees, we can no longer
address the children implicitly, and thus have to store explicit
children pointers. Though these could be stored in a com-
pressed form (using one pointer for addressing both chil-
dren, plus two bits for encoding which children are actually
present), we currently spend two full pointers (i.e. 8 bytes)
for addressing the children. While this obviously increases
our memory consumption, the total memory impact with 8
bytes per node is quite small. As the number of photons in
practice is usually in the range of at most a few million, eight
bytes per photon today is quite affordable. If the kd-tree is
not “too” unbalanced, one could also avoid the pointers by
using a balanced kd-tree with “holes” inside. For practical
kd-trees however these holes are likely to generate a much
larger memory overhead than adding pointers.

3.1. Differences between kd-Trees and BSP trees

As mentioned above, there are a few differences between ray
traversal (RT) in a BSP, and k-nearest-neighbor query (kNN)
in a kd-tree. Most importantly, kNN queries do not perform
their traversal along an infinite line as RT, but rather perform
a query inside a spherical volume. This obviously influences
the probabilities of traversing the children.

Additionally, kd-trees (as used in photon mapping) are
structurally different from BSPs in that they storepoint data,
whereas BSP trees store primitives with a spatial extent.
These primitives can therefore be contained in multiple vox-
els, and can even overlap other primitives. In contrast to
this, storing only point data allows kd-trees to be structurally
much simpler than BSP trees: Kd-trees store photons also in
inner nodes, always store exactly one photon per node, and
do not differentiate between inner nodes and leaf nodes.
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3.2. Implications on our Cost Function

These properties have several implications on our to-be-
designed cost function: First, there is no difference between
inner nodes and leaf nodes, so there is also no difference
between a traversal step and a primitive intersection. This
entirely removes the need for theCisecandCtrav factors. Sec-
ond, as each splitting plane in a kd-tree passes through a pho-
ton, the number of potential splitting planes is limited. This
greatly simplifies the search for the best split plane position,
which for BSP trees requires to determine all intersections
between primitives and voxel sides [HKRS02, Hav01]. In-
stead having exactly one photon per node predetermines the
number of splits to be performed, thereby completely remov-
ing the need for a termination criterion.

In summary, this boils down to the simple formula

C(V →{VL,VR}) = 1+P(VL)NL +P(VR)NR,

which has to be evaluated for each dimension X, Y, and Z,
and for each photon position inside the current voxel. The
“1” is the (constant) cost for traversing the node itself. As
this constant is added to each potential split plane, it doesn’t
affect the minimum anyway, and can be safely ignored.

3.3. DeterminingP(VL) and P(VR)

As mentioned above, the different traversal used in kNN and
RT respectively influences the probabilities of traversing the
respective children. Thus, we cannot simply use the same
probabilities as used in the SAH, but have to adapt our cost
function. Similary to the SAH – which assumes infinitely
long rays and equal ray distribution – we will in the follow-
ing have to make some assumptions on the query distribution
and query radius.

The query radius obviously depends on the query posi-
tion, and the average query radius is not known in advance
(though it could be estimated [Jen01]). In practice how-
ever most photon map implementations also specify a (tight)
maximum query radiusRmax for efficiency reasons [Jen01].
In the following, we will simply use this maximum search
radius for building our kd-tree. Similarly, one could esti-
mate the average query radius based on the volume of the
voxel and the number of photons, which would even yield a
different estimate for different regions of the scene. So far
however, the maximum query radius has been sufficient.

For the query distribution, we simply assume an equal
distribution of query locations. Then, the voxelV will be
traversed by all queries that happen inside a range ofR
aroundV. We will denote all these positions – i.e. the
voxelV extended byR in all directions – asV±R.

As queries can only occur on the surface of geometric
primitives (at least as long as we do not consider volumet-
ric effects), the probabilities for traversing the left and right
nodes should be proportional to the surface area of allprim-
itives enclosed inVL ±R respectivelyVR±R (i.e. not the

surface area of thevoxel), yielding

P(VL) =
PSA(VL±R)
PSA(V±R)

and P(VR) =
PSA(VR±R)
PSA(V±R)

,

wherePSA(V±R) denotes the surface area of all geometric
scene primitives overlappingV±R.

As the primitive surface area can be quite costly to com-
pute, we ignore the variation in primitive density and instead
approximate this value as

P(VL)≈ Vol(VL±R)
Vol(V±R)

and P(VR) =
Vol(VR±R)
Vol(V±R)

.

