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Figure 1: Examples of interactively rendering complex and dynamic scenes with a ray-tracing-based renderer. The scenes show a pre-lighted
theatre, robots moving through a city, large numbers of moving trees with sharp shadows, as well as the integration of volumes, lightfields,
and procedural shading in an office environment. These examples run interactively at a resolution of 640×480 using four to eight dual PCs.

Abstract

Ray-tracing is well-known as a general and flexible rendering al-
gorithm that generates high-quality images. But in the past, ray-
tracing implementations were too slow to be used in an interac-
tive context. Recently, the performance of ray-tracing has been in-
creased by over an order of magnitude, making it interesting as an
alternative to rasterization-based rendering.

We present a new rendering engine for interactive 3D graphics
based on a fast, scalable, and distributed ray-tracer. It offers an
extended OpenGL-like API, supports interactive modifications of
the scene, handles complex scenes with millions of polygons, and
scales efficiently to many client machines. We demonstrate that
the new renderer provides more flexibility, more rendering features,
and higher performance for complex scenes than current rasteriza-
tion hardware. Its flexibility enables new types of applications in-
cluding a system for interactive global illumination.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing, Animation, Color, shading,
shadowing, and texture; I.3.2 [Graphics Systems]: Graphics
Systems—Distributed/network graphics; I.3.3 [Graphics Systems]:
Picture/Image Generation—Display algorithms; I.6.8 [Simulation
And Modeling]: Types of Simulation—Animation, Parallel ;

Keywords: Animation, Distributed Graphics, Occlusion Culling,
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1 Introduction

The ray-tracing algorithm is well-known for its ability to gener-
ate high-quality images but it is also famous for its long rendering
times. Speeding up ray-tracing so it can be used for interactive
applications has been a long standing goal for computer graphics
research. Significant efforts have been invested, mainly during the
1980ies and early 90ies, as documented for example in [Glassner
1989; Chalmers and Reinhard 1998].

The interest in fast ray-tracing technology increased again af-
ter interactive ray-tracing has been shown on large supercomput-
ers [Muuss 1995; Parker et al. 1999b] as well as on networks of
PCs [Wald et al. 2001a; Wald et al. 2001b]. The latter research
increased the performance of ray-tracing by more than an order of
magnitude on a single processor and scales well to many distributed
rendering clients.

These recent developments made it desirable to evaluate ray-
tracing as an alternative rendering technique for interactive 3D ap-
plications besides the well-established rasterization pipeline. This
paper provides several contributions in this direction.

1.1 Contributions

We have built a complete, flexible, fast, and distributedrender-
ing enginethat offers services on a similar level as OpenGL but
provides significantly more flexibility and features. The engine
achieves a speed-up by more than an order of magnitude com-
pared to other software ray-tracers and allows efficient distributed
ray-tracing without replicating the data to each client. Both con-
tributions rely mainly on effective memory management through
caching and prefetching, in combination with algorithmic improve-
ments that allow more efficient execution on today’s processors
(Section2).

Next we present a new technique that allows the ray-tracing en-
gine to handleinteractive changes to the scenes. It is based on the
idea to localize changes to the scene so they can be integrated ef-
ficiently into the index structures, such as octrees, BSP trees, etc.,
required for fast ray-tracing (Section3).

We also describe the newOpenRT APIwe developed to provide
a common interface for applications to communicate with a ray-
tracing-based renderer. A basic requirement was to keep the API as
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close as possible to OpenGL in order to simplify porting of exist-
ing applications. The approach is demonstrated by an interactive
VRML-browser that has been ported from OpenGL to OpenRT.
We also show the support for dynamic scenes by using VRML-
animations (Section4).

In the second part of the paper wefocus on the consequences
of using an interactive ray-tracing engine. We discuss and demon-
strate a list ofbenefitsprovided by ray-tracing and compare it with
rasterization-based rendering (Section5).

Next, we present twonew applicationsthat make effective use
of the unique features provided by ray-tracing. The first applica-
tion demonstrates the simplicity ofintegrating different rendering
primitivessuch as surfaces, volume data sets, and lightfields within
a single scene. All the expected effects are automatically and cor-
rectly rendered without any special support from the application
(Section6.1.3).

Finally, we present the firstinteractive global illumination ap-
plication, which uses the rendering engine for a fast and efficient
computation of light transport. It uses a new Monte Carlo algo-
rithm that is designed to work well within the constraints imposed
by a fast, distributed ray-tracing engine (Section6.2).

2 A Fast Ray-Tracing Engine

The goal of our research was to design a rendering engine based on
ray-tracing for interactive 3D graphics. The design was guided by
the following list of requirements.

Interactive Performance: We aimed for a minimum framerate of
5 frames per second (fps) at a resolution of at least 640×
480 (video resolution) even for complex scenes while running
completely in software.

Plug-in Shaders: Much of the power of ray-tracing comes with
the flexibility to easily change the appearance of geometry
through the use of programmable shading. The goal was to
offer a well-defined interface for shaders that allows them to
replace as much functionality in the renderer as possible while
keeping interactive performance.

Distributed Computing: Since a single CPU would in general
still be too slow, we required transparent support of distributed
ray-tracing on a network of workstations with a client-server
approach. This poses interesting challenges in the context of
dynamic scenes.

Dynamic Scenes:True interactivity requires the ability to perform
arbitrary modification to the scene during rendering, which
has been a problem with ray-tracing due to the use of pre-
computed index structures. The goal was to allow for as gen-
eral modifications as possible without compromising perfor-
mance.

API: A new rendering engine must offer a standard API for ap-
plication developers that is familiar to them, easy to use, and
exposes all the interesting features of the ray-tracer. Because
the familiar OpenGL API could not be used directly our goal
was to stay as close as possible to OpenGL in order to enable
easy porting.

