
Computer Graphics Group, Saarland University. Technical Report TR-2002-03 (2002)
(Editors)

Interactive Headlight Simulation
– A Case Study of Interactive Distributed Ray Tracing –

Carsten Benthin, Tim Dahmen, Ingo Wald, Philipp Slusallek

Computer Graphics Group
Saarland University

{benthin,dahmen,wald,slusallek}@graphics.cs.uni-sb.de

Abstract

Todays rasterization graphics hardware provides impressive speed and features making it the standard tool for
interactively visualising virtual prototypes early in the industrial design process. However, due to inherent limita-
tions of the rasterization approach many optical effects can only be approximated. For many products, in particular
in the car industry, the resulting visual quality and realism is inadequate as the basis for critical design decisions.
Thus the original goal of using virtual prototyping — significantly reducing the number of costly physical mockups
— often cannot be achieved.
Interactive ray tracing on a small cluster of PCs is emerging as an alternative visualization technique achieving
the required accuracy, quality, and realism. In a case study this paper demonstrates the advantages of using
interactive ray tracing for a typical design situation in the car industry: visualizing the prototype of headlights.
Due to the highly reflective and refractive nature of headlights, proper quality could only be achieved using a fast
interactive ray tracing system.

1. Introduction

Interactive visualization of virtual prototypes is becoming an
essential tool in the industrial design process. Virtual pro-
totypes are increasingly used as the basis for critical and
early design decisions in order to shorten the design pro-
cess and evaluate more design alternatives. If decisions can
be based on accurate data from visualizing the virtual proto-
types, costly and time-consuming physical mockups can be
avoided.

In this paper we concentrate on the design of car head-
lights. Headlights are often called the “eyes” of a car and
are particularly important for the overall visual impression
of the car. Thus, significant efforts are spend on their appro-

priate appearance. The design is constrained by the required
lighting properties, but also by the shape and placement dic-
tated by the design of the car body and other factors.

Currently, for each new model of a car several iterations of
building and evaluating physical prototypes are performed.
Each iteration takes several weeks to months and is fairly ex-
pensive due to custom-made tools required to form the front
glass and the reflector. Virtual prototyping should be able to
reduce the number of physical prototypes, and reduce cost
and time in the design process.

However, there are many constraints that must be met in
order for a visualization technique to be used in the daily
design process.

c
�

The Eurographics Association 2002.

Benthin et al / Interactive Headlight Simulation

1.1. Realism

Designers and managers must be able to rely on the data pro-
vided by the visualization of a prototype. They can not the
loss of realism and accuracy caused by coarse limitations in
current graphics hardware. With current graphics technology
the accuracy, quality, and realism of virtual prototypes are
inadequate as the basis for important design decisions. Hard-
ware heavily relies on approximations for rendering impor-
tant visual effects. For example, it is impossible to accurately
simulate the reflection and refraction of light in curved sur-
faces with rasterization hardware. Ray tracing, however, is
able to simulate these effects but due to its high computional
cost is still used only as an offline visualization technique.

1.2. Interactivity

Interactivity is another key factor for the effective visualiza-
tion of prototypes. Certain optical effects may only appear
during interaction with the prototype. This is particularly rel-
evant for optical effects, such as highlights and reflection
patterns in especially designed reflectors. Such highlights
appear only from very specific positions or lighting condi-
tions. Designers must be able to interactively explore such
situations in order to find optimal solutions.

1.3. Geometric Complexity and Automatic Processing

The original car models used by design systems are often of
high geometric complexity. This results from the fact that
these systems usually work with free-form geometry like
NURBS, and use tessellation to convert them to triangles,
often yielding hundreds of thousands of triangles. Further-
more, modeling tools also use libraries of existing parts,
which can be arbitrarily geometrically complex themselves,
even though they form only a minor part of the whole model.

The geometric complexity of the whole model is usually
too high for current graphics hardware, and has to be re-
duced to tractable levels. This process is usually only semi-
automatic, and requires significant time and manual effort. It
would be highly desirable to have a system that can handle
the geometric complexity of the original model.