Note that this is quite a severe approximation. Alternatively,
PSA(V±R) could also be approximated by sampling the ge-
ometry. So far however we have only used the coarse approx-
imationPSA(V±R)≈Vol(V±R), which in practice seems
towork quite well. For efficiency reasons, we further approx-
imateVol(V±R) as

Vol(V±R)≈Πi=x,y,z(Vi,max−Vi,min+2R).

Extending the volume by this range also has some inter-
esting, automatic side effects: First, it correctly handles very
flat cells, which would get a zero cost if this term would
not be used. Second, as the extension-radius is constant, its
influence is high for small voxels, and small for large vox-
els. Thus, for large voxels (i.e. voxels much larger than the
query radius) the influence ofR almost vanishes, leading to
an almost entirely volume-based heuristic. For small voxels
however, theR term starts to dominate, in fact leading to an
automatic balancing for small voxels. This in fact is fortu-
nate, as for small voxels the probability is high that most of
the photons have to be touched anyway (for which balanc-
ing is good, see above), whereas the influence of the volume
for larger voxels leads to few traversal steps until the query
radius is being reached.

This explanation also suggests for which cases our heuris-
tic can be expected to be most efficient: If the query radius
is very large, all the photons in this large radius have to
be touched anyway, so few improvements can be expected.
With a similar argument we can deduce that our VVH will be
most effective for scenes with a highly uneven photon distri-
bution, and if the (average) query radius is relatively small.
Though this may not be the case for diffuse illumination, it
fortunately is the case for our targeted applications, i.e. the
visualization of highly detailed, sharp caustic patterns. Note
that our method should also work well for the local pass ac-
celeration technique proposed by Christensen et al. [Chr00].

3.4. Efficient Construction

Once the cost function is defined, the optimized kd-tree can
be built in multiple ways. However, care has to be taken to
implement this operation efficiently. For example, the naive
way of recomputingNL andNR from scratch for each poten-
tial split plane yields a quadratic complexity in each splitting
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step, which leads to intolerable construction times except for
a few hundred photons.

A more efficient way of building the hierarchy is to it-
erate over all three potential dimensions in turn, sort all
photons in the respective dimension (e.g. using quicksort),
and then incrementally updateNL and NR while iterating
over the sorted photon list. Iterating over the photons costs
only O(N), so the complexity of each splitting step is only
O(NlogN) for the quicksort. Though this combines to a
complexity of O(Nlog2N) for the full construction algo-
rithm, this approach is rather simple to implement, and al-
ready much more efficient than the naive method.

3.4.1. Construction inO(NlogN)

Finally, there is an even more efficient – though somewhat
more complex to implement – way of building the hierar-
chy (in spritit of [Vai89]): As each splitting plane passes
through a photon, each photonpi implies three “potential
splitting planes”X = pi,x, Y = pi,y, andZ = pi,z. In the be-
ginning, we build one large set of potential splitting planes
(i,d, pi,d)|i = 1..N,d = X,Y,Z, i.e. with all potential splits
of all three dimensions in the same list. We then that into
a list (i j ,d j ,sj ), j = 1..3N such thatsj ≤ sj+1, This sorting
costsO(3Nlog3N) = O(NlogN), and has to be performed
only once.

In order to find the best splitting plane, we then iterate
through this sorted list, and – for each dimension X, Y, and
Z – incrementally update the number of photon to the left of,
on, or to the right of the current. As the input list is sorted
by increasing split value, visiting the potential split plane
K = pi,k simply means that in dimensionk one photon goes
from the right to the left side, which allows for updatingNL
andNR incrementally. For each visited potential split posi-
tion, we evaluate the cost function, and track the split with
minimal cost.

After having iterated through the list, the best split has
been determined. We then sweep through this list a second
time, and split it – without changing the order of the ele-
ments – into the list of photons to left of, and those to the
right of the split plane, respectively. As we do not change
the order of the elements, the two output lists will automati-
cally remain sorted, and can each be used for the next split-
ting step in the left and right subtrees, respectively. Iterating
twice through the sorted input list costsO(2N), which for all
splitting steps amounts to a total ofO(NlogN). As the initial
sorting has to be performed only once at the beginning, we
end up with an overall complexity for the entire construction
algorithm ofO(NlogN), which is the same complexity as for
balancing the kd-tree [Jen01].

4. Results and Discussion

After having described both background and implementa-
tion of our optimized kd-trees, we can now measure their
impact on photon mapping performance.

4.1. Test Scenes

This impact is likely to depend on both scene and actual
photon distribution: For example, rendering only a sharp, fo-
cussed caustic is likely to result in a much stronger variation
in photon distribution than rendering a scene with smooth,
diffuse illumination.

