
Realtime Ray Tracing and

Interactive Global Illumination

Ingo Wald
Computer Graphics Group

Saarland University
Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

S
A

R
A V I E N

S
I S

U
N

I V
E R S I T A

S

Betreuender Hochschullehrer / Supervisor:
Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes, Saarbrücken,
Germany

Gutachter / Reviewers:
Philipp Slusallek, Prof. Dr.-Ing., Universität des Saarlandes, Saarbrücken,
Germany
Peter Shirley, Associate Professor, University of Utah, Salt Lake City, UT, USA
Philip Dutre, Assistant Professor, Katholieke Universiteit Leuven, Belgium

Dekan / Dean:
Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes, Saarbrücken,
Germany

Eingereicht am / Thesis submitted
21. Januar 2004 / Jan 21st, 2004

Datum des Kolloquiums / Date of defense:
3. Mai 2004 / May 3rd, 2004

Ingo Wald
Computer Graphics Group (AG4)
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
wald@mpi-sb.mpg.de

iii

Abstract

One of the most sought-for goals in computer graphics is to generate “realism
in real time”, i.e. the generation of realistically looking images at realtime
frame rates. Today, virtually all approaches towards realtime rendering use
graphics hardware, which is based almost exclusively on triangle rasteriza-
tion. Unfortunately, though this technology has seen tremendous progress
over the last few years, for many applications it is currently reaching its limits
in both model complexity, supported features, and achievable realism.

An alternative to triangle rasterization is the ray tracing algorithm, which
is well-known for its higher flexibility, its generally higher achievable realism,
and its superior scalability in both model size and compute power. However,
ray tracing is also computationally demanding and thus so far is used almost
exclusively for high-quality offline rendering tasks.

This dissertation focuses on the question why ray tracing is likely to soon
play a larger role for interactive applications, and how this scenario can be
reached. To this end, we discuss the RTRT/OpenRT realtime ray tracing
system, a software based ray tracing system that achieves interactive to real-
time frame rates on todays commodity CPUs. In particular, we discuss the
overall system design, the efficient implementation of the core ray tracing
algorithms, techniques for handling dynamic scenes, an efficient paralleliza-
tion framework, and an OpenGL-like low-level API. Taken together, these
techniques form a complete realtime rendering engine that supports mas-
sively complex scenes, highly realistic and physically correct shading, and
even physically based lighting simulation at interactive rates.

In the last part of this thesis we then discuss the implications and poten-
tial of realtime ray tracing on global illumination, and how the availability of
this new technology can be leveraged to finally achieve interactive global illu-
mination – the physically correct simulation of light transport at interactive
rates.

iv

Kurzfassung

Eines der wichtigsten Ziele der Computer-Graphik ist die Generierung von
“Realismus in Echtzeit” – die Erzeugung von realistisch wirkenden, com-
puter-generierten Bildern in Echtzeit. Heutige Echtzeit-Graphikanwendungen
werden derzeit zum überwiegenden Teil mit schneller Graphik-Hardware re-
alisiert, welche zum aktuellen Stand der Technik fast ausschliesslich auf dem
Dreiecksrasterisierungsalgorithmus basiert. Obwohl diese Rasterisierungs-
technologie in den letzten Jahren zunehmend beeindruckende Fortschritte
gemacht hat, stößt sie heutzutage zusehends an ihre Grenzen, speziell im
Hinblick auf Modellkomplexität, unterstützte Beleuchtungseffekte, und er-
reichbaren Realismus.

Eine Alternative zur Dreiecksrasterisierung ist das “Ray-Tracing” (Stahl-
Rückverfolgung), welches weithin bekannt ist für seine höhere Flexibilität,
seinen im Großen und Ganzen höheren erreichbaren Realismus, und seine
bessere Skalierbarkeit sowohl in Szenengröße als auch in Rechner-Kapazitäten.
Allerdings ist Ray-Tracing ebenso bekannt für seinen hohen Rechenbedarf,
und wird daher heutzutage fast ausschließlich für die hochqualitative, nicht-
interaktive Bildsynthese benutzt.

