
Graphics Hardware (2002), pp. 1–11
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

SaarCOR — A Hardware Architecture for Ray Tracing

Jörg Schmittler, Ingo Wald, Philipp Slusallek

Computer Graphics Group, Saarland University, Germany

Abstract
The ray tracing algorithm is well-known for its ability to generate high-quality images and its flexibility to support
advanced rendering and lighting effects. Interactive ray tracing has been shown to work well on clusters of PCs
and supercomputers but direct hardware support for ray tracing has been difficult to implement.
In this paper, we present a new, scalable, modular, and highly efficient hardware architecture for real-time ray
tracing. It achieves high performance with extremely low memory bandwidth requirements by efficiently tracing
bundles of rays. The architecture is easily configurable to support a variety of workloads. For OpenGL-like scenes
our architecture offers performance comparable to state-of-the-art rasterization chips. In addition, it supports all
the usual ray tracing features including exact shadows, reflections, and refraction and is capable of efficiently han-
dling complex scenes with millions of triangles. The architecture and its performance in different configurations
is analyzed based on cycle-accurate simulations.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architec-
ture I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism B.5.1 [Hardware Design]: Register-
Transfer-Level Implementation

1. Introduction

Currently, interactive computer graphics is almost exclu-
sively available through graphics hardware based on the ras-
terization algorithm. Over the last few years hardware inte-
gration allowed this approach to offer high performance 3D
graphics even on low cost PCs.

However, rasterization hardware is severely limited by
memory bandwidth due to frequent overwrites of pixels in
the framebuffer and its heavy use of Z and stencil buffers.
Current graphics chips require the latest memory technology
and high memory clock rates to reach their performance.

Additional limitations result from the strict pipeline struc-
ture of the rasterization hardware. The implementation of
advanced rendering effects requires complex, non-intuitive,
and non-trivial use of textures, multiple rendering passes,
and complex pipeline programming. Even then, most effects
can only be approximated because their complex sampling
pattern cannot be supported efficiently, even for simple cases
such as reflections.

Furthermore, rasterization performance decreases linearly
with the number of triangles in a scene. This requires com-
plex algorithms, such as geometry simplification or occlu-

sion culling, to be implemented by applications in order to
reduce the number triangles to be submitted to the hardware.

Ray tracing does not suffer from these problems. It scales
logarithmically in the number of triangles using a sim-
ple hierarchical acceleration structure and occlusion culling
comes for free 30. The requirements for shading and frame
buffer access are low as every ray gets shaded exactly once
and no Z buffer tests are required to resolve visibility. Ray
tracing can also be parallelized easily as each ray is essen-
tially independent of all other rays.

Because ray tracing is not limited to a strict pipeline struc-
ture, shading can be separated from visibility computations
and can be executed asynchronously. This allows the di-
rect use of sophisticated shaders (like RenderMan 8) that re-
sult in physically correct images — providing correct shad-
ows, multiple reflections on arbitrary surfaces, complex re-
flectance functions, and correct visual effects, such as trans-
mission and refraction.

Attempts to directly implement ray tracing in hardware
has caused many problems due to its use of recursion, the
high requirements for floating point computation and its ir-
regular and high bandwidth memory access patterns. This

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

has made ray tracing rather unattractive for a hardware im-
plementation.

The ray tracing architecture presented in this paper is
based on the observation that significant coherence between
rays does exist and can be exploited 30 by rearranging the
core ray tracing algorithm. While this has worked well al-
ready for a software implementation it is even more attrac-
tive for hardware.

We show that for OpenGL-like scenes ray tracing hard-
ware offers performance comparable to state-of-the-art ras-
terization hardware with significantly lower bandwidth re-
quirements. In addition, ray tracing hardware provides much
higher image quality and handles significantly larger scenes
than current rasterization hardware.

In this paper, we concentrate on the ray traversal and in-
tersection part of a ray tracing architecture and only briefly
consider shading with a fixed Phong-like reflection model
and a single bilinearly filtered texture. In a related publica-
tion 28 we show that dynamic changes of the scene can effe-
ciently be supported even for a ray tracer. With OpenRT 29

we have also proposed an API for ray tracing. This API is
based on OpenGL but has been extended to better support
the requirements of ray tracing based renderers.

Using a configuration of our architecture that is compara-
ble to the complexity† of current rasterization hardware, we
achieve more than 200 frames per second (fps) for typical
OpenGL-like scenes, rendered at 1024x768 pixels. The stan-
dard configuration of our architecture, which has roughly
half the cost of current rasterization hardware, still renders
highly complex scenes with millions of triangles, and high-
quality shading including multiple reflections and shadows
from several light sources at more than 25 fps.

2. Previous Work

Interactive 3D graphics today is entirely dominated by ras-
terization hardware1. Today’s consumer graphic cards re-
quire significant compute power and memory bandwidth to
achieve their level of performance. For example Nvidia’s
GeForce 310 offers 76 GFlops at a clock rate of 200 MHz and
has a 256 bit wide memory interface running at 230 MHz.
These results require at least 380 parallel floating point units
and offer a memory bandwidth of 7.2 GB/s.

A major issue with most rasterization approaches is scal-
ability. One exception is the Pomegranate architecture 2.
However this architecture requires high bandwidth connec-
tions as well as complex routing schemes between the func-
tional units.

In contrast to rasterization hardware, ray tracing scales
trivially, and can easily be parallelized. Several approaches

† measured in floating point power and bandwidth to main memory

have already been realized on MIMD and SIMD architec-
tures 4, 5, 13. Exploiting this scalability by massive paral-
lelization has recently allowed interactive ray tracing to be
achieved in software. It was first realized on supercomputers
16, 12, 19, 17, 18, 23 and more recently, interactive performance
has been brought to commodity clusters of standard PCs
30, 31. Our hardware implementation is based on an extended
version of the software approach outlined in 30. For a detailed
overview of the state-of-the-art in interactive ray tracing see
27.