Therefore, in order to cover as wide a range of photon dis-
tributions as possible, we have chosen four test scenes (see
Figure 1) with different photon distributions: First, the “Con-
ference” scene contains only diffuse illumination with a rel-
atively equal photon distribution. Second, the “GlassEgg”
contains a single, concentrated caustic on the floor. Third,
the “MetalRing” contains several sharp caustics scattered
all over the scene. Finally, as a practical example we have
chosen to also include the “HeadLight” scene [BWDS02],
in which the illumination from a (real) car headlight is be-
ing simulated. The curved reflector and front glass in this
scene result in very detailed, high-quality caustic patterns
that have to be simulated with 2.3 million photons in order
to achieve reasonable quality. Even more photons would be
desirable, but could not reasonably be tested on the machine
used for the experiments. Using the combination of fast pho-
ton mapping and interactive ray tracing, the goal was to in-
teractively visualize these illumination patterns, at least for
a static scene.

Note that thought these test scenes also cover a wide range
of geometric complexity (from 1036 triangles in the Met-
alRing scene, to 280k triangles in the Conference scene),
the geometric complexity of the scene is less of an issue:
The query time itself is totally independent of the kind and
number of geometric primitives [Jen01], and the ray trac-
ing time also depends but weakly on the scene complex-
ity [WPSBS03].

4.2. Construction Time

Even though we are mainly interested in photon-mapped
walkthroughs with a precomputed photon map (for which
the construction time is less of an issue), the applicability of
our method also depends on the generation cost.

As can be seen from Table1, building our VVH kd-tree
often is considerably slower than building the left-balanced
tree. This is true even for theO(NlogN)-algorithm presented
in Section3.4. This higher cost – at the same computa-
tional complexity – is due to the need for evaluating the cost
function for each potential split plane in each splitting step,
which is not the case for the balanced code.

Note however that the measurements for left-balancing
the kd-tree have been performed using a highly optimized
implementation [Wal99] that is roughly 2–4 times as fast as
the original code published in [Jen01]. Even compared to
this highly optimized implementation, our overhead for re-
alistic numbers of photons is less than a minute, which is
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Scene N balanced VVH overhead

Conference 152k 0.17 2.98 17.5
2.1M 4.14 53.5 12.9

GlassEgg 96.8k 0.41 1.81 4.41
323k 3.81 6.73 1.76
1.9M 95.2 47.6 0.49

MetalRing 156k 0.20 3.08 19
2.1M 9.91 56.7 5.7

HeadLight 2.3M 74 66 0.88

Table 1: Construction time (in seconds) for the different kd-
trees in our example scenes. As can be seen, the balanced
version is usually faster in construction, but the total con-
struction time for the VVH is still tolerable when compared
to the time for shooting the photons, or for rendering an en-
tire frame. When using many photons, the VVH sometimes is
even faster than left-balancing the kd-tree.

quite tolerable for offline-rendering or walk-through appli-
cations. For certain models with large numbers of photons,
our code surprisingly is even faster than balancing the tree.

Additionally, in contrast to this highly optimized balanc-
ing implementation, our attention on the VVH so far has fo-
cussed on the design of the cost function, and not on an effi-
cient implementation. We believe there is plenty of room left
for reducing the construction time of our method. Finally,
the time for building our optimized kd-tree is usually in the
same range as the time required for shooting the photons.

4.3. Reduction of the Number of Traversal Steps

As mentioned before, the actual goal of using a cost func-
tion for unbalancing the kd-tree was to reduce the number
of traversal steps, i.e. the number of photons touched dur-
ing the nearest-neighbor query. As can be seen in Table2,
our optimized kd-trees can significantly reduce the number
of these traversal steps, especially for scenes with a varying
photon density, and for queries with a small average query
radius. However, even in the conference scene – with a rel-
atively uniform photon distribution and with a very large ra-
dius for getting a smooth approximation of the diffuse illu-
mination – we still achieve some gains of roughly 30%. Also
as expected, the VVH outperforms the balanced version es-
pecially for sharp caustics, where it even leads to improve-
ments by a factor of 2–6.

Note that some of these gains would vanish once largerk
andR would be used during rendering. This however would
hardly be used in practice, as the caustic then would be sig-
nificantly blurred out.