Commodity Equipment: We restricted our implementation to
commodity computer equipment, such a dual-processor PCs
with fast CPUs as well as inexpensive Fast- or Gigabit-
Ethernet for the network interconnection. With this setup
each client node would cost less than $2500 today with the
expected increase in performance over time according to
Moore’s law.

2.1 Previous Work

Even though ray-tracing has been around for some time [Whitted
1980; Cook et al. 1984], its use for interactive applications is rela-
tively new.

Parker et al. [Parker et al. 1999b; Parker et al. 1999a; Parker
et al. 1998] and Muuss [Muuss and Lorenzo 1995; Muuss 1995]
demonstrated that interactive rendering can be achieved with a full-
featured ray tracer on a large supercomputer. Parker’s implemen-
tation offers all the usual ray tracing features, including parametric
surfaces and volume objects, but is carefully optimized for cache
performance and parallel execution in an environment with non-
uniform but fast access to shared memory. They have proven that
ray tracing scales well in the number of processors, and that even
complex scenes of several hundred thousand primitives can be ren-
dered at almost real-time framerates. However, this system required
expensive hardware that is not commonly available.

Hardware implementations of ray-tracing are available [Ad-
vanced Rendering Technologies 1999], but are currently limited to
accelerating off-line-rendering applications, and do not target inter-
active frame rates.

There has been a tremendous amount of previous work on par-
allel and distributed ray tracing in general. Detailed surveys can
be found in [Chalmers and Reinhard 1998; Reinhard et al. 1998].
We build on this previous work and combine several approaches in
order to obtain the required interactive performance.

2.2 Ray-Tracing Core

The core of our rendering system is based on a re-implementation
of the coherent ray-tracing algorithm by Wald et al. [Wald et al.
2001a]. It achieves more than an order of magnitude increase in
ray-tracing performance compared to other published ray-tracing
results. This is accomplished through reordering of the ray-tracing
computations for better coherence and a number of optimization
techniques that work in concert to achieve maximum performance.

Figure 2: Example scenes rendered with 640×480 pixels on a sin-
gle CPU: The scene on the left contains 33.600 triangles and ren-
ders at 2 frames per second (fps), while the theatre scene with more
than half a million pre-lighted triangles still renders at roughly 1
frame per second.

It is important to note that the optimized algorithm does not use
any approximations to achieve this speedup. It still performs ex-
actly the same operations on each ray as a basic ray-tracer.

The new core has a more modular structure that allows to replace
any code computing the reflection of light at surfaces, sampling of
light sources, generating rays from a camera, and processing pixel
data. The plug-in code is implemented through shaders that can
be dynamically loaded at run-time. Care has been taken that the
additional flexibility causes only a small performance decrease in
the order of 10%. The additional flexibility of shader plug-ins is
instrumental for the results presented in this paper.
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2.2.1 Results

Using a single AMD AthlonMP 1800+ CPU, we are able to trace
more than half a million rays per second, resulting in a performance
of more than 2 frames per second (fps) at video resolution of 640
x 480 pixels for most of our basic test scenes, and still more than 1
fps for highly complex models (see Figure2). This performance is
comparable to the results in [Wald et al. 2001a] given the different
hardware.

The performance can simply be doubled by using both proces-
sors on a dual workstation, but cannot easily be scaled much be-
yond that, because the price/performance ratio increases quickly
for larger shared memory computers. Instead, we rely on a network
of workstations to deliver the necessary performance.

2.3 Interactive Distributed Ray-Tracing

As mentioned above ray-tracing scales nicely with the number of
processors if fast access to the scene data is provided, e.g. by using
shared memory [Parker et al. 1999b]. The situation is quite different
with many clients in a distributed memory environment, which has
an impact on the design of the rendering engine and its support for
applications.

Most researchers relied on replicating the entire scene database
before rendering [Bouville et al. 1985; Potmesil and Hoffert 1989;
Singh et al. 1994]. However, this approach has many problems:
Replicating the entire geometry, shading, and other data to many
clients can take several minutes on standard LANs. Even though
most clients often need only a small fraction of this data, it is usu-
ally non-trivial for an application to know what data is required by
each client.

Two other basic approaches are also available: forwarding rays,
e.g. [Cleary et al. 1986; Kobayashi et al. 1987; Reinhard and Jansen
1997], or sending geometry between computers, e.g. [Badouel et al.
1994]. In the first case the entire scene data base is initially dis-
tributed across a number of machines usually based on a spatial par-
titioning scheme. Rays are then forwarded between clients depend-
ing on the next spatial partition pierced by the ray. This approach
requires too much network bandwidth to be usable in our environ-
ment, unless large bi-section bandwidth is available through many
fully switched cluster nodes. Furthermore, because rays cannot be
reused between frames, no data can be cached at clients.

In the second approach however, scene data is transfered across
machines on demand by requests from clients. Because the scene
data is read-only and mostly static, caching can be used on the
clients. This approach achieves best results for ray tracing algo-
rithms that trace coherent sets of rays and take care to assign simi-
lar rays to the same client in each frame, as demonstrated in [Wald
et al. 2001b].

We use the same approach in our distributed ray-tracing engine.
A master machine is responsible for communicating with the appli-
cation (see Section4) and centrally manages the entire scene data
— geometry, textures, lights and shaders — without replicating it
to all clients. Scene data is managed in small, self-contained parts.

In contrast to [Wald et al. 2001b], our subdivision of the scene
data initially also considers information from the application. The
application defines individual objects, that may then be further sub-
divided by the engine if too large.

Load balancing is performed using a demand driven approach,
where clients request tasks defined by image tiles from the master
machine. In our case load balancing also needs to consider the
spatio-temporal coherence between rays in order to make best use
of the many client caches. Ideally, each client should get those
tiles that contain rays that are similar to rays it has traced in recent
frames.