Beside using existing architectures, several special pur-
pose hardware architectures for ray tracing have been devel-
oped. Initially hardware support provided was only for the
intersection-operation. For a survey see 3. Later DSPs were
used to build PC-card based ray tracing accellerators 6. Sev-
eral volume ray casters on PC-cards have been developed
15, 22, 21 and there is a commercially available hardware ar-
chitecture for high quality off-line ray tracing 26, 7.

While these projects achieved remarkable results and
work well as accellerators for ray tracing, none of them are
capable of delievering full-screen real-time frame rates com-
parable to those of current rasterization hardware.

Instead of designing special purpose hardware for ray
tracing, another interesting approach is to map it to more
general architectures available in the near future: Using a a
multi-processor system on a single chip 14, Purcell has de-
veloped a highly optimized distributed ray tracer that would
be capable of delivering interactive performance 24. More re-
cently, it has been shown that ray tracing can also be mapped
to next generation’s standard rasterization hardware using
shader programs 25. These two projects show that ray tracing
can in principle be realized on such hardware architectures.
In this paper we explore the efficiency and complexity re-
quired for designing special purpose hardware for ray trac-
ing.

3. The Ray Tracing Algorithm

The ray tracing algorithm consists of three parts: generating
rays from the viewer’s eye through the pixels of the screen,
tracing these rays through the scene delivering triangle hit
points, and finally shading the ray given a hit point. For ad-
vanced lighting effects new rays may be spawned recursively
from the hit point.

In this paper we concentrate on the second part: tracing
rays through the scene. This has been the major bottleneck in
previous attempts to design hardware for ray tracing. Issues
are dealing with the recursion and reducing the bandwidth
requirements to the cache, which for a naive implementa-
tion would reach ≈ 300 GB/s at 100 fps for our benchmark
scenes.

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

3.1. Tracing Packets of Rays

Wald et al.30 have proposed a simple iterative traversal al-
gorithm using axis-aligned BSP trees and a fast ray triangle
intersection routine. In their system rays are traced in pack-
ets of four rays, which reduces bandwidth and allows the use
of SIMD instructions available in modern processors.

We use the same approach but with larger packets of rays.
All rays of a packet are traversed simultaneously through the
BSP tree, entering a child node if any of the rays pierces it.
In the case when both children need to be traversed, the it-
erative traversal algorithm stores one of the children onto a
stack and enters the other one. Obviously, grouping rays in
a packet only works out if the rays are coherent and visit
roughly the same items in the BSP tree. Then traversed BSP
nodes need to be fetched only once to be used for every ray
in a packet. This dramatically reduces the bandwidth in pro-
portion to the size of the packet.

However, large packets also increase the overhead as they
cause more rays to traverse BSP nodes they would not tra-
verse if traced individually or in smaller packets. To over-
come this problem, we associate a bit vector with each
packet. For each ray this bit vector indicates whether the ray
is active in the current branch of the BSP tree. This allows us
to efficiently operate on only a subset of rays in a packet and
dramatically reduces the overhead. In hardware the overhead
of updating and evaluating the bit vector is almost negligible.

Measurements show that groups of 64 rays are a good
compromise between bandwidth requirements, additional
overhead, and on-chip memory required for storing the rays.
Figure 1 shows the influence of the number of rays per
packet on the amount of memory transfered during render-
ing of one frame (i.e. the bandwidth to the cache). It also
shows the average amount of memory touched by tracing
one packet. This amount gives a rough estimate of the mini-
mum size a cache should have.

4. The Hardware Architecture

Our hardware architecture (see Figure 2) consists of a cus-
tom ray tracing chip connected to several SDRAM chips, a
framebuffer, and a PCI/AGP bridge all placed on a single
PC board. The PCI/AGP bridge is used to upload scene data
and camera settings from the host. The SDRAM chips store
the entire scene including geometry, BSP tree, and materi-
als/shaders. The image is rendered into the framebuffer or
transfered back to the host.

The custom chip contains our ray tracing hardware archi-
tecture SaarCOR (Saarbrücken’s Coherence Optimized Ray
Tracer).

0

500

1000

1500

2000

2500

3000

1 4 16 64 256 1024 4096
0

10

20

30

40

50

60

t
o
t
a
l

m
e
m
o
r
y

t
r
a
n
s
f
e
r
e
d

p
e
r

f
r
a
m
e

[
i
n

M
B
]

a
v
g
.

m
e
m
o
r
y

t
r
a
n
s
f
e
r
e
d

p
e
r

p
a
c
k
e
t

[
i
n

K
B
]

number of rays per packet

total mem: Office, 3,9 mio rays shot
avg. mem: Office, 3,9 mio rays shot

total mem: Cruiser, 2,4 mio rays shot
avg. mem: Cruiser, 2,4 mio rays shot

Figure 1: Influence of the number of rays per packet on the
amount of memory transfered during rendering of one frame
and the average amount of memory requested by a packet.
The latter figure gives a rough estimate of the minimum size
a cache should have.

4.1. The SaarCOR Chip

The SaarCOR chip is split into three main units: the ray gen-
eration and shading unit (RGS), the ray tracing core (RTC),
and a unit to manage memory access (RTC-MI).

The architecture is designed to be modular and scalable by
exploiting the inherent parallelism of ray tracing and shad-
ing. Adding more functional units to either the RGS or the
RTC allows to independently scale the shading or ray tracing
performance, respectively.

4.1.1. Ray Generation and Shading

The ray generation and shading unit is again split into three
types of sub-units: a single master determining which eye
ray will be rendered next, one slave for each connected RTC
receiving the coordinates of a pixel from the master and
managing this ray until it is fully rendered, and the unified
memory interface (MemInt) handling all memory accesses.
In order to scale with the shading complexity each slave can
contain several shading units.