4.4. Impact on Radiance Estimate Performance

As the cost for the radiance estimate is nearly linear in the
number of nodes visited during traversal, the savings out-

Scene N/k photons bal. VVH factor

Conference 152k/150 diffuse 366 296 1.23
2.1M/80 diffuse 371 259 1.43

GlassEgg 96.8k/40 caustic 59.4 10.7 5.55
323k/100 caustic 119 20.5 5.80
1.9M/100 caustic 97.5 16.8 5.80

MetalRing 156k/100 caustic 110 54.6 2.01
2.1M/100 caustic 125 57.0 2.19

HeadLight 2.3M/50 caustic 275 124 2.22

Table 2: Average number of traversal steps for finding
the k nearest photons. Using our optimized kd-tree reduces
the number of visited photons by 1.2–5.8, depending on the
scene and settings. In particular for the caustic scenes, we
achieve improvements of 2x–6x. Note that the average is
smaller than k, as the maximum query radius will avoid most
traversal steps in regions where no caustic is present.

lined in the previous section translate to similar savings in
the radiance estimate: As can be seen in Table3, the number
of queries per second can be increased by up to 3.4, depend-
ing on the scene and rendering parameters.

Note however that the radiance estimate also includes sev-
eral cost factors that can not be affected by our method. For
example, once all photons are found, the radiance estimate
requires to filter the resultingk photons. While this cost is
already included in the measurements in Table3, we have
used only a simple box filter in our experiments. More costly
filters (see e.g. [Jen01]) may reduce the performance impact.

Scene N/k balanced VVH speedup

Conference 152k/150 46k 57k 1.24
2.1M/80 43k 59k 1.37

GlassEgg 96.8k/40 756k 2586k 3.40
323k/100 299k 1031k 3.44
1,9M/100 318k 1074k 3.37

MetalRing 156k/100 212k 357k 1.68
2.1M/100 170k 302k 1.70

HeadLight 2.3M/50 75k 139k 1.85

Table 3: Number of kNN queries on a 2.2GHz Pentium-
IV CPU, using both our optimized BSPs (VVH) and the
left-balanced version with different parameters. As can be
seen, we achieve significant speedups of 1.7–3.4, especially
for highly varying photon distributions and highly localized
queries (i.e. k� N).

As mentioned in the previous section, savings will dete-
riorate for largerk, and improve for smallerk. Though an
excessively largek can in some scenes result in very small
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Figure 2: The MetalRing and GlassEgg scenes, rendered
with both direct illumination (one sample per light source)
and highly detailed caustics (both using N= 2M, k = 100,
R = 0.05). Using our voxel volume heuristic, we increase
the number of radiance estimates by roughly a factor of 1.7
and 3.4, respectively. Even including all other cost for com-
puting shadows, reflections, and refraction (which can not
be accelerated with out method), this amounts to a perfor-
mance increase of 50% and 70%, respectively.

savings, so far we have never found a setting in which our
method performed worse than the balanced version.

4.5. Impact on Final Rendering Performance

So far, we have only measured the performance impact
on query times and radiance estimate. In practice how-
ever systems using the photon map also spend parts of
their time on other tasks, such as on ray tracing, on cal-
culating direct illumination [Jen01, SWZ96], on sampling
and computing BRDFs, and on final gathering or irradiance
caching [WH92, DBB03]

Obviously, the less time the renderer spends in kNN
queries, the smaller the (relative) performance advantage of
our method will be. This is especially true for renderers that
use photon mapping mainly for diffuse illumination, and
which make extensive use of final gathering and irradiance
caching [WH92, DBB03]. These applications will not only
spend only a small fraction of their total rendering time in
kNN queries, they will also use relatively “wide” queries
(with smallN and largek) in the final gather, thereby limit-
ing the impact of our method. This can for example be seen
in the conference scene (see Figure3 and Table4), in which
the final performance impact of our method is only in the
range of 19–35%, even without shooting any shadow rays.

For our target application of visualizing high-quality caus-
tics however our method is well suited: As we can compute
both direct and indirect diffuse illumination in more effi-
cient ways [WPSBS03, BWS03], we are mainly interested
in a fast and high-quality visualization of the caustic photon
map. This also implies a highly varying photon distribution
and very small query radii in order to reproduce fine caustic
details.

For this scenario, our method can lead to significant per-
formance gains, as shown in Table4: For example, in the

Figure 3: Direct visualization of diffuse photons in the con-
ference scene, with (left:) very wide queries using N= 152k,
k = 150 (and correspondingly significant blurring), and
(right:) very localized queries using N= 2M, k= 80 (corre-
spondingly quite noisy). Whereas the speedup for the large
query radius is only 19%, the small query radius yields an
improvement of 35%. This is particularly interesting since
we did not expect any gains at all for as equally distributed
diffuse photons.