The master machine is also responsible for updating the scene
description based on API calls from the application. Currently,

Figure 3: The Office and TownHouse scene used for scalability ex-
periments. In both cases many secondary rays are used for sampling
reflections as well as 3 and 25 light sources. With 8 clients these
images run at 6 and 2.6 fps, respectively. Distributed ray-tracing
allows to scale the frame rate linearly with the number of proces-
sors as shown in Table1. Also note the procedurally bump-mapped
mirror in the office scene.

No. of clients 1 2 4 8 16
Office (flat shaded) 3.95 7.85 15.8 26 26

Office (complex shaders) 0.77 1.54 3.08 6.1 10.9
TownHouse 0.3 0.6 1.2 2.4 4.8

Terrain 0.4 0.8 1.6 3.1 6.2

Table 1: Scalability of the distributed ray-tracing engine in frames
per second for different numbers of rendering nodes with two pro-
cessors each. Near-linear scalability is achieved up to a maximum
framerate of 26fps, at which the servers network connection gets
saturated by the huge amount of pixel data. Note that the scenes
require very different numbers of rays for rendering. See Figure3
for some images.

changes are broadcasted to all clients including changed shader
parameters, textures, geometry, and transformations. While this
works reasonably well for relatively small modifications of the en-
vironment, it will lead to scalability problems for large changes and
many clients.

The distribution process is completely transparent. Applications
run only on the master machine and interact with the rendering en-
gine through the API. The distributed computation is also trans-
parent to dynamically loaded shaders except in cases that require
communication with other shaders.

2.3.1 Results

For the remaining experiments in this paper we use a setup that con-
sists of several dual-processor PCs using AMD AthlonMP 1800+
processors with 512 MB RAM. The nodes are interconnected by a
fully switched 100 Mbit-Ethernet using a single Gigabit uplink to
the master server to handle the large amounts of pixel data sent for
every frame. All experiments are run at video resolution of 640 x
480 pixels, except where noted.

Figure3 shows images of some of the test scenes used for the
scalability experiments as shown in Table1. We see an almost ideal
speedup from 1 to 32 processors, which extends the results previ-
ously found in [Wald et al. 2001b] to many more processors. For
simple scenes resulting in high frame rates, we are bandwidth lim-
ited at the server due to the amount of pixel data. This currently lim-
its our system to roughly 26 frames per second at 640x480, which
could be easily alleviated by providing the server with a faster net-
work connection.
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3 Dynamic Environments

One of the biggest challenges in interactive ray-tracing is handling
dynamic environments. For non-interactive ray-tracing, the time
used for building the acceleration structure was insignificant, so that
this topic has attracted little research so far [Glassner 1988; Rein-
hard et al. 2000; Lext and Akenine-Moeller 2001]. This is partic-
ularly surprising as any rendering technique that targets sub-linear
behavior with respect to scene complexity must maintain such a
spatial index.

A simple solution for dynamic environments is to rebuild the
whole data structure for every frame. However, this is not feasible
for interactive applications. Spatial sorting would again introduce a
super-linear complexity ofO(nlogn) and would simply be too slow
except for the most simple scenes.

A more pragmatic approach is to partition the entire scene into
separateobjects. Each object contains its own index structure that
can be changed independently of any other object. These objects
are then contained in a single top level scene index structure or can
be organized hierarchically. This approach is similar to the one
described in [Lext and Akenine-Moeller 2001].

If an entire object’s geometry is changed using an affine trans-
formation this can be implemented by inversely transforming rays
that intersect the object’s bounding box. In this case only the parent
object must be notified of the transformation and must update its
local index structure. The runtime overhead due to transformations
of rays and rebuilding the parent index structures is tolerable and
for our implementation using a non-hierarchical scheme is in the
order of 10% for the test scenes used in this paper, which contain
up to a few thousand objects.

If the change to an object cannot be described by an affine trans-
formation the local index structure of the object must be rebuilt or
updated. In both cases the cost is proportional to the number of the
affected objects and possibly their parents if a hierarchical scheme
is used.

The resulting speedup depends significantly on how an applica-
tion splits its scene data into individual objects. In that respect this
approach is similar to OpenGL where a different scene structure,
e.g. the use of display lists or the grouping of materials, can also
result in significant performance differences.

As a side effect the described approach also handles multiple
instances of an object. For example, Figure1 shows a scene that
contains hundreds of instances of two tree objects. The resulting
roughly 8 million triangles consume little memory and can be ren-
dered with 2–4 fps using four clients.

3.1 Results

Results from testing our system with the BART benchmark
scenes [Lext et al. 2000] are shown in Figure4. The scene contains
an entire city modeled with roughly a hundred thousand polygons
mostly with textures. Ten robots, each consisting of 16 individually

Figure 4: Example images from the BART benchmark. We main-
tain a framerate of 7–12 fps on four clients.

Figure 5: Two example frames from interactively moving the vol-
ume head, and other objects. The scene is rendered with shadows
from three light sources, reflections, and procedural bump-map and
wood shaders. Even during interactions we maintain 5–6 fps on
eight clients.

moving parts walk through the city, resulting in 161 independently
moving objects. The animation is controlled by an application inter-
preting the BART scene graph and controlling the renderer through
the new API. Using four of our clients, we achieve a smooth frame
rate of 7 to 12 frames per second at 640x480 pixels. To our knowl-
edge this is the first time that the BART scene has been rendered at
interactive rates.

Example images of an interactive session are shown in Figure5.
The user interactively moves the objects in the scene at 5–6 fps
using eight clients.

Our current implementation uses a simple flat organization of
objects. Thus, it must rebuild the entire top level index structure for
every frame even if only a small number of objects have actually
been changed. However, the cost for rebuilding the top-level index
structure is relative small taking less than 10 milliseconds even for
many hundreds of objects as in Figure6.

The method can reduce the efficiency of occlusion culling as
soon as objects overlap in space because two overlapping objects
must be traversed sequentially. As a result a ray will continue
traversing the first object even though it would have been stopped
by geometry contained in the other object. Even though it is easy to
construct problematic cases, in practice we see little effect of a few
percent on the overall performance.