4.1.2. Ray Tracing Core

The ray tracing core (RTC) traces rays through the BSP ac-
celeration structure and intersects rays with triangles found
in the leaf nodes. According to the basic structure of ray trac-
ing, the RTC is again split into three sub-units. The traver-
sal unit receives rays from the RGS and traces them until it
locates a BSP node containing a list of triangles. The list ad-
dress is then forwarded to the rather simple list unit fetching
the addresses of the triangles and sending their addresses to
the intersection unit.

The intersection unit finally fetches the triangle data and
performs the intersection computation. The results of these
intersections are then sent back to the traversal unit. Depend-
ing on the intersection results it continues tracing the rays or

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

64,29,21

64,29,18

64,29,21

64,29,18

Intersection

List

Traversal

Master

112

MemCtrl L−SR

I−SR

T−SR
64,29,18

32,29,18

288,29,18

Trav−Cache

List−Cache

Int−Cache

M−SR

SD−RAM3
SD−RAM2
SD−RAM1
SD−RAM0

ho
st

 u
pl

oa
d:

 s
ce

ne
 d

at
a

64,29,16

32,29,16

288,29,16
Intersection

List

TraversalRTC−MI

Slave−1 Slave−2

RGS

host upload: shading data, camera
PCI−bridge

RTC−1 RTC−2

301

208

204

117

138

111

SD−RAM, frame−buffer

16,27,6

MemIntSaarCORSaarCOR

Figure 2: The SaarCOR hardware model splits into three parts: The ray tracing core (RTC), the ray-generation and shading
unit (RGS), and RTC’s memory manager (RTC-MI). To allow for easy scaling, several RTCs are supported. Please note the
simple routing scheme used: it contains only point-to-point connections and small busses, whose width is also shown separated
into data-, address- and control-bits.

sends the final results back to the slave and its shading unit
for further processing. Each set of RTC and RGS-slave in
such a configuration is completely independent except for
the memory interface and the connection to the RGS-master.

4.1.3. RTC Memory Interface

The memory interface for the ray tracing core (RTC-MI)
handles memory requests for all cores. It consists of several
simple routing units (SR) implementing a simple but effi-
cient routing scheme, three caches each holding a different
type of data, and the external memory controller (MemCtrl)
connecting to the SDRAM chips.

4.2. Implementation Issues

In the following we analyze the requirements of an efficient
and high-performance ray tracing implementation and dis-
cuss possible configurations that fulfill these requirements.
We also discuss potential problems and optimizations.

For each bus Figure 2 lists its width separated in the num-
ber of data, address, and control bits. It becomes obvious
that the interconnection between the units and sub-units is
very simple and narrow, and does not require complex rout-
ing. We exclusively use point-to-point links simplifying the
overall design and its implementation in hardware.

The architecture is designed to be fully pipelined and
careful attention has been paid to avoid stalls in any parts of
the system. By avoiding stalls we can build deeply pipelined
units without running into performance issues (see Section
5).

4.2.1. Ray Tracing Core

The ray tracing core consists of three sub-units: the traversal,
the list, and the intersection unit. The implementation of the
list unit is straight forward and not discussed any further.

We start with an estimation of the cost of traversal opera-
tions (trav-op) and intersection operations (int-op). For a de-
tailed overview of the basic algorithms see 30. Each trav-op
requires 64 bits of data, three floating point (FP) additions,
and one FP multiplication. In contrast an int-op accesses 288
bits of data, and executes 12 FP adds and 13 FP multiplica-
tions (we assume the same cost for addition and subtraction
and count a division as three multiplications).

This cost difference suggests that we should be able to
trade intersection operations for traversal operations. This
can be realized by using a finer space partitioning through a
deeper BSP-tree, generally resulting in less triangles per leaf
cell. While this can reduce the number of intersections by
building tighter enclosures, it increases the average number
of traversal operations required to locate triangles. Figure 3
shows this relation for a simple and a complex scene (see
also Section 5).

We can exploit this relation in two ways. While planning
the chip we can optimize for the average traversal to intersec-
tion cost of our target scenes. Secondly, for a given hardware
we can load balance between the traversal and intersection
units by varying the depth of the BSP tree. For rasterization
hardware, load balancing between vertex and fragment pro-
cessing can only be achieved with LOD techniques. How-
ever, generating LODs is a non-trivial task which must be
supported by the application. On the other hand the BSP gen-

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

3.8e+07

4e+07

4.2e+07

4.4e+07

4.6e+07

4.8e+07

5e+07

5.2e+07

5.4e+07

5.6e+07

15 20 25 30 35
0

1e+07

2e+07

3e+07

4e+07

5e+07

n
u
m
b
e
r

o
f

t
r
a
v
e
r
s
a
l
-
o
p
e
r
a
t
i
o
n
s

p
e
r

f
r
a
m
e

n
u
m
b
e
r

o
f

i
n
t
e
r
s
e
c
t
i
o
n
-
o
p
e
r
a
t
i
o
n
s

p
e
r

f
r
a
m
e

number of scene-space-subdivisions

trav-ops in simple scene (office)
int-ops in simple scene (office)

trav-ops in complex scene (cruiser)
int-ops in complex scene (cruiser)

Figure 3: Trading trav-ops vs. int-ops: given any cost-ratio
between trav- and int-ops, there is an optimal number of
scene-space-subdivisions. However, if this number is not op-
timally choosen, performance degrades only slowly.

eration is fully automatic and can be handled in hardware for
arbitrary scenes.

Our measurements show that a ratio of four traversal op-
erations to one intersection operation is well suited for most
scenes.

