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Abstract. Due to its practical significance and its high degree of parallelism, ray
tracing has always been an attractive target for research in parallel processing.
With recent advances in both hardware and software, it is now possible to create
high quality images at interactive rates on commodity PC clusters.
In this paper, we will outline the “state of the art” of interactive distributed ray
tracing based on a description of the distributed aspects of the OpenRT inter-
active ray tracing engine. We will then demonstrate its scalability and practical
applicability based on several example applications.

1 Introduction

The ray tracing algorithm is well-known for its ability to generate high quality images
but has also been infamous for its long rendering times. Speeding up ray tracing for
interactive use has been a long standing goal for computer graphics research. Significant
efforts have been invested, mainly during the 1980ies and early 90ies, as documented
for example in [11].

For users of graphical applications the availability of real-time ray tracing offers
a number of interesting benefits: The ray tracing algorithm closely models the phys-
ical process of light propagation by shooting imaginary rays into the scene. Thus, it
is able to accurately compute global and advanced lighting and shading effects. It ex-
actly simulates shadows, reflection, and refraction on arbitrary surfaces even in complex
environments (see Figures 1 and 2). Furthermore, ray tracing automatically combines
shading effects from multiple objects in the correct order. This allows for building the
individual objects and their shaders independently and have the ray tracer automatically
take care of correctly rendering the resulting combination of shading effects (cf. Sec-
tion 3.1). This feature is essential for robust industrial applications, but is not offered
by current graphics hardware. Finally, ray tracing efficiently supports huge models with
billions of polygons showing a logarithmic time complexity with respect to scene size,
i.e. in the number of triangles in a scene (cf. Section 3.2). This efficiency is due to inher-
ent pixel-accurateocclusion cullinganddemand drivenandoutput-sensitiveprocessing
that computes only visible results.



1.1 Fast and Parallel Ray Tracing

However, ray tracing is a very costly process, since it requires to trace millions of rays
into a virtual scene and to intersect those with the geometric primitives. In order to im-
prove performance to interactive rates requires to combine highly optimized ray tracing
implementations with massive amounts of computational power.

Due to its high degree of parallelism, together with its practical significance for
industrial applications (e.g. for lighting simulation, visualization, and for the motion
picture industry), especially parallel ray tracing has attracted significant research, not
only from the graphics community (e.g. [16, 5]), but also from the parallel computing
community (e.g. [15]). Muuss et al. [13] and Parker et al. [14] were the first to show that
interactive ray tracing is possible by massive parallelization on large shared memory
supercomputers. More recently, Wald et al. [19] demonstrated that interactive frame
rates can also be achieved on commodity PC clusters. In their research, Wald et. al
have accelerated software ray tracing by more than a factor of 15 compared to other
commonly used ray tracers. This has been accomplished by algorithmic improvements
together with an efficient implementation designed to fit the capabilities of modern
processors. For instance, changing the standard ray tracing algorithm to tracing packets
of rays and to perform computations within each packet in breadth first order improves
coherence, and enables efficient use of data parallel SIMD extensions (e.g. SSE) of
modern processors. Paying careful attention to coherence in data access also directly
translates to better use of processor caches, which increasingly determines the runtime
of today’s programs. The combination of better usage of caches and SIMD extensions
is crucial to fully unfold the potential of today’s CPUs, and will probably be even more
important for future CPU designs.

Even though these optimizations allow some limited amount of interactive ray trac-
ing even on a single modern CPU, one PC alone still cannot deliver the performance
required for practical applications, which use complex shading, shadows, reflections,
etc. In order to achieve sufficient performance on todays hardware requires combining
the computational resources of multiple CPUs.

As has already been shown by Parker et al. [14], ray tracing scales nicely with the
number of processors, but only iffast access to scene datais provided, e.g. by using
shared memory systems. Today, however, the most cost-effective approach to compute
power is a distributed memory PC cluster. Unfortunately they provide only low band-
width with high latencies for data access across the network. In a related publication,
Wald et al. [21] have shown how interactive ray tracing can be realized on such a hard-
ware platform. In the following we briefly discuss the main issues of high-performance
implementations in a distributed cluster environment, by taking a closer look at the
distribution framework of the OpenRT interactive ray tracing engine [18].