4 The OpenRT API

In order to make the rendering engine described above available to
applications, it must offer a standard interface for applications. Ide-
ally, we could reuse existing APIs for interactive 3D graphics, such
as OpenGL [Neider et al. 1993]. OpenGL is well-known to devel-
opers and is used by many applications. All OpenGL applications
could then directly use the new rendering engine, too.

However, OpenGL and similar APIs are too closely related to
the rasterization pipeline to be used directly for our purposes. Their
level of abstraction is too low and closely reflect the stream of
graphics commands that is fed to the rasterization pipeline.

Other APIs, such as RenderMan, offer better support for ray-
tracing, but are not suitable for interactive applications. APIs
specifically designed for interactive ray-tracing have simply not
been developed yet.

Another option would be to build the ray-tracing API on top
of a high-level scene graph API such as Performer, OpenInven-
tor, OpenSG, or others [Rohlf and Helman 1994; Wernecke 1994;
OpenSG-Forum 2001]. However, this level is too high for a generic
ray-tracing API, as each of the different existing scene graph APIs
addresses a specific application. Instead of being limited to a sin-
gle scene graph API, a low-level API, similar to OpenGL, would be
more appropriate. With such support, any scene graph API could
later be layered on top of it.
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For these reasons, a new API specifically supporting interactive
ray-tracing was unavoidable. The design of our newOpenRT API
is similar to OpenGL but uses frame or retained-mode semantics
instead of the immediate-mode semantics of OpenGL. It supports
much of the core OpenGL commands and extends them where nec-
essary to better support a ray-tracing engine.

Below, we outline the basic ideas and problems in designing
OpenRT. A more detailed specification of the API will be made
available elsewhere.

Where meaningful, OpenRT uses similar function names as
OpenGL, exchanging thegl prefix for rt. This is the case for calls
specifying geometry, transformations, and textures, which have
identical syntax and semantics as OpenGL. This simplifies porting
applications where large parts of the OpenGL code can be reused
directly. Otherwise, OpenRT differs only in three main areas: sup-
port for retained objects, programmable shading, and frame seman-
tics.

Instead ofdisplay lists, which are essentially recorded OpenGL
command streams, OpenRT offersobjects. Objects encapsulate
geometry together with references to shaders and their attributes.
In contrast to OpenGL display lists, objects do not have any side
effects. They are specified usingrtBeginObject(id)/rtEndObject()
pairs. Each object is assigned a unique id that is used to instantiate
it later by a call tortInstantiateObject(id).

In order not to be limited to the fixed reflectance model
of OpenGL, OpenRT specifies appearance usingprogrammable
shaderssimilar to RenderMan [Pixar 1989]. We currently support
shaders that correspond to RenderMan’s surface, light, camera, and
pixel shaders. In terms of the API, shaders are named objects that
receive parameters and are attached to geometry. For this purpose,
we have adopted the shader API as suggested by the Stanford Real-
time Programmable Shading group [Proudfoot et al. 2001; Mark
2001].

As in the Stanford Shader API, shaders are loaded and instan-
tiated by calls tortShaderFile()and rtCompileShader()and are
bound to geometry viartBindShader(). Arbitrary shader parameters
can be specified by a genericrtParameter()call. Depending on the
scope for which a parameter has been declared, it is attached to an
object, a primitive, or to individual vertices. These different ways to
specify parameters allow for optimizing shaders and minimize stor-
age requirements for parameters that change less frequently than at
every vertex.

The main architectural difference between OpenRT and OpenGL
is the semantics of references. OpenGL stores parameters on its
state stack and binds references immediately when geometry is
specified. OpenRT, instead, stores state objects, such as textures,
shaders, etc., globally and binds them during rendering at the end
of each frame. This significantly simplifies the reuse of objects also

Figure 6: Instantiation: The ground terrain consists of half a million
textured triangles and contains several hundred instantiated, highly
detailed trees. The total scene consists of roughly 7-10 million tri-
angles, and is rendered together with shadows from a point light
source. The right image shows a closeup of the highly detailed
shadows cast by the leaves.

Figure 7: The left image show a frame from an interactive VRML-
97 animation displayed with the ported VRML-browser rendering
through the OpenRT API with the distributed ray-tracing engine.
The image on the right shows one floor of the Soda Hall VRML
model containing half a million triangles. Using only 2 clients it
renders at roughly 10 fps.

across frames but means that any changes to such objects will have
global effects. These semantic differences require most attention
during porting of OpenGL applications.

4.1 Results

In order to demonstrate the usability of our API, we have not only
used it to write all the applications from this paper, but also by
porting an existing VRML-97 browser [Bekaert 2001] to the new
API.

The browser passes the VRML shading parameters to the ren-
derer via the new shader API. These parameters are then picked
up by a special shader that implements the VRML shading model,
including texturing and mip-mapping (see Figure7).

This special VRML shader can also be replaced by other shaders.
They have access to the same VRML shading parameters and can,
for instance, automatically compute shadows and reflections, or
perform global illumination computations.

5 Benefits of Ray-Tracing

In the previous sections we have demonstrated that ray-tracing can
be used to build an interactive rendering engine that can be used
as an alternative to rasterization-based systems. As shown with the
ported VRML browser and the other examples, the new rendering
engine offers at least features comparable to rasterization systems
and performance for many interactive 3D graphics applications.

For the remainder of this paper we focus in more detail on the
additional benefits gained by using a ray-tracing-based system and
present unique new applications that become possible with such a
system.

5.1 Flexibility

In contrast to rasterization techniques that are limited to computing
regular sets of samples, ray-tracing can efficiently handle samples
from individual rays. As a result, ray-tracing can be used effec-
tively for applications that require irregular or even adaptive sets of
samples.