2. Previous Work

There is currently no solution to visualize car headlights
with a high-enough quality to be used in the design pro-
cess. State-of-the-art is to render an animation using an
animation/rendering package based on ray tracing (e.g.
Maya/Alias Wavefront1). Specifying and rendering the an-
imation alone may take several days and is often performed
over the weekend. Even then, the results are not adequate
for critical decisions, as they do not allow interactive explo-
ration.

Rasterization based systems do not allow accurate simu-
lation of reflections off curved surfaces, nor can they handle
multiple reflections and self-reflection.

Ray Tracing would allow for an accurate simulation of
the optical effects in headlights, but has been too slow for
interactive use. Recently, systems for interactive ray tracing
have been developed: Using a large shared memory super-
computer, Muss et. al 3 � 4 have demonstrated that a traditional
ray tracer can interactively render several hundred thousands
of CSG primitives that would correspond to several million
polygons after tesselation.

Similarly, at the University of Utah Parker et. al 6 have
built an interactive ray tracing system that is also based on a
large shared-memory computer. Beside standard ray tracing
their system is being used to visualize volumetric data sets
and to render high-quality iso-surfaces7 � 5.

Recently, Wald et. al 13 � 11 showed that distributed ray trac-
ing using a cluster of commodity PCs is also able to interac-
tively visualize highly complex models with up to 12.5 mil-
lion polygons. Wald et al. also demonstrated that their ray
tracing engine can be used to build an interactive global illu-
mination system 12. We build on this distributed ray tracing
engine for this case study.

3. Headlight Visualization - A Case Study

In order to provide exact results for the visualization of car
headlights, we use a distributed ray tracing system running
on commodity PC hardware. In order to be usable in prac-
tice, our visualization system has to meet several require-
ments.

First, our system has to meet the quality standard set
by the car industry. Even though no actual physical com-
parisons have been performed yet, the rendering quality
achieved by our system should at least match the quality of
the current off-line visualization tools. In general, the sys-
tem has to be ’sufficiently accurate’ to help the designers
in their design decisions. Therefore, we have been provided
with several reference images (see Figure 5).

Second, the system has to deliver interactive performance.
It should allow the user to move to and inspect any de-
sired location with interactive feedback (i.e. more than one
frame/sec) at video resolution.

Third, the geometry handling should be fully automatic.
In our example, the headlight model consists of roughly
800,000 triangles in total. This would already be challenging
for many systems based on triangle rasterization. Due to the
logarithmic cost in scene complexity it is a rather moderate
scene complexity for ray tracing. Therefore, we can directly
load the original model without the need for geometric sim-
plification and approximations.

Finally, the price of a system has proven to be only a mi-
nor issue if a system can solve a problem that would not be

c
�

The Eurographics Association 2002.

Benthin et al / Interactive Headlight Simulation

solvable at all otherwise. Our system uses a cluster of com-
modity PCs, which in total costs less than $30.000 for 16
nodes.

4. Implementation

In the following, we will give a brief overview of how our
system is implemented and which techniques are used to
provide realistic visualization.

4.1. Software Environment

In order to achieve interactive ray tracing performance, we
use the OpenRT rendering engine 10, which provides a sim-
ple interface to a fast distributed ray tracing system. An
OpenRT-based VRML viewer parses all geometry data and
transfers it to the ray tracing core. Communication between
VRML application and library is done exclusively via the
OpenRT API. The simulation code itself is implemented as
a surface shader attached to specific geometry.

As mentioned before the OpenRT ray tracing core sup-
ports distributed rendering on a cluster of commodity PCs. It
uses a client/server-based architecture where the server hosts
the application, and a cluster of client PCs is used for render-
ing. All OpenRT commands, including scene data is broad-
cast to all rendering clients. In order to exploit the compute
power of all clients the server uses dynamic load balancing 8

and schedules work based on image tiles. After an image tile
has been rendered by a client, the corresponding color infor-
mation is sent back to the server.