By supporting different numbers of traversal and intersec-
tion units we need to manage the communication between
them. An important goal in our design was to keep this sort
of communication as simple as possible. Having indepen-
dent traversal units each traversing separate packets would
require complex routing and scheduling schemes. Instead we
statically split each packet of rays into as many groups as we
have traversal sub-units.

Each traversal sub-unit only traverses its group of rays in
a packet. The results of all sub-units are then combined to
form the result that would have been computed by a single
traversal unit. Thus they appear as a single traversal unit sim-
plifying connections to the list and intersection units. This
allows us to use direct point-to-point connections between
units.

The overhead introduced by splitting the packet of rays
statically grows with the number of groups or traversal sub-
units. A group of rays scheduled to a traversal sub-unit may
not contain any active rays making it run idle. However, in
the case of four traversal sub-units running synchronously
their average usage is still well above 90%.

Instead of having all traversal sub-units running syn-
chronously, we can allow them to run asynchronously thus
reducing the overhead introduced by a group of idle rays to
a single cycle, independent of the number of traversal sub-
units.

Another positive effect of using multiple traversal sub-
units in parallel is the proportional reduction of latency
caused by the traversal computation. The average latency of

processing rays must be minimized in order to reduce on-
chip storage requirements and to increase responsiveness.

Another source of latency is due to memory access. Any
ray in a packet that requires access to slow external memory
would stall the entire packet and reduce efficiency. To over-
come this problem we operate on several packets of rays si-
multaneously. While one packet is being traversed, the data
for the next one can be fetched, and another packet could
be intersected. This concept is similar to multi- or hyper-
threading, used on some of the latest processors from Intel
and IBM and in parallel computers20 to overcome memory
latency and scheduling issues.

While a Pentium-4 is limited to two threads that increase
the performance by up to 30%9, we can do much better. Us-
ing 8 threads increases performance by 750% and with 16
threads still achieve 1220% for typical scenes. This indicates
that we can hide almost all latency by using multi-threading
allowing us to use deeply pipelined units and relativly slow
memory.

Multi-threading with packets of rays may introduce band-
width, latency, and bus width problems for transferring pack-
ets between units in a RTC. Instead of forwarding entire
packets of rays during the computation, we initially broad-
cast the read-only part of rays to the traversal and intersec-
tion units, which keep local copies. During processing it is
then sufficient to pass small ids for packets together with dy-
namic data, such as the current active bit-vector.

4.2.2. RTC Memory Interface

The RTC-MI connects all ray tracing cores with main mem-
ory. Since several units need to access a common bus, a
routing scheme has to be used. However, complex schemes
like butterfly networks are very costly to implement for large
busses. Our goal was to simplify the architecture and avoid
complex routing as far as possible. This leads to the most
simple scheme using a round-robin multiplexer for submit-
ting memory requests and a labeled broadcast to return data.
Each unit allows for several outstanding memory requests.

Even though this scheme is extremely simple it fully sat-
isfies the requirements of our hardware architecture, as the
use of packets of rays has already reduced the bandwidth
to the cache drastically. Obviously this scheme will break if
too many RTCs increase the bandwidth requirements to the
caches beyond the bus capacity. Our simulations show that
this would happen with 8 to 16 RTCs, based on packets with
64 rays and depending on the scene. The scalability could
be increased further by using larger packets of rays or by
adding caches. Since all memory accesses are read-only, no
cache consistency problems arise.

The bandwidth between the cache and main memory is
rather low since even for small caches of 64 KB to 144 KB,
depending on its data type, we achieve a cache hit rate of
about 95%. For the caches we simulated direct-mapped, two,

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

and four way set-associative cache designs. However, per-
formance was hardly effected by the cache design (< 3%).
These low bandwidth requirements allow us to use standard,
low-cost, and simple PC133 SDRAM technology.

In order to provide scalability in the memory interface
when multiple RTCs are used, we support several SDRAM
chips connected to the memory interface and use simple ad-
dress hashing to avoid hot spots. For our simulations (see
Section 5) we assume that our SaarCOR chip runs at 533
MHz, giving a 4-to-1 clock ratio between the chip and mem-
ory. Depending on the benchmark scene, between one and
four 16 bit wide SDRAM chips are required, offering a total
memory bandwidth of 250 MB/s to 1 GB/s.

Currently our design requires all scene data to be stored in
local RAM on the graphics card. In a related publication 31

we show how the memory accessible by the ray tracer could
be used as a cache by dynamically loading missing scene
data. We believe that a similar system would also work in
hardware.

4.2.3. Ray Generation and Shading

In this paper we can only cover the ray traversal and inter-
section part of the rendering architecture. For completeness
we provide a rough overview of shading. To this end we limit
the shader to simple Phong-like shading with bilinear texture
filtering. Its cost per ray is conservatively approximated with
50 FP additions and 70 FP multiplications including address
calculation for texture reads.

Our simulations show that depending on the scene, a RTC
finishes a ray every 20 to 80 cycles on a standard SaarCOR
chip. By using pipelining or parallelization this requires 3
FP adders and 4 FP multipliers for each slave performing the
shading operation. This makes it 4 to 8 times less expensive
than the RTC unit in terms of hardware ressources.

Since shading is also performed in packets and no over-
draw due to the Z buffer must be accommodated, memory
bandwidth requirements for shading are comparable to that
of the RTC even with bilinear texture access. Please note that
for shading computations ray tracing will generally need sig-
nificantly lower texture bandwidth than rasterization, where
complex shading must often be precomputed and stored in
textures. With asynchronous shading some of these com-
putations can easily be performed on the fly saving texture
memory and bandwidth.

A similar argument holds for coherence in texture access.
As triangles get smaller objects space coherence exploited
in rasterization is lost between many separately rendered tri-
angles. Because we shade packets of rays we are largely in-
dependent of individual triangles and exploit coherence of
textures as they are projected into image space.