Example applications include adaptive sampling of the image
plane [Akimoto et al. 1989], frameless rendering [Bishop et al.
1994], adaptive or perceptually-driven rendering [Myszkowski
et al. 2001], filling holes in image-based rendering [Walter et al.
1999], and many others. We discuss some of the examples below.
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5.1.1 Frameless Rendering

Frameless rendering [Bishop et al. 1994] is an approach to adap-
tively trade image quality for interactivity. Instead of updating all
pixels in an image simultaneously, it incrementally updates indi-
vidual pixels distributed across the image. The update sequence
ensures that every pixel is eventually recomputed.

With this technique the image can be displayed at any time and
the system can maintain interactive response times even if the per-
formance is insufficient for complete image updates. However,
blur-like effects appear for changing image content if the image
update frequency is much lower than the display frequency (see
Figure8).

The algorithm has been published severals years ago but could
never be implemented efficiently on rasterization technology. With
ray-tracing its implementation is trivial. We have used a Quasi
Monte-Carlo (QMC)interleaved sampling pattern[Keller and Hei-
drich 2001] to determine the update sequence. It achieves better im-
age quality than using a randomly perturbed pixel update sequence.

5.1.2 Anti-Aliasing

In order to improve image quality we have implemented several
anti-aliasing techniques, including supersampling with a fixed sam-
pling pattern per pixel, supersampling using QMC interleaved sam-
pling, and adaptive supersampling. The first two methods decrease
performance by a fixed factor because a constant number of rays
are computed per pixel. Interleaved sampling, however, achieves
better anti-aliasing using less samples [Keller and Heidrich 2001].

Adaptive oversampling, in contrast, starts with a single sample
per pixel and sends additional rays in areas where high color con-
trast is detected between adjacent pixels (see Figure9). If additional
information, like object- or shader-ids, are requested from the ren-
derer this information can also be considered by the detection pro-
cedure.

While this method usually requires less rays to be sent, it in-
troduces additional latency because additional samples can only be
requested once previous results are returned by the renderer. For the
example in Figure9 we achieve a factor of 2-4 speedup compared
to fixed supersampling depending on the maximum number of sam-
ples per pixel. With the flexibility of ray-tracing the application can
choose which method is best suited for its needs.

5.1.3 Adaptive Quality

Ray-tracing allows to adapt the rendering quality based on rele-
vance information derived from different sources, such as the image
being computed, the user, and the environment. Relevance can be

Figure 8: Example images show the effect of frameless rendering
during fast camera or object movement. Top: zooming in on the
metal ball. Bottom: moving the ball.

Figure 9: Adaptive oversampling limits anti-aliasing to pixels with
strong contrast, marked with color codes.

based on information about human perception in general, on mea-
sured quantities, such as adaptation levels or the user’s gaze, and
on image features. The ray-tracing engine can use this information
for concentrating computations to the more “relevant” parts of the
image [Ferwerda et al. 1997; Myszkowski et al. 2001].

Once this information is available the application has a num-
ber of options to adjust the rendering quality: adjusting sampling
density, adjusting shading parameters such as shadow quality, re-
flection depth, etc. For this purpose the OpenRT API allows to
attach additional parameters to each ray that can be accessed from
the different shaders. This level of flexibility is not available with
rasterization based approaches.

5.2 Logarithmic Complexity

Due to hierarchical index structures (e.g. octrees, BSP-trees, kd-
trees etc. [Glassner 1989]) tracing a single ray requires logarithmic
time on average in the number of scene primitives to traverse the
index structure1 and results in a roughly constant number of inter-
section computations before the final intersection is found [Havran
2001].

The plain rasterization algorithm shows linear behavior with re-
spect to scene complexity. Some extensions such as the hierarchical
Z-buffer [Greene et al. 1993] or occlusion testing in hardware could
help reduce this complexity but are not yet commonly available and
also require an interactive update of the index structure.

The logarithmic complexity of ray-tracing with respect to the
scene size allows for handling huge models that were previously
impossible to render interactively. It also means that the rendering
times vary only slowly for models beyond the size of a few hundred
thousand triangles, see Figure2.

The left image in Figure10 shows the UNC power-plant
model [Aliaga et al. 1999] being rendered at 10 fps on four clients
(see also [Wald et al. 2001b]). Note that the full detail of the
model is being rendered without any simplifications or approxima-
tions necessary for hardware rendering [Aliaga et al. 1999]. In-
stead of complex and time-consuming preprocessing algorithms,
ray-tracing requires only simple and fully automatic spatial sorting
during creation of the index structure.

The image on the right in Figure10shows a terrain data set with
several hundreds of trees using instances of two different tree mod-
els. The scene contains a total of about 8 million triangles after
instantiation. In this application, the user can interactively “slide”
the trees along the terrain. We also render this scene with highly
detailed shadows caused by the leaves of the trees (see Figure6).
This interactive application maintains a framerate of 2-5 fps on four
clients.

1In the worst case ray-tracing is linear in the number of primitive but this
is highly unlikely to happen in real scenes.
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Figure 10: The image on the left shows the UNC power-plant model
consisting of 12.5 million individual triangles rendered at roughly
10 fps on 4 clients. The image on the right shows a terrain scene
containing more than 8 million triangles. This model is rendered
with detailed shadows at 2–5 fps on 4 clients.

5.3 Output-Sensitive Algorithm

Ray-tracing is an output sensitive algorithm. The performance of
ray tracing is roughly linear in the number of rays traced for an
image. This number of rays is also closely related to the quality
of the resulting image. This includes image resolution, supersam-
pling, reflection and shadow rays, sampling of indirect reflection,
and others.

Rendering times obviously scale linearly in the number of initial
rays from the camera, with a slight advantage for higher resolutions
of the same view (in the order of 5% comparing images of 640x480
with 1280x1024). Higher resolutions lead to more closely spaced
rays that show better cache hit rates. Shadow rays show essentially
the same behavior if traced together from the end points of a co-
herent set of rays to each point light source separately [Wald et al.
2001a].