Due to the ray-tracing-based rendering core a spatial in-
dex structure has to be built before rendering. Building this
data structure and transferring all required data takes only a
couple of seconds. In order to achieve better image quality
without loss in performance OpenRT supports progressive
anti-aliasing: if no user interaction occurs subsequent frames
will be accumulated using different pixel sampling patterns
per frame.

4.2. Glass Simulation

As the reflective and refractive nature of the glass body
forms the actual core problem of the application, most work
has been spent on the glass simulation. However, even with
a very fast ray tracing system, some compromises had to be
made to achieve interactive performance. However, the same
limitations also hold for the currently used off-line visualiza-
tion tools.

Currently, our system does not handle wavelength-
specific effects, and uses only a single index of refraction for
all color components. As such, prism-effects will not be sim-
ulated. Similarly, we currently ignore polarization effects.

For the actual reflection and refraction calculations, our
glass shader is in principle not much different from other

glass shaders used in many ray tracers. For each incoming
ray, a reflection and a refraction ray are generated, recur-
sively traced through the environment, and weighed with
their respective physical contribution based on the respec-
tive Fresnel term.

However, some important differences do exist: In order to
avoid infinite recursion for rays being ’trapped’ in a glass
body, most ray tracers usually specify a maximum reflection
depth of usually 4 to 8. For a simulation of such a complex
glass body as used in our system, this would not be suffi-
cient: A typical ray has to enter and leave the front glass,
perhaps pass through two layers of glass surface on the front
and two on the back of the light bulb before hitting the reflec-
tor, and has to take the same way out, not even considering
multiple reflections inside the object. The maximum recur-
sion level used to compute the different pixels can be seen in
Figure 1.

Figure 1: The left image illustrates the recursion depth
required for computing each pixel (accuracy 95%). Each
color corresponds to a different depth: black(0), blue(

�
5),

magenta(
�

10), green(
�

15), yellow(
�

20), red(� 25). The
right image shows the original image for comparisons.

On the other hand, tracing rays up to a recursion level of
20 and more creates a huge performance problem: As glass
is usually both reflective and refractive, tracing both rays at
each recursion level would lead to an exponential explosion
of rays traced per pixel (approximately one million for a sin-
gle pixel with reflection depth 20). Sub-sampling the whole
shading tree with Monte Carlo techniques such as Russian
Roulette sampling at each recursion level is an option, but
would require considerable effort to remove the Monte Carlo
noise that would be extremely disturbing in an interactive
setting.

To overcome this problem, we currently track the contri-
bution of each path to the actual pixel. Purely local deci-
sion – e.g. by comparing each local weight to a minimum
threshold- is not sufficient, as the accumulation of weights
can lead to a ray becoming unimportant even though every
local weight is above the threshold. However, this requires
that the different shaders in the system have to communi-
cate on which values have to be tracked and updated at each
reflection point.

c
�

The Eurographics Association 2002.

Benthin et al / Interactive Headlight Simulation

By not tracing paths that would not lead to a significant
pixel contribution, the rays traced per pixel can be reduced
to a tolerable level. We define this contribution threshold as
’accuracy’. An accuracy of 99% means that a ray will be
terminated if its pixel contribution is below 1%. Tests have
shown that using an accuracy of more than 95% produces no
visual improvement. Figure 2 presents the number of rays
shot per pixel using an accuray of 95%.

Figure 2: The left image shows the number of rays used to
compute each pixel (accuracy 95%). Each color represents
a different number: black(< 1 rays per pixel), blue(

�
10),

magenta(
�

20), green(
�

30), yellow(
�

40), red(� 50). The
right image shows the original image for comparisons.