With ray tracing shading parameters must not be carried
along through the pipeline for every triangle but can be
fetched once we know that we need to shade. Some of the

shading parameters might even be shared between many tri-
angles and must only be loaded once. This becomes increas-
ingly important as more complex shaders are being used. Fi-
nally, shading is decoupled from visibility computations and
allows the architecture to be tuned for specific target mar-
kets.

During rendering, several secondary rays (e.g. for shad-
ows and reflections) may be generated. If more rays are gen-
erated than can be handled or stored by the hardware, we
simply throw away partially completed rays to avoid dead-
locking. Even this rather simple and naive solution reduces
the performance by only 5% to 10% and leaves much room
for further improvements.

5. Results and Discussion

The modular design of our architecture offers many possi-
ble configurations for a hardware ray tracer, which makes
it difficult to present an exhaustive analysis. We solve this
problem by presenting a standard configuration, which was
derived from our set of benchmark scenes. For these scenes
it is a good compromise between performance and hardware
cost. We believe that this standard configuration is econom-
ically feasible even for a production-type chip with more
complex shading, since this standard configuration requires
less hardware ressources than current graphics chips based
on rasterization (see below). We also present performance
figures achievable for much larger hardware configurations
in order to show the potential of our architecture.

Taking this standard configuration as the base line we then
evaluate the impact of selectively changing one or a few pa-
rameters. The resulting figures should provide sufficient in-
sight into the properties of the overall architecture.

The standard SaarCOR system consists of four RTCs each
using 16 threads and four traversal sub-units. We assume that
the chip runs at a clock rate of 533 MHz and is connected to
four SDRAM chips running at 133 MHz via three caches of
272 KB total. This cache is split into 64 KB for the traversal
cache, 64 KB for the list cache, and 144 KB for the intersec-
tion cache. Each cache stores items of different data types
and sizes. For example, the intersection cache stores 4096
triangles of 288 bits each (see Figure 2).

With the standard configuration, a SaarCOR chip requires
a total of 192 floating-point units, 822 KB for registers-files,
and 272 KB for cache, adding up to 1094 KB total on-chip
memory. All on-chip memory is split into small local pieces
of memory, allowing for simple connections, and a feasi-
ble chip design. The RTCs are limited to a bandwidth of
1 GB/s to main memory. 192 FP-units is roughly half the
hardware floating-point budget of state-of-the-art rasteriza-
tion hardware. We assume that for a production-type chip,
the other half would be spent on more complex shading. The
floating-point units are streamlined versions not supporting

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

the full IEEE standard. For comparison: the GeForce3 has
380 floating-point-units and 7.2 GB/s of memory bandwidth.

5.1. A Simulator for SaarCOR

In order to analyze and evaluate our architecture, we per-
formed cycle-accurate simulations of our design. The simu-
lator can be adapted to a chip technology by specifying the
number of gates that can be executed within one clock cycle.
Thus the latency of a fully pipelined functional unit mea-
sured in cycles is its delay measured in gates divided by this
technology constant. In this paper, we assume this constant
to be four for all functional units.

In order to verify the correctness of the hardware simu-
lation, we compared the traces with a separate instrumented
software ray tracer.

With our simulator we achieve a run-time of roughly two
hours per frame for a typical scene on a standard SaarCOR
chip. This allows us to examine a wide range of system-
parameters without being limited by simulator run times.

5.2. Test Environment

To cover a wide range of applications Table 1 provides ex-
amples with corresponding images shown in Figure 4. All
scenes were tested at full-screen resolution of 1024x768
without oversampling. Please note that all lights in the
scenes cast shadows.

Figure 4: Some of the scenes used for benchmarking

We group the scenes into three sections: the OpenGL-like,
where only eye rays are shot, scenes with light sources and
shadows, and scenes with light sources, shadows and multi-
ple reflections.

The Quake3 scene consists of the level q3dm7 of the game
Quake3-Arena11. The Sodahall scene gives a perfect exam-
ple of a large seven-stories building completly modeled in
high detail — chairs, books, plants, and even pencils on the

reflection-
scene #triangles #lights depth rays shot

Quake3 34 772 0 0 786 432
Sodahall 1 510 322 0 0 786 432
CruiserGL 3 637 101 0 0 786 432

Conf 282 000 2 0 2 359 296
Cruiser 3 637 101 2 0 2 359 296

Office 33 952 3 3 3 863 846
BQD-1 2 133 537 1 3 1 583 402
BQD-2 2 133 537 1 3 1 548 632

Table 1: The scenes used for benchmarking

desks are modeled. This model is highly occluded, where at
each location only a small part of the scene is actually visi-
ble. This is where the built-in occlusion-culling of ray trac-
ing performs optimally. The CruiserGL scene models a large
part of a navy battle cruiser in very fine detail.

The Conf scene is a model of a conference room with
many chairs and two light sources. The Cruiser model is sim-
ilar to CruiserGL, but enhanced with two light-sources.

The Office scene contains three light-sources and several
reflective objects, like the window and the reflective ball.
The BQD scene is another game-like model. It consist of
a large terrain with the Quake3 scene placed in a valley. Fur-
thermore it was enhanced by a parallel light source model-
ing the sun. Inside the Quake3 scene is a reflective teapot
and a column giving an idea of effects possible with ray
tracing. While in the first view we stand inside the build-
ing, BQD-2 is a view from above. Please note that no level-
of-detail mechanism has been used to approximate far-away
geometry.