Scene N/k balanced VVH speedup

Conference 152k/150 0.118 0.141 1.19
2.1M/80 0.108 0.146 1.35

GlassEgg 96.8k/40 0.88 1.23 1.40
323k/100 0.61 1.01 1.66
1.9M/100 0.62 1.02 1.65

MetalRing 156k/100 0.48 0.71 1.48
2.1M/100 0.40 0.62 1.55

Headlight 2.3M/50 0.24 0.44 1.83

Table 4: Frame rate (in frames per second) when visualizing
a precomputed photon map in several test scenes (see Fig-
ure 1), using a single 2.2GHz Pentium IV CPU at 640x480
pixels. As can be seen, the kd-trees built using our voxel
volume heuristic (VVH) achieve significant performance in-
creases in the range of 20–80%, even including all other
cost, e.g. for shooting primary, secondary and shadow rays.
For the HeadLight scene for example, this translates to 4–
5fps using 5 dual-CPU PCs.

GlassEgg and Metal Ring scenes (see Figure2), we achieve
speedups of 40–66 percent, even including the cost for com-
puting shadows, reflections and refraction, which cannot be
accelerated by faster kNN queries. Furthermore we currently
do not use the fast SSE code [WPSBS03] for shooting these
rays, so the ray shooting cost already starts to dominate the
rendering time, especially after the kNN queries have been
accelerated by factors of 1.7 and 3.4, respectively. Once we
reactivate the fast SSE code for tracing the rays, the (relative)
speedup of our faster queries will be even higher.

In the HeadLight scene (see Figure4), some 2.3 mil-
lion photons were required to sufficiently simulate the de-
tailed caustic pattern of the lamp. As this caustic is rela-
tively spread out, some noise remains, and even more pho-
tons would have been beneficial. In this scene, using the op-
timized kd-tree allowed for improving the frame rate (using
a single 2.2GHz Pentium-IV CPU) from 0.24 to 0.44 frames
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Figure 4: Simulation of a caustic from a (real) car head-
light, which can be inspected interactively. Left: In order to
reproduce the detailed patterns of the spread-out caustic, 2.2
million photons have been used. Using our optimized kd-
trees, the frame rate could be improved from 0.24 to 0.44
frames per second (on a single CPU). Right: a photo of the
real lamp, for comparison.

per second. Using 5 dual-CPU PCs, this corresponds to 4–5
frames per second at video resolution even for this highly
detailed caustic.

5. Summary and Conclusions

In this paper, we have presented a method that takes some of
the ideas from building fast BSPs for ray tracing, and applied
them to build good kd-trees for photon mapping.

We have shown that our optimized kd-trees can outper-
form the currently used balanced ones by a factor of 1.3–3.5,
depending on the actual photon map parameters (e.g. aver-
age query radius and number of photons) and on the actual
photon distribution. Even if a considerable amount of time
is spent in other tasks – such as tracing shadow rays or com-
puting reflections and refractions – we can still achieve sig-
nificant speedups of 40 to 66 percent. In the HeadLight ex-
ample, where most of the time is spent in kNN queries, we
achieve a speedup of 83%.

Moreover, our method is totally orthogonal to all other
techniques typically used for efficient photon mapping and
fast global illumination (at least if these don’t require mod-
ifications to the BSP tree themselves), and can be combined
with anyphoton map based renderer without major changes
and without imposing any restrictions or approximations.

5.1. Future Work

As discussed above, the only operation where our method
leads to an actual cost increase is the construction time,
where our method is often considerably more costly than
building a left-balanced tree. As we did not consider this as
crucial, so far this issue has been neglected, and should be
addressed as future work.

More importantly, it seems interesting to investigate
whether changes to the cost functions can help in further
improving the performance of the kNN queries. For exam-
ple, as already discussed in Section3.3, photon queries can
only happen on the surface of geometric primitives. Thus,
the query density is by no means uniform (as assumed in our
cost function), but is closely related to the density of geo-
metric primitives. This should be somehow integrated into
the cost function.

Since the memory layout of the kd-tree is no longer fixed
as in the pointer-less version, changing the memory layout
of the kd-tree to a more cache-friendly way [Hav99] may
also yield further performance gains.

Finally, it seems interesting to investigate the use of SIMD
instructions [Int02] for accelerating the query itself. Except
for a data-parallel approach of performing four independent
queries in parallel (as in [WSBW01]), an alternative ap-
proach is to reorganize the kd-tree such that it always stores
four neighboring photons in each node. This might eventu-
ally include to entirely switch from a kd-tree to a ray-tracing
style BSP tree that stores photons (in multiples of four) in
the leaves, and to quickly traverse this BSP using SSE.
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