Diese Dissertation behandelt die Gründe warum Ray-Tracing in näherer
Zukunft voraussichtlich eine größere Rolle für interaktive Graphikanwen-
dungen spielen wird, und untersucht, wie dieses Szenario des Echtzeit Ray-
Tracing erreicht werden kann. Hierfür stellen wir das RTRT/OpenRT Echtzeit
Ray-Tracing System vor, ein software-basiertes Ray-Tracing System, welches
es erlaubt, interaktive Performanz auf heutigen Standard-PC-Prozessoren zu
erreichen. Speziell diskutieren wir das grundlegende System-Design, die ef-
fiziente Implementierung der Kern-Algorithmen, Techniken zur Unterstützung
von dynamischen Szenen, ein effizientes Parallelisierungs-Framework, und
eine OpenGL-ähnliche Anwendungsschnittstelle. In ihrer Gesamtheit formen
diese Techniken ein koplettes Echtzeit-Rendering-System, welches es erlaubt,
extrem komplexe Szenen, hochgradig realistische und physikalisch korrekte
Effekte, und sogar physikalisch-basierte Beleuchtungssimulation interaktiv zu
berechnen.

Im letzten Teil der Dissertation behandeln wir dann die Implikationen und
das Potential, welches Echtzeit Ray-Tracing für die Globale Beleuchtungssim-
ulation bietet, und wie die Verfügbarkeit dieser neuen Technologie benutzt
werden kann, um letztendlich auch Globale Belechtung – die physikalisch
korrekte Simulation des Lichttransports – interaktiv zu berechnen.

v

Acknowledgements

This thesis would have been impossible without the support of many people:
First of all, I would like to thank my supervisor Philipp Slusallek, for

confronting me with the idea of interactive ray tracing and attracting me
to the topic of realtime rendering; for continuously pushing me towards new
challenges, and for always being available for valuable help and suggestions.

Second, I have to pay credit to Carsten Benthin, who has been an invalu-
able help in building the RTRT/OpenRT system, especially in (though not
limited to) the networking code and in low-level optimizations, and who has
played an integral part in many of the projects related to this thesis.

Similarly, I have to thank (in random order) Andreas Dietrich, for always
helping out once help was needed; Alexander Keller for originally introduc-
ing me to the field of graphics, and for teaching me most of the bells and
whistles of ray tracing and global illumination already long before my PhD;
Philippe Bekaert for his XRML library, great discussions and help in many
cases; Timothy J. Purcell for insight into his ideas, mind-opening discussions,
and his invaluable help in the EG2003 Star Report; Alexander Keller and
Thomas Kollig for their work on the Instant Global Illumination technique;
Jörg Schmittler, Andreas Pomi, Gerd Marmitt, Tim Dahmen and Markus
Wagner for the joint projects; and Vlastimil Havran for access to his vast
knowledge about previous research on ray tracing. I would also like to thank
all those – both former and current – members of the Max-Planck-Institute
for Computer Science (MPII) that have provided help, insight into their re-
search and ideas, and tough discussions.

Furthermore, I know very well how much I owe to Georg Demme and
his system administration group, without whose continuous day-and-night
battle for keeping our hardware resources alive this kind of research would
hardly have happened as it did.

Special thanks also go to the people at Intel Corp., especially to James T.
Hurley for inviting me over as an intern and thereby introducing me to many
people and to even more new ideas, to Alexander Reshetov for his help and
teaching on BSP tree construction, to Gordon Stoll for many discussions,
and to all the other people at Intel that have certainly broadened my view,
taught me a great deal, and made the stay there a great experience.

I would also like to thank my reviewers, Peter Shirley and Phil Dutré, for
kindly accepting to review this thesis.

Finally, and most importantly, I would like to thank my family – my wife
Gabriele and my little son Janne Lukas – who had to bear the extra stress of
having me write this thesis, and without whose great patience and support
this thesis would never have been possible.

vi

Contents

I Interactive Ray Tracing 1

1 Introduction 3
1.1 Outline of This Thesis . 4

2 An Introduction to Ray Tracing 7
2.1 The Core Concept – Ray Shooting 7
2.2 The Ray Tracing Rendering Algorithm 10
2.3 General Ray Tracing based Algorithms 16

3 A Brief Survey of Ray Tracing Acceleration Methods 19
3.1 Computing less Samples in the Image Plane 21
3.2 Reducing the Number of Secondary Rays 23
3.3 Accelerating Ray-Scene Intersection 28
3.4 Summary . 34

4 Interactive Ray Tracing 37
4.1 Why Interactive Ray Tracing ? 37
4.2 Why not earlier, and why today ? 41

5 Towards Realtime Ray Tracing 45
5.1 Realtime Ray Tracing in Software 46
5.2 Ray Tracing on Programmable GPUs 50
5.3 The SaarCOR Realtime Ray Tracing Engine 55
5.4 Towards Realtime Ray Tracing – Conclusions 63