2 Distribution Aspects of the OpenRT Interactive Ray Tracing
Engine

Before discussing some of the parallel and distribution details, we first have to take a
closer look at the overall system design.



2.1 General System Design

Client-Server Approach:Even though our system is designed to run distributed on a
cluster of PCs, we assume this ray tracer to be used by a single, non-parallel applica-
tion running on a single PC. As a consequence, we have chosen to follow the usual
client/server approach, where a single master centrally manages a number of slave ma-
chines by assigning a number of tasks to each client. The clients then perform the actual
ray tracing computations, and send their results back to the server in the form of readily
computed, quantized color values for each pixel.

Screen Space Task Subdivision:Effective parallel processing requires to break the task
of ray tracing into a set of preferably independent subtasks. For predefined animations
(e.g. in the movie industry), the usual way of parallelization is to assign different frames
to different clients in huge render farms. Though this approach successfully improves
throughput, it is not applicable to a real-time setting, where only a single frame is to be
computed at any given time.

For real-time ray tracing, there are basically two approaches:object spaceand
screen spacesubdivision [16, 5]. Object space approaches require the entire scene data-
base to be distributed across a number of machines, usually based on an initial spatial
partitioning scheme. Rays are then forwarded between clients depending on the next
spatial partition pierced by the ray. However, the resulting network bandwidth would
be too large for our commodity environment. At today’s ray tracing performance in-
dividual rays can be traced much faster than they can be transferred across a network.
Finally, this approach often tends to createhot-spots(e.g. at light sources that concen-
trate many shadow rays), which would require dynamic redistribution of scene data.

Instead, we will follow the screen-based approach by having the clients compute
disjunct regions of the same image. The main disadvantage of screen-based paralleliza-
tion is that it usually requires a local copy of the whole scene to reside on each client,
whereas splitting the model over several machines allows to render models that are
larger than the individual clients’ memories. In this paper, we do not consider this spe-
cial problem, and rather assume that all clients can store the whole scene. In a related
publication however, it has been shown how this problem can be solved efficiently by
caching parts of the model on the clients (see [21]).

Load Balancing:In screen space parallelization, one common approach is to have each
client compute every n-th pixel (so-called pixel-interleaving), or every n-th row or scan-
line. This usually results in good load balancing, as all clients get roughly the same
amount of work. However, it also leads to a severe loss ofray coherence, which is a key
factor for fast ray tracing. Similarly, it translates to bad cache performance resulting
from equally reducedmemory coherence.

An alternative approach is to subdivide the image into quadrangular regions (called
tiles) and assign those to the clients. Thus, clients work on neighboring pixels that ex-
pose a high degree of coherence. The drawback is that the cost for computing different
tiles can significantly vary if a highly complex object (such as a complete power plant as
shown in Figure 2) projects onto only a few tiles, while other tiles are empty. Forstatic
task assignments– where all tiles are distributed among the clients before any actual



computations – this variation in task cost would lead to extremely bad client utilization
and therefore result in bad scalability.

Thus, we have chosen to use a tile-based approach with a dynamic load balancing
scheme in our system: Instead of assigning all tiles in advance, corresponding to adata
drivenapproach, we pursue ademand drivenstrategy by letting the clients themselves
ask for work. As soon as a client has finished a tile, it sends its results back to the server,
and requests the next unassigned tile from the master.

Hardware Setup: To achieve the best cost-effective setting, we have chosen to use
a cluster of dual-processor PCs interconnected by commodity networking equipment.
Currently, we are using up to 24 dual processor AMD AthlonMP 1800+ PCs with 512
MB RAM each. The nodes are interconnected by a fully switched 100 Mbit Ethernet
using a single Gigabit uplink to the master display and application server for handling
the large amounts of pixel data generated in each image. Note, that this hardware setup
is not even state of the art, as much faster processors and networks are available today.

2.2 Optimization Details

While most of the above design issues are well-known and are applied in similar form
in almost all parallel ray tracing systems, many low-level details have to be considered
in order to achieve good client utilization even under interactivity constraints. Though
we can not cover all of them here, we want to discuss the most important optimizations
used in our system.

Communication Method:For handling communication, most parallel processing sys-
tems today use standardized libraries such as MPI [8] or PVM [10]. Although these
libraries provide very powerful tools for development of distributed software, they do
not meet the efficiency requirements that we face in an interactive environment.