Coherence is lost only for rays reflecting off of geometry with ex-
tremely high curvature such as a reflective, strongly bump-mapped
surface, or for random sampling of the environment as done in
many global illumination algorithms.

This result has some immediate consequences for applications.
Lets take a reflective object as an example. For ray-tracing the per-
formance is directly related to the number of pixels covered by the
object as well as to the part of the scene being reflected in it.

With a rasterization approach the object requires at least one re-
flection map. For each map the application must render theentire
environment, as it is difficult to know what parts will actually be
reflected. Thus the cost per map is constant, independent of the
amount of reflection visible in the image. Similar arguments hold
for other effects.

If multiple rendering effects are combined, such as multiple re-
flections, the constant cost increases with the number of possible
combinations, again independent of the actual visibility in the final
image.

5.4 Demand-Driven Operation

Tracing a ray consists of three steps: traversal of the index struc-
ture, intersection computations, and shading. Each step is only per-
formed once the previous step determined that the computation is
indeed necessary. As a result, the rendering engine can request data
on demand avoiding the need to have direct access to the entire
scene data at all times.

Together with a scheduling strategy for coherent sets of rays,
temporal coherence, and the fact that usually only a small part of the
scene is visible in each view, caching and prefetching of geometry
data can be made to work well [Wald et al. 2001b]. As occlusion
culling is inherently built into ray tracing, occluded parts of the
scene are never even requested by the renderer.

The demand-driven mode supported by ray-tracing has already
been used effectively for demand-loading of scene data from a mas-
ter machine. It results in fast start-up times as only the required
parts of the scene need to be loaded. It also means that part of the
scene that never become visible are never loaded. This is particu-
larly important for highly-occluded scenes, such as the interior of
buildings. Clients do not require memory for the entire scene but
usually operate efficiently using a cache size of less than 10% of
the total model size.

Figure 11: A scene as seen through a fish-eye lens, a cylindrical
lens, and some weird, parabolic-like mapping. Arbitrary mappings
can be generated by simply replacing the camera that generates pri-
mary rays.

One issue with this approach is the additional latency. To some
degree it can be handled by sending prefetching rays from antic-
ipated camera positions or using enlarged proxy objects for early
notification. However, much more research is required in this area.

This inherently demand driven approach of ray-tracing is in stark
contrast to the rasterization-based approach where submission of
geometry by the application is decoupled from the Z-buffer that
decides what will end up on the screen.

5.5 Programmable Shading

Rasterization-based renderers are limited by the strict pipeline
model of shader execution [Mark and Proudfoot 2001]. While it has
been shown that arbitrary shader code can be executed in a slightly
extended pipeline model, this can become very inefficient [Peercy
et al. 2000]. To alleviate this problem more programmable com-
ponents have recently been added to various parts of the graph-
ics pipeline [NVIDIA 2001; Lindholm and Moreton 2001]. Even
though shading language compilers [Mark and Proudfoot 2001]
simplify programming, a developer still has to deal with many re-
maining restrictions imposed by the rasterization pipeline.

Because shading and visibility computations are decoupled, new
and advanced shading techniques can easily be added to a ray-
tracing implementation. Even complete RenderMan environments
with the shading language compiler have been integrated with ray-
tracers [Slusallek et al. 1994; Gritz and Hahn 1996]. Ray-tracing
has the advantage that only visible samples are ever shaded and
that shading can be performed asynchronously with ray-traversal
and ray-intersection.

With a ray tracer shaders are no longer restricted to purely lo-
cal illumination models even for interactive use. Every shader can
shoot arbitrary secondary rays as necessary for reflections, refrac-
tions, or environment sampling.
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Figure 12: An office environment with different shader configurations: A shader computing reflections and shadows from three lights,
additional procedural shaders for wood and marble, and with volume and lightfield objects and procedural bump mapping on the mirror.

5.5.1 Surface and Light Shaders

Figure 12 shows an office environment with several procedural
shaders such aswoodandmarbleapplied to some surfaces. Proce-
durally determining shader parameters allows for more flexibility,
arbitrary detail, and better anti-aliasing [Ebert et al. 1998]. Even
though both shaders require expensive evaluations ofnoisefunc-
tions, the overall framerate dropped by about 3%. This indicates
that significantly more complex shading code could still be imple-
mented while maintaining interactive performance.

Similar to surface shaders, our system supports arbitrarily pro-
grammable light shaders. Our system currently supports the usual
light types as supported in OpenGL or VRML, as well as area light
shaders for more realistic lighting and global illumination (see be-
low).

5.5.2 Camera Shaders

Rasterization is limited to the simple pinhole camera model. All
other models must be approximated by warping and compositing
images from different pinhole camera settings, e.g. [Heidrich et al.
1997]. With our ray-tracing based system the user can usecamera
shadersfor implementing any desired camera model. The shader
simply has to generate the correct primary rays.

This can be used to interactively visualize the scene using simple
fish-eye lenses, as shown in Figure11, or more complex lens sys-
tems that simulate real camera lens systems [Kolb et al. 1995; Loos
et al. 1998]. The shader is also responsible for computing depth of
field and motion blur effects.

5.6 Correctness

Rasterization techniques are limited to approximations for most op-
tical effects because it can only deal efficiently with regular sets of
samples derived from a parallel or planar perspective projection.

For example, reflections off of extended objects are approxi-
mated by a reflection map that is valid only for a single point. The
results are more or less incorrect and cannot contain self-reflection.
Similar arguments hold for other effects, such as refraction, shad-
ows, etc. [Diefenbach and Badler 1997; Heidrich and Seidel 1999].
In addition to being approximations, these techniques often require
user interaction in determining the best parameters, e.g. for posi-
tion, resolution, and the contents of reflection maps.