II The RTRT/OpenRT Realtime Ray Tracer 65

6 General Design Issues 67
6.1 General Design Decisions . 68
6.2 Efficiency and Optimization Issues 72
6.3 Efficient use of SIMD Extensions 77

viii CONTENTS

6.4 Implications on the RTRT Core 80

7 The RTRT Core – Intersection and Traversal 89
7.1 Fast Triangle Intersection in RTRT 89
7.2 Fast kd-Tree Traversal . 101
7.3 High-Quality BSP Construction 113
7.4 Current RTRT Performance 122
7.5 Future Work . 124

8 The RTRT Parallelization Framework 127
8.1 General System Design . 128
8.2 Optimizations . 130
8.3 Results . 133
8.4 Potential Improvements . 135
8.5 Conclusions . 138

9 Handling Dynamic Scenes 141
9.1 Previous Work . 142
9.2 A Hierarchical Approach . 144
9.3 Static and Hierarchical Motion 147
9.4 Fast Handling of Unstructured Motion 148
9.5 Fast Top-Level BSP Construction 150
9.6 Fast Traversal . 152
9.7 Experiments and Results . 153
9.8 Discussion . 160
9.9 Conclusions . 164
9.10 Future Work . 165

10 The OpenRT API 167
10.1 General Design of OpenRT . 169
10.2 Application Programming Interface 170
10.3 OpenRTS Shader Programming Interface 181
10.4 Taking it all together . 186
10.5 Conclusions and Future Work 189

11 Applications and Case Studies 191
11.1 Classical Ray Tracing . 192
11.2 Physically Correct Reflections & Refractions 193
11.3 Visualizing Massively Complex Models 194
11.4 Interactive Ray Tracing in Virtual and Augmented Reality . . 196
11.5 Interactive Global Lighting Simulation 198

CONTENTS ix

III Instant Global Illumination 201

12 Interactive Global Illumination 203
12.1 Alternative Approaches . 204
12.2 Realtime RT for Global Illumination – Issues & Constraints . 210

13 Instant Global Illumination 213
13.1 The Instant Global Illumination Method 213
13.2 Implementation Issues & Design Decisions 222
13.3 Scalable Instant Global Illumination 225

14 IGI in Complex and Highly Occluded Scenes 233
14.1 Global Illumination in Realistically Complex Scenes 235
14.2 Previous Work . 237
14.3 Efficient Importance Sampling 238
14.4 Application to Instant Global Illumination 244
14.5 Results and Discussion . 248
14.6 Summary and Conclusions . 252

15 Instant Global Illumination – Conclusions & Future Work 253

16 Final Summary, Conclusions, and Future Work 257

A List of Related Papers 267

Bibliography 271

x CONTENTS

List of Figures

2.1 Ray casting . 10
2.2 Classical recursive ray tracing 12
2.3 Camera, surface, light, and environment shaders 15

5.1 Examples from the Utah Interactive Ray Tracer 47
5.2 Examples from the Utah “Star-Ray” cluster ray tracing system 48
5.3 The GPU as a stream processing hardware 52
5.4 Examples from Purcell’s ray tracer 54
5.5 Bandwidth reduction in relation to packet size 58
5.6 The SaarCOR benchmark scenes 59
5.7 Overview of the SaarCOR hardware architecture 61

6.1 SIMD data organization . 79
6.2 Overhead of 1:4 Traversal . 84
6.3 Shallower BSPs through SIMD 1:4 intersection 84
6.4 Loss of coherence at the hit points 87

7.1 Kernel data organization . 94
7.2 SoA Layout of the ray packets 98
7.3 Memory organization of BSP nodes 104
7.4 BSP Traversal cases . 105
7.5 Surface Area Heuristic vs. Kaplan BSP example 113
7.6 Post-process memory optimizations 119
7.7 Basic RTRT benchmarking scenes 120
7.8 SAH – Getting stuck in local minima 121