Therefore, we had to implement all communication from scratch with standard
UNIX TCP/IP calls. Though this requires significant efforts, it allows to extract the
maximum performance out of the network. For example, consider the ’Nagle’ opti-
mization implemented in the TCP/IP protocol, which delays small packets for a short
time period to possibly combine them with successive packets to generate network-
friendly packet sizes. This optimization can result in a better throughput when lots of
small packets are sent, but can also lead to considerable latencies, if a packet gets de-
layed several times. Direct control of the systems communication allows to use such
optimizations selectively: For example, we turn the Nagle optimization on for sockets
in which updated scene data is streamed to the clients, as throughput is the main issue
here. On the other hand, we turn it off for e.g. sockets used to send tiles to the clients,
as this has to be done with an absolute minimum of latency. A similar behavior would
be hard to achieve with standard communication libraries.

Differential Updates:Obviously, the network bandwidth is not high enough for sending
the entire scene to each client for every frame. Thus, we only send differential updates
from each frame to the next: Only those settings that have actually changed from the
previous frame (e.g. the camera position, or a transformation of an object) will be sent



to the clients. Upon starting a new frame, all clients perform an update step in which
they incorporate these changes into their scene database.

Asynchronous Rendering:Between two successive frames, the application will usu-
ally change the scene settings, and might have to perform considerable computations
before the next frame can be started. During this time, all clients would run idle. To
avoid this problem, rendering is performed asynchronously to the application: While
the application specifies frameN , the clients are still rendering frameN − 1. Once the
application has finished specifying frameN , it waits for the clients to complete frame
N − 1, displays that frame, triggers the clients to start rendering frameN , and starts
specifying frameN + 1. Note, that this is similar to usualdouble-buffering[17], but
with one additional frame of latency.

Asynchronous Communication:As just mentioned, the application already specifies the
next frame while the clients are still working on an old one. Similarly, all communica-
tion between the server and the clients is handled asynchronously: Instead of waiting
for the application to specify the complete scene to be rendered, scene updates from
the application areimmediatelystreamed from the server to all clients in order to min-
imize communication latencies. Asynchronously to rendering tiles for the old frame,
one thread at the client already receives the new scene settings and buffers them for fu-
ture use. Once the rendering threads have finished, (most of) the data for the next frame
has already arrived, further minimizing latencies. These updates are then integrated into
the local scene database, and computations can immediately be resumed without losing
time receiving scene data.

Multithreading: Due to a better cost/performance ratio, each client in our setup is a
dual-processor machine. Using multithreading on each client then allows to share most
data between these threads, so the cost of sending scene data to a client can be amortized
over two CPUs. Furthermore, both client and server each employ separate tasks for
handling network communication, to ensure minimum network delays.

Task Prefetching:If only a single tile is assigned to each client at any time, a client
runs idle between sending its results back to the server and receiving the next tile to
be computed. As a fast ray tracer can compute tiles in at most a few milliseconds, this
delay can easily exceed rendering time, resulting in extremely bad client utilization. To
avoid these latencies, we let each client request (“prefetch”) several tiles in advance.
Thus, several tiles are ’in flight’ towards each client at any time. Ideally, a new tile is
just arriving every time a previous one is sent on to the server. Currently, each client is
usually prefetching about 4 tiles. This, however depends on the actual ratio of compute
performance to network latency, and might differ for other hardware configurations.

Spatio-Temporal Coherence:In order to make best use of the processor caches on the
client machines load balancing also considers thespatio-temporal coherencebetween
rays by assigning the same image tiles to the same clients in subsequent frames when-
ever possible. As soon as a client has processed all of ’its’ old tasks, it starts to ’steal’
tasks from a random other machine.



3 Applications and Experiments

In the following, we demonstrate the potential and scalability of our system based on
several practical examples. If not mentioned otherwise, all experiments will run at video
resolution of640 × 480 pixels. As we want to concentrate on the practical results, we
will but closely sketch the respective applications. For more details, also see [18, 20, 3].