Ray-tracing deals with all these effects correctly and automati-
cally. If desired, applications can still use the same approximations
but must then deal with the same issues as in OpenGL.

6 Enabling New Applications

The long list of benefits offered by a ray-tracing-based rendering
engine enables completely new applications that could not be im-
plemented with rasterization technology. As examples we describe
two novel interactive applications that have recently been imple-
mented on top of the OpenRT API.

6.1 Integrating Different Model Types

In addition to the VRML-97 browser mentioned earlier, we also
implemented a specialized viewer. It integrates all of the above
techniques coherently and also adds new rendering primitives such
as volume data sets and light fields. While this functionality is
currently in a separate application we plan to integrate it into our
VRML browser via custom nodes in a VRML scene graph.

6.1.1 Volume Rendering

We implemented support for volume rendering through a special
surface shader attached to a simple box. The shader is called for
each ray hitting the box and computes the the emission-absorption
model for each voxel along the ray. In case that some transparency
remains, an additional ray samples the scene behind the voxel grid.
Its intensity is then modulated by the transparency of the volume.
The same technique also works for shadow rays where the trans-
parency modulates the shadow intensity.

Since the volume effect has been implemented as a shader ob-
ject, other applications can simply load and use this shader. No
additional support by the application is required.

Figure13 show an example of a simple volume object rendered
this way. We are using a simple implementation of volume ren-
dering that could easily be improved: More advanced and better
optimized volume rendering techniques including complex trans-
fer functions, lighting, multiple scattering, etc, could easily be in-
tegrated into this system without changing the current ray-tracing
core. Also our code does not currently account for other objects
penetrating the volume.

6.1.2 Lightfield

Integrating new rendering primitives is extremely simple and fast
in a ray-tracing context. In less than half a day we implemented a
lightfield renderer, again simply by implementing it as a special sur-
face shader. If applied to a surface it uses the position and direction
of the incoming ray for indexing into the lightfield data structure
and performing the quadri-linear interpolation. Figure13shows an
example frame of the Stanford dragon lightfield [Lightpack 2002].
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6.1.3 Integration

The ability to easily implement and interactively render new types
of objects is already quite useful. In particular, an equivalent im-
plementation using OpenGL would be significantly more complex.

The unique advantage of ray-tracing, however, is that all the
techniques described in this paper can easily be combined in a sin-
gle scene. Figure14 shows an office environment that contains
surface geometry, a volumes data set, and a lightfield object. The
surfaces use a mix of simple and procedural shaders, implementing
procedurally bump-mapped reflections on the mirror and complex
procedural wood.

All the optical effects work as expected: The volume casts trans-
parent shadows onto other objects, the lightfield is correctly visible
through the volume as well as through the bump-mapped, wavy
mirror on the left. Additionally all the objects can be moved inter-
actively by the user and any parameter can be changed instantly.

From an application point of view, this scene is just as simple as
any other scene in this paper. The application simply defines the
geometry and assigns the right shaders and parameters, such as the
name of the volume data set.

In contrast, implementing such a scene in a rasterization-based
renderer, while theoretically possible, would be highly non-trivial,
would require numerous rendering passes with the corresponding
slowdown, and would still give only approximate results.

The flexibility offered by the ray-tracing algorithm is the key
to support all these objects and rendering techniques in a single
interactive application. To our knowledge this is the first time such
capabilities are available for interactive use.

6.2 Interactive Global Illumination

Global illumination algorithms generate highly realistic images by
accounting for the subtle but important effects of indirect illumina-
tion in a physically-correct way [Cohen and Wallace 1993; Dutre
et al. 2001]. Global illumination simulates the global light trans-
port in an environment between all mutually visible surfaces in the
environment. Almost all algorithms use ray-tracing for simulating
the transport of light.

Due to the amount and complexity of the computations, render-
ing with global illumination is usually slow and far from interactive,
taking several minutes to hours even for simple diffuse environ-
ments. Achieving interactive performance has been a goal for many
years, e.g. [Drettakis and Sillion 1997; Bala et al. 1999; Chalmers
et al. 2001]. With a fast, flexible, and scalable ray-tracing engine
we should now be able to reach this goal.

Figure 13: Images of a volume object and a lightfield. Both are
simply implemented as surface shaders attached to a box and a rect-
angle, respectively.

Figure 14: An office scene containing surfaces, volumes, and light-
fields models as well as procedural wood, marble, and bump-
mapping shaders. Note that all optical effects work as expected:
transparent volume shadows, lightfields visible through bump-
mapped reflections and through the volume object etc. Of course,
the objects can be changed and moved interactively.

6.2.1 Restrictions on Algorithms

However, global illumination algorithms are inherently more com-
plex than classical ray tracing and thus not all algorithms will auto-
matically benefit from a much faster ray-tracing engine. In order to
fully exploit the available resources a global illumination algorithm
has to meet several constraints:

Parallelism: We were able to achieve good parallelism by comput-
ing pixels separately. Many global illumination algorithms,
however, require reading or even updating global information,
such as the radiosity of a patch [Cohen and Wallace 1993],
entries in the photon map [Jensen 2001], or irradiance cache
entries [Ward and Heckbert 1992]. This requires costly net-
work communication and synchronization overhead that can
easily limit the achievable performance.

Efficiency: In order to be interactive, a suitable algorithm must
achieve sufficiently good images with less than about 50 rays
per pixel on average given the current performance of our en-
gine and the available machines. Thus we must make the best
possible use of the information computed by each ray.

Real-time: Because we aim for interactivity, algorithms can no
longer use extensive preprocessing. Preprocessing must be
limited to at most a few milliseconds per frame and cannot
be amortized or accumulated over more than a few frames as
the stalling and increased latency of lighting updates would
become noticeable.

Other Costs: The rendering engine can only speed up ray-tracing.
So performance must not be limited by other computations,
such as nearest-neighbor queries, costly BRDF evaluations,
network communication, or even random number generation.