8.1 RTRT/OpenRT scalability . 134

9.1 BART example scenes . 143
9.2 The two-level hierarchy used for ray tracing dynamic scenes . 145
9.3 Grouping of triangles into objects for hierarchical animation . 146
9.4 Editing the 12.5 million triangle power plant scene 146

xii LIST OF FIGURES

9.5 Instantiation example: The “Sunflowers” scene 148
9.6 Example frames from several dynamic scenes 154
9.7 BART kitchen . 154
9.8 BART robots . 157
9.9 Unstructured motion in the BART museum 157
9.10 Instantiation in the terrain scene 160

10.1 RTRT/OpenRT data organization 173

11.1 Plug-’n-play shading effects 193
11.2 Example application: Physically correct glass simulation . . . 194
11.3 Three UNC power plants of 12.5 million triangles each 195
11.4 Instantiation in the “Sunflowers” scene 195
11.5 Augmented reality applications 197
11.6 Lighting from live video textures 197
11.7 Interactive global illumination in several example scenes . . . 199

12.1 Selected photon tracing . 209

13.1 Interleaved sampling and the discontinuity buffer 214
13.2 Instant radiosity . 215
13.3 Hashed photon mapping . 217
13.4 Interleaved sampling . 219
13.5 Discontinuity buffering . 219
13.6 Caustics in the original Instant Global Illumination system . . 224
13.7 Instant Global Illumination animation sequence 224
13.8 IGI2 animation sequence in the “ERW6” scene 227
13.9 Scalability of the new IGI system 227
13.10Programmable shading in a globally illuminated scene 228
13.11Efficient anti-aliasing . 230
13.12Instant Global Illumination 231

14.1 Soda hall as an example for a complex and highly occluded
scene . 234

14.2 IGI in the “Conference” and “PowerPlant” scenes 236
14.3 Path Tracing for Estimating Light Importances 240
14.4 Importance estimate in the “ERW10” scene 241
14.5 Improved quality for bidirectional path tracing 243
14.6 Light source tracking – RMS error to master image 243
14.7 Small changes in the PDF leading to jumping in the VPLs . . 248
14.8 Quality impact of light source tracking 251

List of Tables

5.1 Statistical data on the SaarCOR benchmark scenes 57
5.2 SaarCOR performance . 61

7.1 Performance of the RTRT triangle test algorithm 98
7.2 Triangle test: C code vs. SSE implementation 100
7.3 Packet traversal overhead . 112
7.4 BSP construction performance results 115
7.5 BSP traversal statistics wrt. construction method 116
7.6 RTRT core performance . 122

9.1 Scalability in the kitchen scene 155
9.2 Scalability in the robots scene 156
9.3 Unstructured motion in the museum scene 157
9.4 Scalability in the different test scenes 159
9.5 Number of matrix-vector multiplies for our benchmark scenes 161

13.1 Programmable shading impact on IGI performance 229

xiv LIST OF TABLES

Part I

Interactive Ray Tracing

.

Chapter 1

Introduction

Over the last 20 years, computer graphics has matured from a mostly aca-
demic discipline to a practically and commercially important business. The
driving forces behind this development are for example virtual reality and
visualization applications, the cinema and movie industry, and last but not
least the ever more important game and entertainment industry. Looking
at todays main uses of computer graphics, there are two fundamentally dif-
ferent kinds of applications: High-quality, offline computer graphics on one
side, and fast, interactive graphical applications on the other side.

Interactive computer graphics – as used for example in games and virtual
reality applications – today is almost entirely governed by triangle rasteri-
zation (like OpenGL and DirectX), running on extremely fast and increas-
ingly sophisticated commodity graphics chips like ATI’s Radeon and NVidia’s
GForce series. Due to several limitations of triangle rasterization, interac-
tive computer graphics usually has to rely on approximations, and makes no
claims on physical correctness. Though many interactive applications achieve
stunning rendering quality, this is usually due to ’faking’ of certain effects,
and often requires significant manual effort by artists and game designers for
the proper design and tuning of the respective scenes and applications.

On the other side, there is offline rendering for high-quality graphics
and physically-correct rendering, which has many applications for example
in the design, animation, and movie industries, and which allows for creating
computer-generated images that can be virtually impossible to distinguish
from “real” photographs. Due to strict requirements on quality and correct-
ness, almost all these applications build on ray tracing.

Today, these two approaches to computer graphics are strictly separated,
with high-quality rendering limited to offline use, and interactive graphics
limited in achievable realism and correctness. Bridging this gap requires to

4 Chapter 1: Introduction

either remove some fundamental limitations of triangle rasterization – which
most researchers deem impossible – or to accelerate ray tracing to the point
where it allows for realtime applications.