4.3. High-Dynamic-Range Environment Map

Due to the highly reflective nature of the headlight, almost
all illumination comes from the environment. In order to
simulate these effects, we took the common approach of us-
ing an environment map. Real environments usually cover a
high dynamic range of radiance values. As such, using high-
dynamic-range environment maps is very important, as they
increase the fidelity of the images. As our rendering engine
uses full floating point accuracy for all lighting and shading
computations, this was easily integrated into our visualiza-
tion system. See Figure 3 for the impact of high-dynamic
range effects. In principle, supporting high-dynamic range
environments allows to put the virtual headlight prototype
into any kind of measured environment.

Figure 3: Enhanced visual quality using a High Dynamic
Range Environment Map: Low dynamic range rgb environ-
ment map on the left, and a high dynamic range environment
map on the right.

4.4. Tone Mapping

Using high-dynamic-range environment maps also requires
tone mapping 14 before displaying the image. We currently
use the tone mapping method proposed by Schlick 9. As our
system is purely software-based, implementing tone map-
ping is straight forward. However, some caution has to be
taken due to parallelization: as a client sends only discretized
8-bit RGB values back to the server, tone mapping has to
be applied on the clients. This is problematic because the
tone mapping algorithms ususally need information about
the whole image. We solve this problem by adapting the tone
mapping parameters for the next frame based on the results
for the current frame. The improvements due to using high-
dynamic-range environment maps and tone mapping can be
seen in Figure 3.

5. Results

All tests were performed on a cluster of 16 dual-AthlonMP
1800+ PCs, leading to a maximum of 32 CPUs. Using this
configuration we are able to achieve frame rates of up to 10
frames per second at video resolution (of 640x480). Figure 4
shows the nearly linear scalability offered by the OpenRT
ray tracing core depending on the number of clients.

Figure 4: Frame rate of our system at various image reso-
lutions, and with different numbers of clients: Almost linear
scalability is achieved even up to 16 clients (32 CPUs).

Due to the limitations of the underlying network architec-
ture (bandwidth,latency), our system currently cannot han-
dle efficiently the broadcast of the whole geometry per
frame. However, the location of certain (static) parts can be
interactively changed. As such, the light bulb can be moved
out of the lamp, the glass cover can be taken off, etc. Other
missing effects as discussed in Section 4.2 can be added eas-
ily.

As described before, we have been provided with refer-
ence images created with the previously used off-line vi-
sualization tools. Comparing our images to these reference
images demonstrate that our system offers at least the same

c
�

The Eurographics Association 2002.

Benthin et al / Interactive Headlight Simulation

Figure 5: Rendering quality achieved by our visualization system: The left image illustrates the reference quality produced by
an off-line ray tracer, and the right image shows the quality achieved by our system. For comparison, the middle image is a
photo of the physical model.

quality – but at interactive speeds. Comparing to actual pho-
tographs of a physical model of the headlight show that we
are able to achieve a very realistic visualization, as can be
seen in Figure 5.

6. Conclusions and Future Work

This paper demonstrates that interactive ray tracing is be-
coming an important alternative to current interactive visu-
alization techniques. For some applications, like the head-
light simulation discussed here, it is the only viable solution.
As the trend towards more realism and geometrically more
complex models continues, it seems that ray tracing will be-
come increasingly important for future applications.

Of particular importance in this context is the flexibility
of extending the basic ray tracing algorithms with custom
programmed shaders. With ray tracing, shading is separated
from visibility computations and is not constrained by the
strict pipeline model of rasterization hardware. Therefore,
different shaders are independent of each other and are much
simpler to write.

Implementation of the headlight simulation required rela-
tively little effort, as most of the actual work is performed by
the underlying rendering engine. Therefore, modifications to
the system can also be applied by non-expert users through
editing the shaders.

Highly complex lighting simulations, as the one presented
here, still require considerable compute power in the form of
a small PC cluster. Even though Moore’s law will help over
time, it seems necessary to add some form of hardware sup-
port. Both CPU and GPU designers are currently investigat-
ing such hardware support for ray tracing.