Within the above constraints most of todays global illumination
algorithms cannot be implemented interactively based on our en-
gine: All radiosity style algorithms require significant preprocess-
ing of global data structures which seems impossible to implement
under these constraints [Cohen and Wallace 1993].

Pure light-tracing or path-tracing [Kajiya 1986] based ap-
proaches would require too many rays per pixel for a decent qual-
ity at least for non-trivial lighting conditions. The original Pho-
tonMap [Jensen 2001] algorithm requires costly preprocessing for
photon shooting and creation of the kd-trees as well as expensive
nearest neighbor queries during rendering. The use of irradiance
caching for indirect illumination is another problem.
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6.2.2 New Algorithm

The above discussion shows that a new algorithm is required to take
advantage of a fast ray-tracing engine for interactive global illumi-
nation computations: Anonymous [Anonymous 2002] developed
a new Monte Carlo based algorithm explicitly designed to run ef-
ficiently under the constraints mentioned above. Because the full
details of this algorithm are beyond the scope of this paper, we will
only give a brief overview: The algorithm is based on the idea of
instant radiosity [Keller 1997] for mainly diffuse, direct and indi-
rect illumination, photon maps for caustic effects [Jensen 1997],
and interleaved sampling [Keller and Heidrich 2001] for efficient
parallelization in a network, and a new filtering technique to avoid
disturbing noise artifacts. All techniques recompute the global illu-
mination solution at every frame.

This algorithm has been successfully implemented on top of our
rendering system. As it relies mainly on shooting coherent visibil-
ity rays, it allows to fully exploit the performance of our ray trac-
ing engine. Minimal preprocessing combined with interleaved sam-
pling across client machines allows for easy parallelization and ef-
fective load balancing, resulting in good scalability over more than
32 CPUs.

While not all illumination effects are accounted for (e.g. no indi-
rect caustics), all of the most important features are correctly sim-
ulated: Direct lighting, soft shadows, indirect illumination, reflec-
tions, refractions and caustics. The system allows for arbitrary in-
teractive manipulation of the scene at a framerate of up to 5 fps at
640x480 resolution, with a full update of all effects at every frame.
Additionally we can accumulate information in static situations for
better image quality.

Some example images from our system can be seen in Figure15.
This is the first time that a system with similar features has been
realized at interactive rates.

All global illumination computations are implemented as plug-
in shaders applied to the surfaces and to the image on the master
machine. This allowed to abstract from the distributed framework
and from issues such as dynamic scenes, which are handled trans-
parently by our API. From the application point of view, the global
illumination system is a shader like any other, and does not require
any special handling.

Figure 15: Two frames from an interactive global illumination ap-
plication: A glass egg with detailed caustics, and an office envi-
ronment with reflections, caustics, and other lighting and shading
effects. These scenes can be changed dynamically and render with
up to 5 fps.

7 Conclusions

In this paper, we have presented a new ray-tracing-based render-
ing engine for interactive 3D graphics. It builds on a fast, dis-
tributed implementation of ray-tracing implemented on inexpensive
PC hardware hardware and scales to many networked PCs. Other
novel contributions include an approach for supporting interactively

changing the scene and the design of an OpenGL-like API that fa-
cilitates easy porting of existing application to the new rendering
system.

This engine supports the full set of rendering features like shad-
ows, reflections, and procedural shading with arbitrary surface,
light, and camera shaders. Non-surface models such as volume
data sets and lightfields have been integrated seemslessly and ef-
ficiently into the system simply through special shaders. All ren-
dering effects, such as transparent shadows of the volume object,
automatically work as expected.

The new rendering system offers significant advantages over the
current state-of-the-art. The flexibility of ray-tracing allows for the
first time to implement many advanced graphics algorithms in an in-
teractive context. This includes frameless rendering, efficient anti-
aliasing, adaptive image quality, as well as many special effects.
Ray-tracing also delivers “automatically correct” results by default
as it is not limited to approximations for basic rendering effects and
does not require preprocessing. All computations are done on the
fly.

The ray-tracing system scales linearly over a wide range of com-
putational resources and shows logarithmic behavior with respect to
scene complexity. Together with its output-sensitivity this allows it
to be used for a wide range of applications not limited to computer
graphics.

Finally, in order to demonstrate the unique possibilities offered
by our new rendering engine, we briefly described a fully interactive
global illumination system built on top of the described engine. It
uses a new Monte Carlo algorithm that is able to make effective
use of the improved ray-tracing performance even in a distributed
environment.

We are currently evaluating the practical use of the new system in
the car and airplane industry, mainly for highly realistic rendering
of complex models including advanced lighting effects.

8 Future Work

While the new rendering system offers high performance, much
flexibility, and a wide variety of features there is still room for im-
provements.

Obviously, higher performance on a single machine is required
for challenging existing mainstream solutions for interactive 3D
graphics. Boards with multiple standard processors, specialized
processors, large scale multiprocessing-on-a-chip, or even special
ray-tracing chips are all interesting solutions that need to be care-
fully evaluated.

In addition we need to investigate better algorithms for reducing
the computational load and carefully find options for even more
efficient implementations. So far we have used a mostly brute-
force, keep-it-simple approach that has often been very successful
in graphics. More intelligent approaches would be useful.

The design of the rendering engine could also be improved and
extended. Currently all data is managed on the master making it
likely to become a bottleneck. More flexible approaches where the
scene data is distributed across the clients seems useful, as long
as this remains transparent to the application. Other related issues
appear with parallel and distributed applications changing the scene
simultaneously on multiple master machines.

We need to port and evaluate more applications and locate nec-
essary extensions to the current architecture. This includes work
on the OpenRT API. Most interesting candidates are scene-graph
libraries where a single port of the library would benefit all appli-
cations based on this library. Another interesting challenge would
be the design of an interactive RenderMan-compliant renderer.
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