For more than a decade now, different researchers have argued that due
to several inherent advantages of ray tracing – coupled with ever-increasing
availability of hardware resources and ever-increasing user demands – ray
tracing performance should eventually overtake triangle rasterization [Kajiya86,
Teller98]. Though these claims are yet unfulfilled for almost two decades, it
seems that with some of the recently ongoing developments this scenario is
finally taking on shape. In the long term, realtime ray tracing should al-
low for both higher quality and higher performance than any other kind of
rendering technology.

1.1 Outline of This Thesis

This thesis is structured into three independent parts, reporting on an intro-
duction to interactive ray tracing, the RTRT/OpenRT interactive ray tracing
system, and the Instant Global Illumination method, respectively.

Part I starts by introducing the ray tracing method in Chapter 2, and
gives a brief survey of ray tracing acceleration techniques in Section 3. Chap-
ter 4 then discusses the benefits of using ray tracing for interactive applica-
tions, and addresses the question why in the near future ray tracing is likely
to play a larger role in interactive graphics. Part I then ends with an overview
over the most important currently ongoing approaches towards realizing re-
altime ray tracing on different kinds of hardware platforms, which include
various software systems, GPU-based ray tracing, and special purpose ray
tracing hardware.

The main part of this thesis (Part II) then describes one of these ap-
proaches (the RTRT/OpenRT software realtime ray tracing system) in more
detail: Chapter 6 starts with a detailed discussion of the issues to be kept
in mind when designing a realtime ray tracing system on todays CPUs, and
outlines the most fundamental design guidelines of the RTRT core. Chap-
ter 7 then in detail describes the technical aspects of the RTRT core, namely
fast ray/triangle intersection, fast BSP traversal, the efficient use of SIMD
instructions, and high-quality BSP construction. Chapter 8 then shows how
these fast core algorithms can be efficiently parallelized on small clusters
of commodity PCs, resulting in near-linear scalability and high ray tracing
performance without the need for sophisticated hardware resources. Follow-
ing this, Chapters 9 and 10 discuss some advanced ray tracing issues, like

1.1 Outline of This Thesis 5

how to efficiently handle dynamic scenes, and API issues for realtime ray
tracing. Together, these chapters describe the different building blocks that
form a complete rendering engine, the RTRT/OpenRT realtime ray tracing
engine, which already enables several new applications. Some examples of
such applications are briefly summarized in Section 11.

Part III of this thesis then discusses how realtime ray tracing can eventu-
ally be used to finally achieve interactive global illumination – the physically-
correct simulation of global light transport in a virtual scene at interactive
rates. Section 12.1 first briefly summarizes several alternative approaches
to interactive global illumination. Following this, Section 12.2 outlines the
issues and the constraints arising when trying to map contemporary global
illumination algorithms to a realtime ray tracing engine, and concludes that
most of these approaches are not suitable to this setting.

Based on this discussion, Section 13 then introduces the Instant Global Il-
lumination method, a specially designed method that fits these constraints.
Following this, Section 14 discusses some extensions of instant global illu-
mination that aim at also applying the technique to complex and highly
occluded scenes.

Finally, this thesis ends with a short summary, and with a brief survey
of potential future work in realtime ray tracing and in interactive global
illumination.

6 Chapter 1: Introduction

Chapter 2

An Introduction to Ray Tracing

Before going into any details on ray tracing, it is necessary to first intro-
duce several terms, and to actually define the problem of ray tracing. This
may seem superfluous due to the fact that ray tracing is a very commonly
known technique taught in about every computer graphics course. However,
the term “ray tracing” actually covers a wide range of different meanings,
ranging from the basic concept of efficiently finding an intersection between
a ray and a set of primitives, over the classical recursive ray tracing ren-
dering algorithm (and its variants), down to more general ray tracing based
algorithms that use ray tracing in one or another form. Note that all these
terms are fundamentally different. For example, many global illumination
algorithms use “ray tracing” for computing images, but otherwise have very
few in common with the classical rendering algorithm.

2.1 The Core Concept – Ray Shooting

The core concept of any kind of ray tracing algorithm is to efficiently find
intersections of a ray with a scene consisting of a set of geometric primitives.
The ray R(t) = O + tD is usually described by its origin O and direction
D, and may additionally have a parameter tmax that specifies a “maximum
distance” up to which the ray is looking for intersecting objects. Only object
intersections with distance thit < tmax are considered valid intersections1.