Our system depends mainly on dynamically loaded
shaders, and does not interfere with the underlying interac-
tive distributed ray tracing engine. Therefore, we can exploit
the full performance of the OpenRT rendering engine, and
can efficiently scale to many CPUs. Using a cluster of 16
Dual-AthlonMP 1800+ PCs, we are able to achieve frame

rates up to 10 frames per second for the complete reflection
simulation at a resolutions of 640x480 pixels.

Due to the OpenRT’s ability to handle complex scenes,
we are able to directly handle the high geometric complexity
of 800.000 triangles without the need for geometric simpli-
fications and approximations. As such, our system is fully
automatic, and can greatly reduce the turn-around times in
the industrial design process.

In future, we are considering to make our system available
to the industry by integrating it into commercial applica-
tions. Furthermore, our system can easily be adapted to solve
similar problems in the industry, e.g. simulating reflections
in car windshields, or in instruments of aircraft cockpits. Fi-
nally, it would be desirable to integrate the system with a full
lighting simulation in order to be able to also visualize the
lighting effects of the headlight.

Acknowledgements

We would like to thank all the people that have contributed
to this paper: Markus Wagner has adapted his VRML-based
scene viewer for use with OpenRT. Philippe Bekaert has
graciously provided access to his excellent VRML-97 li-
brary 2 for building the VRML viewer, and has also provided
the high-dynamic-range images of the Max-Planck-Institut
foyer used for the environment map.

Finally, we would like to thank the headlight manufac-
turer Hella for granting permission to use their model for
this publication.

References
1. Alias Wavefront. Maya. http://www.aliaswavefront.com. 2

2. Philippe Bekaert. Extensible scene graph manager.
http://www.cs.kuleuven.ac.be/ graphics/XRML/, August 2001. 5

3. Michael J. Muuss. Towards real-time ray-tracing of combinatorial solid geometric
models. In Proceedings of BRL-CAD Symposium ’95, June 1995. 2

4. Michael J. Muuss and Maximo Lorenzo. High-resolution interactive multispectral
missile sensor simulation for atr and dis. In Proceedings of BRL-CAD Symposium
’95, June 1995. 2

c
�

The Eurographics Association 2002.

Benthin et al / Interactive Headlight Simulation

5. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter Pike Sloan.
Interactive ray tracing for isosurface rendering. In IEEE Visualization ’98, pages
233–238, October 1998. 2

6. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter Pike Sloan.
Interactive ray tracing. In Interactive 3D Graphics (I3D), pages 119–126, april
1999. 2

7. Steven Parker, Peter Shirley, and Brian Smits. Single sample soft shadows. Tech-
nical Report UUCS-98-019, Computer Science Department, University of Utah,
October 1998. http://www.cs.utah.edu/ bes/papers/coneShadow. 2

8. Erik Reinhard. Scheduling and Data Management for Parallel Ray Tracing. PhD
thesis, University of East Anglia, 1995. 3

9. Christophe Schlick. High dynamic range pixels. Graphics Gems, 4:422–429, 1994.
4

10. Ingo Wald, Carsten Benthin, and Philipp Slusallek. OpenRT – A Flexible and
Scalable Rendering Engine for Interactive 3D Graphics. submitted for publica-
tion, meanwhile available as a Technical Report, TR-2002-01, Saarland University,
available at http://www.openrt.de/Publications, 2002. 3

11. Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek. Interactive
rendering with coherent ray tracing. Computer Graphics Forum, 20(3), 2001. 2

12. Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp
Slusallek. Interactive global illumination. Technical report, Computer Graphics
Group, Saarland University, 2002. to be published at EUROGRAPHICS Work-
shop on Rendering 2002, available online at http://www.openrt.de/Publications. 2

13. Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive distributed ray trac-
ing of highly complex models. In Proceedings of the 12th EUROGRPAHICS Work-
shop on Rendering, June 2001. London. 2

14. G. Ward. A Contrast-Based Scalefactor for Luminance Display. In P. Heckbert,
editor, Graphics Gems IV, pages 415–421. Academic Press Professional, 1994. 4

c
�

The Eurographics Association 2002.