5.3. Performance Measurements

Table 2 presents the performance achievable with the stan-
dard SaarCOR chip.

scene 1 RTC 2 RTCs 4 RTCs

Quake3 27.20 54.45 111.12 fps
Sodahall 28.88 56.71 113.22 fps
CruiserGL 28.58 52.04 65.86 fps

Conf 8.91 16.77 31.56 fps
Cruiser 9.82 17.38 20.05 fps

Office 7.52 14.34 28.56 fps
BQD-1 11.74 23.12 45.90 fps
BQD-2 7.55 12.98 17.43 fps

Table 2: Absolute performance measurements for the Saar-
COR chip with 1, 2 and 4 RTCs, 272 KB cache, and 1 GB/s
memory bandwidth. 4 RTCs have only half the floating-point
performance of a GeForce3 and there is an almost linear re-
lation between performance and the number of RTCs.

The performance measurements of Table 2 show several

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

interesting points: The performance scales almost linearly
with the number of RTCs used and with the number of rays
used to calculate the image (see Table 1). In comparison to
rasterization, where performance degrades linearly with the
number of triangles in the scene 30, this number has only a
small impact on the performance for our architecture. How-
ever, some figures are not as expected. In particular both
Cruiser-scenes and BQD-2 show that there must be a bot-
tleneck limiting the performance of the system.

A closer analysis shows, that the Cruiser scene with 3.5
million triangles is limited by the memory bandwidth for tri-
angle fetching. Table 3 gives performance measurements of
the CruiserGL scene for different sized intersection-caches
in combination with 1 and 2 GB/s bandwidth to main-
memory. This shows that with a bandwidth of 2 GB/s and an
int-cache of 288 KB the performance again scales linearly in
the number of RTCs. Achieving linear speed-up with 4 RTCs
in BQD-2-scene is harder: we need to enlarge all caches four
times to roughly 1 MB together with a 2 GB/s bandwidth to
main-memory.

size of int-cache 144 KB 288 KB 576 KB

1 GB/s (4 SDRAMs) 65.86 fps 77.54 fps 86.36 fps
2 GB/s (8 SDRAMs) 87.24 fps 103.62 fps 113.89 fps

Table 3: Influence of memory bandwidth and size of the int-
cache (which caches the triangles) on the scene CruiserGL
with 4 RTCs. This shows again a linear speed-up with the
number of RTCs.

In contrast to these complex models, the Quake3 scene
shows perfect linear scaling. Using the standard cache and
a bandwidth of only 250 MB/s linear scaling is achieved
even up to 16 RTCs. The floating-point performance of the
GeForce3 equals the floating-point performance of a full
SaarCOR chip with 8 RTCs and full shading. Rendering the
Quake3 scene with 8 RTCs achieves 235 fps.

Further analysis leads to the observation that for most
scenes linear speed-up with n RTCs can be achieved by us-
ing n SDRAMs, resulting in a bandwidth of n × 250 MB/s.

The performance of a chip can be measured in two ways:
the absolute and the relative performance. Table 2 lists the
absolute performance, while Table 4 shows the relative per-
formance. The relative performance is defined as the per-
centage of absolute performance versus ideally achievable
performance. The ideally achievable performance is defined
as

fpsideal =
chip-speed in cycles per second

max{ #trav-ops
#RTCs×#trav-sub-units ,

#int-ops
#RTCs }

Simply speaking: if there is no overhead at all, we need at
least one cycle for every operation we have to perform. If we
divide the number of operations by the number of units we
obtain the theoretical achievable minimal number of cycles
needed.

Table 4 shows that even the simple architecture of the
standard SaarCOR chip already achieves 70%–80% of the
ideal performance. Using 32 threads instead of 16 threads
per RTC, we increase these results by 10% achieving 80%–
90% of the ideal performance. On the other hand, using 32
threads instead of 16 increases the on-chip memory from 822
KB to 1050 KB (not counting the caches). If we increase the
size of the cache, the memory-bandwidth or the number of
threads per RTC, these figures can be improved even fur-
ther. So depending on the price one is willing to pay, nearly
arbitrary figures can be achieved. This shows the flexibility
of ray tracing and our hardware architecture, which can be
scaled over a wide performance range.

scene 1 RTC 2 RTCs 4 RTCs

Quake3 76% 76% 78%
Sodahall 80% 79% 79%
CruiserGL 71% 65% 41%

Conf 67% 63% 59%
Cruiser 72% 63% 37%

Office 71% 68% 68%
BQD-1 73% 72% 71%
BQD-2 54% 46% 31%

Table 4: Relative performance: percentage of the theoreti-
cally ideal performance achieved with a standard SaarCOR
chip

The relative performance, as listed in Table 4, equals
roughly the usage of the traversal and intersection units. Let
c be the number of clock-cycles for rendering an image and
w the number of cycles a unit or a bus was busy. We then
define the usage as w/c. Figure 5 shows several characteris-
tic measurements for a standard SaarCOR chip running the
BQD-1 scene: a) The usage of each of the traversal sub units,
b) the usage of each of the traversal and intersection units, c)
the percentage a unit contributed to all accesses to the com-
mon bus, d) the usage of the bus to the caches, e) the hit rate
of the caches, f) the percentage a cache contributed to all
accesses to memory, g) the usage of the bus to the memory
controller, h) the percentage of all accesses to the memory
each SDRAM handles.

The high amount of traffic to main-memory contributed
by the int-cache is due to the fact that all accesses to main-
memory are only 64 bits wide and therefore each triangle
requires 5 consecutive accesses.