1In practice, rays often originate on surfaces. This may lead to the undesired effect of
finding this originating geometry as the first “intersection”. To avoid this so-called “self-
occlusion”, valid hit distances have to be strictly greater than zero (i.e. thit ∈ (0, tmax)).
Due to numerical issues, practical implementations usually limit the valid range to thit ∈
(ε, tmax).

8 Chapter 2: An Introduction to Ray Tracing

Already at this level, the term “ray tracing” actually covers three different
problems that have to be solved: Finding the closest intersection to the origin,
finding any intersection along the ray, and finding all intersections along it.

Finding only the closest intersection is the most fundamental operation in
any ray tracer. It usually requires to find the closest intersecting primitive P
and its distance thit. Additionally, most ray tracers also determine additional
parameters that are later-on used for shading the ray, such as local surface
properties or the surface normal.

A slightly simpler problem is to determine whether there is any primitive
that intersects the ray. This is actually the same as checking for visibility
between the two points O and O + tmaxD. As such, this operation is often
termed “visibility test” or “occlusion test”. Obviously, checking for any in-
tersection is a slightly simpler problem than finding the closest intersection.
Thus, there are algorithms that are more efficient for this special case than
for the general ray shooting case. As checking for occlusion is a very common
operation in a ray tracer, most ray tracers have specially optimized routines
for this task. Most obviously, “normal” rays might have to perform multiple
intersection tests in order to determine which of these intersections in the
closest one, whereas intersection testing for shadow rays can be terminated
as soon as the first successful intersection test has been performed. Except
for this obvious optimization, there are also several optimizations and heuris-
tics for accelerating shadow rays, such as Shadow Caching, Shadow Maps,
Adaptive Shadow Testing, Local Illumination Environments, and others (see
Section 3.2).

The third sub-problem in ray tracing is finding all intersections with a
given ray. This is required by some advanced lighting algorithms (such as
e.g. [Sbert97]). Except for these special algorithms, however, this special
problem is not very common, and few ray tracers have special optimizations
for this task (though they obviously exist, see e.g. [Havran01]).

2.1.1 Scene Description

The “scene” to be rendered consists of a list of “geometric primitives”, which
are usually simple geometric shapes such as as polygons, spheres, cones, etc.
However, ray tracing primitives may also be as complex objects as parametric
patches (e.g. Bezier- or NURBS patches), subdivision surfaces, ISO-surfaces,
as well as algebraic or implicit surfaces. Ray tracing can even accurately
handle such complex constructions as CSG2, fractals, and recursively and
procedurally defined objects. In fact, any kind of object can be used as a ray

2CSG = Constructive Solid Geometry

2.1 The Core Concept – Ray Shooting 9

tracing primitive as long as it is possible to compute an intersection between
a ray and the primitive.

For many common shapes, there actually exist a variety of different
analytic, geometric, or numerical intersection algorithms. All these algo-
rithms have different properties with respect to speed, elegance, precision, or
numerical robustness, which makes it hard to always identify “the best”
algorithm for any primitive. For an excellent overview of different ray-
primitive intersection algorithms, see e.g. Glassner’s “Introduction to Ray
Tracing” [Glassner89].

Triangles vs. General Primitives: Being able to support almost arbi-
trary primitives is often considered one of the most important features of ray
tracing, as even complex primitives can be ray traced directly without the
necessity of tesselating it into triangles. Thus they can be handled at full
accuracy and without discretization artifacts. Additionally, it may be much
more efficient to not require tesselation of the objects. For example, an in-
tersection between a ray and a sphere can be determined quite efficiently,
whereas tesselating the sphere would require to store hundreds of triangles
for a reasonable accuracy.

On the other hand, supporting only triangles makes it easier to write,
maintain, and optimize the ray tracer, and thus greatly simplifies both design
and optimized implementation. Furthermore, practically important scenes
(i.e. as used in the VR, CAD or movie industry) usually contain few “per-
fect spheres”, nor other high-level primitives3, as most programs today are
exclusively based on triangular meshes, anyway.

Finally, supporting only triangles does not severely limit the kinds of
scenes to be rendered, as usually all of these high-level primitives can be well
approximated by triangles.