3.1 Classical Ray Tracing

Plug’n Play Shading: One of the main advantages of ray tracing is its potential for
unsurpassed image realism, which results from its ability to support specialized shader
programs for different objects (e.g. a glass shader), which can then easily be combined
with shaders on other objects in a plug and play manner. This is also the reason why ray
tracing is the method of choice of almost all major rendering packages. The potential
of this approach can be seen in Figure 1: An office environment can be simulated with
several different shaders which fit together seamlessly. For example, a special shader
realizing volume rendering with a skull data set seamlessly fits into the rest of the scene:
i.e. it is correctly reflected in reflective objects, and casts transparent shadows on all
other objects. Using our distribution framework, the ray tracer scales almost linearly to
up to 48 CPUs, and achieves frame rates of up to 8 frames per second (see Figure 4).

Visualisation of Car Headlights for Industrial Applications: Being able to effi-
ciently simulate such advanced shading effects also allows to offer solutions to prac-
tical industrial problems that have so far been impossible to tackle. For example, the
limitations of todays graphics hardware force current Virtual Reality (VR) systems to
make heavy use of approximation, which in turn makes reliable quantitative results im-
possible, or at least hard to achieve. Examples are the visualization of reflections of the
car’s dash board in the side window where it might interfere with backward visibility
through the outside mirror at night. Another example is the high-quality visualization
of car headlights that are important design features due to being the “eyes of the car”.

Figure 1 shows an 800.000-triangle VRML model of a car headlight rendered with
our ray tracing engine [3]. Special reflector and glass shaders are used that carefully
model the physical material properties and intelligently prune the ray trees. The latter
is essential for achieving real-time frame rates because the ray trees otherwise tend to
get very large due to many recursive reflections and refractions. For good visual results
we still have to simulate up to 25 levels of recursion for certain Pixels (cf. Figure 1d).

Fig. 1. Classical ray tracing: (a) Typical office scene, with correct shadows and reflections, and
with programmable procedural shaders. (b) The same scene with volume and lightfield objects.
Note how the volume casts transparent shadows, the lightfield is visible through the bump-
mapped reflections on the mirror, etc. (c) The headlight model with up to 25 levels of reflection
and refraction. (d) False-color image showing the number of reflection levels per pixel (red: 25+).



Simulating this level of lighting complexity is currently impossible to compute with
alternative rendering methods. Thus, for the first time this tool allows automotive de-
signers and headlight manufacturers to interactively evaluate a design proposal. This
process previously took several days for preparing and generating predefined anima-
tions on video. Now a new headlight model can be visualized in less than 30 minutes
and allows designers the long missing option of freely interacting with the model for
exploring important optical effects.

3.2 Interactive Visualization of Highly Complex Models

Apart from its ability to simulate complex lighting situations, another advantage of ray
tracing is that in practice it’s time complexity islogarithmic in scene size [12], allow-
ing to easily render even scenes with several million up to billions of triangles. This is
of great importance to VR and engineering applications, in which such complex mod-
els have to be visualized. Currently, such models have to be simplified before they can
be rendered interactively. This usually requires expensive preprocessing [1, 2], signif-
icant user intervention, and often negatively affects the visualization quality. With our
distributed ray tracing system, we can render such models interactively (see Figures 2
and 4), and – even more importantly – without the need for geometric simplifications.

Figure 2 shows screenshots from two different models: The image on the left shows
three complete power plants consisting of 12.5 million triangles each. Using our ray
tracer, we can easily render several such power plants at the same time, and can even
interactively move parts of the power plant around. Especially the latter is very impor-
tant for design applications, but is usually impossible with alternative technologies, as
simplification and preprocessing ususally work only in static environments.

Yet another advantage of ray tracing is its possibility to useinstantiation, the pro-
cess of re-using parts of a model several times in the same scene. For example, the
second model in Figure 2 consists of only ten different kinds of sunflowers (of roughly
36,000 triangles each) and one type of tree, which are then instantiated several thou-
sand times to form a complete landscape of roughly onebillion triangles. Furthermore,
the scene is rendered including transparency textures for the leaves, and computes even
pixel-accurate shadows cast by the sun onto the leaves (see Figures 2c and 2d). Using
our framework, both scenes can be rendered interactively, and achieve almost-linear
scalability, as can be seen in Figures 2 and 4.

Fig. 2.Complex models: (a) Three powerplants of 12.5 million individual triangles each, render-
ing interactively at 23 fps. (b) A closeup on the highly detailed geometry. (b) An outdoor scene
consisting of roughly 28,000 instances of 10 different kinds of sunflowers with 36,000 triangles
each together with several multi-million-triangle trees. The whole scene consists of roughly one
billion triangles and is rendered including shadows and transparency. (d) A closeup of the highly
detailed shadows cast by the sun onto the leaves.