5.4. Influence of the Accelleration Structure

As mentioned in Section 4.2.1, the number of scene subdivi-
sions of our accelleration structure can be used to adjust the
hardware architecture to any scene and vice versa. Chang-
ing the number of subdivisions influences the architecture
in three ways: As shown in Figure 3, the number of traver-
sal and intersection operations required to calculate a frame

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

L0 L1 L2 L3 I0 I1 I2 I3

TC LC IC

L−STR I−STR

69
.1

6%

68
.6

9%

68
.0

6%

67
.5

9%

25
.2

5%

25
.0

3%

24
.7

6%

25
.5

1%

24
.6

9%

25
.0

3%

24
.7

6%

25
.5

1%

24
.6

9%

7.01% 63.92%

5.90%

M−STR

memctrl

29.07%

T−STR

71
.3

2%
71

.3
2%

71
.4

4%
71

.4
4%

T0

72
.3

5%
72

.4
0%

72
.3

5%
72

.2
2%

T1

71
.1

8%
71

.3
0%

71
.3

9%
71

.4
2%

T2

72
.5

7%
72

.5
0%

72
.5

2%
71

.4
8%

T3

e)

c)

d)

f)

g)

h)

b)

a)

24
.8

5%

24
.7

1%

25
.1

9%

27.22%

93.70%

12.10%

96.59%

12.10%

93.78%
S

D
R

A
M

0

S
D

R
A

M
1

24
.8

5%

25
.1

6%
S

D
R

A
M

2

24
.8

1%
S

D
R

A
M

3

25
.1

8%

71.38% 72.33% 71.32% 72.52%

Figure 5: Usage and hit-rates of a standard SaarCOR chip
running the BQD-1 benchmark: this shows in detail, that
trivial static load-balancing works out perfectly well

changes, resulting in different frame rates. As the number of
scene-space-subdivisions increases, the memory needed to
store all items of the BSP grows exponentially. Since the it-
erative traversal of a BSP-tree requires a stack of the size of
the maximum depth of the scene subdivisions, the required
on-chip memory increases linearly with the number of sub-
divisions.

The following formula calculates the on-chip memory of a
standard SaarCOR chip depending on the number d of scene
subdivisions:

on-chip-memory = cache+287.6 KB+d ×17.25 KB

The algorithm we used to build the BSP is a very simple
one. First results on several more advanced algorithms show
that there is much room for improvements with regards to
rendering performance and BSP memory.

5.5. Lights, Reflections, and Anti-Aliasing

One of the main advantages of ray tracing is its ability to ren-
der physically correct shadows, reflections, and refractions.
In this section we analyse the impact of these different types
of rays on the overall performance by rendering the Office
scene in different conditions, as listed in Table 5 and shown
in Figure 7 (in the color section): (a) eye rays (er) only, (b)
er and reflections up to 3 levels (r3), (c) er and 3 lights (3l),
(d) er, reflections and 3 lights, (e) er with a simple four times
oversampling (4×os), i.e. for each pixel, 4 rays are shot and
their contribution is averaged to calculate the color of the
pixel. Please note that in (b) 20% of all rays are reflected.

Table 5 shows that the performance degrades linearly with
the number of rays shot, independently of the type of rays.
This is also true for refracted rays used to simulate glass-
effects (not shown here). Case (e) shows that oversampling

#rays #rays(er)
#rays FPS f ps

f ps(er)

(a) er 786 432 100% 127.75 100%
(b) er,r3 966 275 81% 99.23 78%
(c) er,3l 3 145 728 25% 36.67 29%
(d) er,r3,3l 3 863 846 20% 28.56 22%
(e) er,4×os. 3 145 728 25% 35.06 27%

Table 5: Office with different types of rays. This shows that
the performance is very close to linear in the number of rays
shot and almost independent of the type of the ray.

is slightly cheaper than linear: 4 times more rays cost only
3.6 times more, due to a better cache hit-rate. See Table 6 for
a detailed look on the cache.

oversampling none 4-times

hit-rate trav-cache 89.9% 96.8%
hit-rate list-cache 89.7% 95.7%
hit-rate int-cache 97.1% 98.8%

Table 6: By using simple four-times oversampling the cache-
hit-rate increases, giving a 10% performance improvement
over the expected cost of anti-aliasing.

6. Conclusions and Future Work

In this paper we have presented a flexible, modular, and
scalable hardware architecture for real-time ray tracing. At
costs comparable to current rasterization chips it offers sim-
ilar performance with the same type of OpenGL-like scenes.
In addition it offers all the benefits of ray tracing including
accurate shadows, correct reflection, refraction, and built-in
occlusion culling.

Using extensive cycle-accurate simulations we evaluated
the properties and performance of the architecture for a wide
set of test scenes. The results show that the architecture
scales well in the number of functional units used.

In this paper we concentrated on the visibility computa-
tions and simple shading, but the simulations indicate that
support for advanced shading would change little in the ba-
sic architecture and performance results.

With the flexible and modular design, our architecture can
be configured to support a wide range of applications and
cost-performance ratios. Even for a fixed architecture load
balancing can be improved through properly built BSP trees.

We have shown that a simple approach using only static
load balancing, trivial routing, low memory bandwidth, sim-
ple memory technology, and small caches is sufficient for
achieving these results. This is promising as it leaves many
opportunities for later optimizations and extensions.

The architecture as presented here is able to support a vi-
sual quality at the level of standard OpenGL plus standard
ray tracing features. Further work is required to include ad-
vanced and programmable shading, as well as dynamically
changing scenes. More work is also required for evaluating

c© The Eurographics Association 2002.

Jörg Schmittler, Ingo Wald, Philipp Slusallek / A Hardware Architecture for Ray Tracing

the architecture with respect to specific VLSI technolgies
such as FPGAs or ASICs. A key factor for the success of
ray tracing will be the API issue, where initial results are
available 29.

In summary, it seems that the old dream of real-time ray
tracing is finally realizable at hardware costs similar to ex-
isting graphics systems. This would enable the display of
highly realistic, physically correct, and accurately lit inter-
active 3D environments. Because ray tracing is at the core of
any algorithm computing light transport, fast ray tracing is
likely to also enable real-time global illumination computa-
tions and other advanced optical effects.

References

1. Kurt Akeley. RealityEngine graphics. In Computer Graphics
(ACM Siggraph Proceedings), 1993. 2

2. Matthew Eldridge, Homan Igehy, and Pat Hanrahan.
Pomegranate: A fully scalable graphics architecture. Com-
puter Graphics, pages 443–454, July 2000. 2

3. Stuart A. Green. Parallel processing for computer graphics.
MIT Press, pages 62–73, 1991. 2

4. Stuart A. Green and Derek J. Paddon. Exploiting coherence
for multiprocessor ray tracing. IEEE Computer Graphics and
Applications, 9(6):12–26, 1989. 2

5. Stuart A. Green and Derek J. Paddon. A highly flexible mul-
tiprocessor solution for ray tracing. The Visual Computer,
6(2):62–73, 1990. 2

6. C. Scott Ananian Greg Humphreys. Tigershark: A hardware
accelerated ray-tracing engine. Technical report, Princeton
University, 1996. 2

7. D. Hall. The AR350: Today’s ray trace rendering processor.
In Proceedings of the Eurographics/SIGGRAPH workshop on
Graphics hardware - Hot 3D Session 1, 2001. 2

8. Pat Hanrahan and Jim Lawson. A language for shading and
lighting calculation. In Proceedings of SIGGRAPH, 1990. 1

9. http://developer.intel.com/technology/hyperthread. Introduc-
tion to hyper-threading technology, 2002. 5

10. http://www.nvidia.com. Geforce3 - the world’s most advanced
processor, 2001. 2

11. http://www.quake3arena.com/. Id-software: Quake3-arena,
2001. 7

12. M. J. Keates and Roger J. Hubbold. Interactive ray tracing on a
virtual shared-memory parallel computer. Computer Graphics
Forum, 14(4):189–202, 1995. 2

13. Tony T.Y. Lin and Mel Slater. Stochastic Ray Tracing Using
SIMD Processor Arrays. The Visual Computer, pages 187–
199, 1991. 2

14. K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz. Smart Memories: A Modular Recongurable Ar-
chitecture. IEEE International Symposium on Computer Ar-
chitecture, 2000. 2

15. M. Meissner, U. Kanus, and W. Strasser. VIZARD II, A
PCI-Card for Real-Time Volume Rendering. In Eurograph-
ics/Siggraph Workshop on Graphics Hardware, 1998. 2

16. Michael J. Muuss. Towards real-time ray-tracing of combi-
natorial solid geometric models. In Proceedings of BRL-CAD
Symposium ’95, June 1995. 2

17. Steven Parker, Michael Parker, Yaren Livnat, Peter Pike Sloan,
Chuck Hansen, and Peter Shirley. Interactive ray tracing
for volume visualization. IEEE Transactions on Computer
Graphics and Visualization, 5(3), 1999. 2

18. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen,
and Peter Pike Sloan. Interactive ray tracing for isosurface
rendering. In IEEE Visualization ’98, 1998. 2

19. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen,
and Peter Pike Sloan. Interactive ray tracing. In Interactive
3D Graphics (I3D), pages 119–126, April 1999. 2

20. Wolfgang J. Paul, Peter Bach, Michael Bosch, Jörg Fischer,
Cédric Lichtenau, and Jochen Röhrig. Real PRAM-
Programming. In Proceedings of EuroPar 2002, 2002. 5

21. Hans-Peter Pfister. SIGGRAPH course on Interactive Ray
Tracing, 2001. 2

22. Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer,
and Larry Seiler. The VolumePro real-time ray-casting system.
Computer Graphics, 33, 1999. 2

23. Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan.
Rendering complex scenes with memory-coherent ray tracing.
Computer Graphics, 31(Annual Conference Series):101–108,
August 1997. 2

24. Timothy Purcell. The SHARP Ray Tracing Architecture. SIG-
GRAPH course on Interactive Ray Tracing, 2001. 2

25. Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Han-
rahan. Ray Tracing on Programmable Graphics Hardware. In
Proceedings of SIGGRAPH 2002, 2002. 2

26. Advanced Rendering Technologies. http://www.art.co.uk/,
2002. 2

27. I. Wald and P. Slusallek. State-of-the-Art in Interactive Ray-
Tracing. In State of the Art Reports, EUROGRAPHICS 2001,
pages 21–42, 2001. 2

28. Ingo Wald, Carsten Benthin, and Philipp Slusallek. A Simple
and Practical Method for Interactive Ray Tracing of Dynamic
Scenes. Technical report, Computer Graphics Group, Saarland
University, http://www.openrt.de, 2002. 2

29. Ingo Wald, Carsten Benthin, and Philipp Slusallek. OpenRT
– A Flexible and Scalable Rendering Engine for Interactive
3D Graphics. Technical report, Computer Graphics Group,
Saarland University, http://www.openrt.de, 2002. 2, 10

30. Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp
Slusallek. Interactive Rendering with Coherent Ray Tracing.
Computer Graphics Forum (Proceedings of EUROGRAPHICS
2001, 20(3), 2001. 1, 2, 3, 4, 8

31. Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interac-
tive Distributed Ray Tracing of Highly Complex Models. In
Proceedings of the 12th EUROGRPAHICS Workshop on Ren-
dering, June 2001. London. 2, 6

c© The Eurographics Association 2002.

Figure 6: Some of the scenes used for benchmarking the SaarCOR architecture. It shows that for an appropriatly choosen cache
size and bandwidth to memory the performance of the architecture scales very well in the number of processing units used and
nearly independend of the number of primitives in a scene. See Tables 2,3 and 4 for details.

Figure 7: The Office scene with (from left to right): eye rays only (er); er and reflections; er and three point lights; er, reflections,
and three point lights. It shows that the performance scales linear in the number of rays shot and independent of the type of the
ray, i.e. eye, reflection and shadow rays have roughly the same cost. See Tables 5 and 6 for details.