3.3 Interactive Lighting Simulation

Even though classical ray tracing as described above considers only direct lighting ef-
fects, it already allows for highly realistic images that made ray tracing the preferred
rendering choice for many animation packages. The next step in realism can be achieved
by including indirect lighting effects computed byglobal illuminationalgorithms as a
standard feature of 3D graphics (see Figure 3).

Global illumination algorithms account for the often subtle but important effects
of indirect lighting effects in a physically-correct way [6, 7] by simulating the global
light transport between all mutually visible surfaces in the environment. Due to the
need for highly flexible visibility queries, virtually all algorithms today use ray tracing
for this task. Because of the amount and complexity of the computations, rendering
with global illumination is usually even more complex than classical ray tracing, and
thus slow and far from interactive, taking several minutes to hours even for simple
diffuse environments. The availability of real-time ray tracing should now enable to
compute full global illumination solutions also at interactive rates (see Figure 4). We
will not cover the details of the algorithm here, which are described in close detail
in [20] and [4].

Using our system, we can interactively simulate light propagation in a virtual scene,
including soft shadows, reflections and indirect illumination. As each frame is recom-
puted from scratch, interactive changes to the environment can be handled well, allow-
ing to modify geometry, lights and materials at interactive rates.

4 Results and Conclusions

In this paper, we have shown how efficient parallelization of a fast ray tracing kernel on
a cluster of PCs can be used to achieve interactive performance even for high-quality
applications and massively complex scenes. We have sketched the parallelization and
distribution aspects of the OpenRT distributed interactive ray tracing engine [18], which
uses screen-space task subdivision and demand-driven load balancing, together with
low-level optimization techniques to minimize bandwidth and to hide latencies. The
combination of these techniques allow the system to be used even in a real-time set-
ting, where only a few milliseconds are available for each frame. We have evaluated
the performance of the proposed system (see Figure 4) in a variety of test scenes, for
three different applications: Classical ray tracing, visualising massively complex mod-
els, and interactive lighting simulation: Due to the limited bandwidth of our display

Fig. 3.An interactive global illumination application in different environments. From left to right:
(a) A conference room of 280.000 triangles, (b) The “Shirley 6” scene, with global illumination
including complex procedural shaders, (c) An animated VRML model, and (d) global illumina-
tion in the power plant with 37.5 million triangles. All scenes render at several frames per second.
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Fig. 4. Scalability of our system on a cluster of up to 48 CPUs. Note that the system is limited to
about 22–24 frames per second due to the limited network connection of the display server. Up
to this maximum framerate, all scenes show virtually linear scalability.

server (which is connected to the Gigabit uplink of the cluster), our framerate is limited
to roughly 22–24 frames per second at640 × 480 pixels, as we simply cannot transfer
more pixels to the server for display. Up to this maximum framerate however, all scenes
show virtually linear scalability for up to 48 CPUs (see Figure 4).

The presented applications have also shown that a fast and distributed software im-
plementation of ray tracing is capable of delivering completely new types of interactive
applications: While todays graphical hardware solutions (includingboth the newest
high-performance consumer graphics cardsand expensive graphics supercomputers)
can render millions of triangles per second, they can not interactively render whole
scenes of many million to even billions of triangles as shown in Section 3.2.

Furthermore, such hardware architectures can not achieve the level of image quality
and simulation quality that we have shown to be achievable with our system (see Sec-
tion 3.1). This is especially true for interactive lighting simulation (Section 3.3), which
– due to both its computational cost and its algorithmic complexity – is unlikely to be
realized on graphics hardware any time soon. With this capability of enabling com-
pletely new applications, our system provides real value for practical applications, and
is already being used in several industrial projects.

Still, typical VR applications demand even higher resolutions and even higher fram-
erates. Typically, resolutions up to1600×1200 are required to drive equipment such as
PowerWalls etc, and ’real-time’ applications usually demand frame rates of 25 frames
per second and more. This leaves enough room for even more parallelization, and
also requires to eventually think about more powerful network technologies (such as
Myrinet [9]) to provide the required network performance.
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