2.1.2 Ray/Scene Intersection

Finding the closest object hit by a ray requires to intersect the ray with the
primitives that make up the scene. Obviously, the naive way of simply in-
tersecting the ray with each geometric primitive is too expensive except for
trivial cases. Therefore, accelerating this process usually involves “travers-
ing” some form of an “acceleration structure” – a spatial data structure used
to more quickly find objects nearby the ray4.

3An exception are parametric surfaces such as trimmed NURBS surfaces, which are
common in CAD industry.

4Note that there are also some forms of acceleration structures that are not purely
spatial data structures (e.g. Ray Classification [Arvo87]). However, the most common

10 Chapter 2: An Introduction to Ray Tracing

2.2 The Ray Tracing Rendering Algorithm

Whereas the concept of finding the intersection between a ray and a scene can
be used for many different applications (e.g. [Durgin97, Plasi97, Agelet97]), it
is most commonly used in the context of the traditional recursive ray tracing
algorithm.

2.2.1 Appel: First Approaches to Ray Tracing

The idea of using ray shooting for computing images is as old as 1968, and
was first introduced by Arthur Appel [Appel68] as an alternative method for
solving the “hidden surface” problem for rendering solid objects. In order
to compute a two-dimensional image of a three-dimensional scene, rays are
generated from the virtual camera through each pixel, traced into the scene,
and the closest object is determined (see Figure 2.1). The color of this ray
is then determined based on the properties of this object.

primary rays

virtual image plane

scene primitives

eye

eye

plane
image

scene primitives

Figure 2.1: The principle of ray casting: In order to compute an image of a
scene as seen by a virtual camera, a “primary ray” is shot through each pixel
of the virtual image plane, and cast into the scene (left). For each such ray,
the closest object hit by this ray is determined by intersecting the ray with the
geometric primitives that make up the scene (right).

Additionally, the same concept of shooting rays for determining visibility
can be used to shade the hit-point. For example, shadows can be computed by
shooting “shadow rays”5 into the direction of the light sources, to determine
whether the respective light source is occluded from the hit surface point, or
whether it is occluded. This concept of using shadow rays to influence the

techniques usually are spatial techniques.
5Other commonly used names for shadow rays are “illumination rays”, “shadow feel-

ers”, or “light feelers”.

2.2 The Ray Tracing Rendering Algorithm 11

shading of the primary rays hit point was already hinted at by Appel, though
he used it in a slightly different form than commonly used today. However,
Appel did not yet consider secondary effects like reflections and refraction,
and only actually traced eye rays and shadow rays.

2.2.2 Whitted: Recursive Ray Tracing

Today, however, ray tracing is usually used in a recursive manner. In order
to compute the color of the “primary” rays (i.e. the first generation of rays
that is originating directly at the camera), the recursive ray tracing algorithm
casts additional, “secondary” rays to account for indirect effects like shadows,
reflection, or refraction6.

This concept of recursive ray tracing can best be explained by the sketch
in Figure 2.2: In this example, the scene to be rendered consists of some
geometric primitives (forming a room with some furniture and a glass object
on the table), two point light sources, as well as a description of the virtual
“camera”. In order to compute the color of a pixel on the image plane of the
virtual camera, a ray is cast from this camera (through the respective pixel)
into the scene, and into the scene. After determining the first hit point of
this primary ray, the ray tracer computes the color being reflected into the
direction of that ray by first computing the incident illumination at the hit
point.

In order to correctly support shadows, light sources only contribute to
the incident illumination if the hit point is not occluded from the position of
the respective light source, which is checked by tracing a shadow ray towards
the direction of the light source.

Additional to direct illumination from light sources, illumination from
arbitrary other directions (e.g. from the reflection and refraction directions
for specular effects) can be considered by casting a (“secondary”) ray into
the respective direction and recursively evaluating the light being transported
along this rays. This recursive evaluation then proceeds in exactly the same
way as for the primary ray. Of course, these secondary rays can in turn
trigger another recursion level of new rays, etc.

Using recursive ray tracing, it is easily possible to compute secondary
effects like reflection or refraction. Usually all that is required to compute
these effects is to determine the direction of the secondary ray (which is

6In the context of a rendering algorithm, the term ray tracing usually refers to recursive
ray tracing. The special case of not shooting any secondary rays is typically called ray
casting. Ray casting is most commonly used in volume rendering, but may also be ben-
eficial for polygonal rendering or other visualization tasks, i.e. for interactively rendering
ISO-surfaces, or for rendering massively complex models.

12 Chapter 2: An Introduction to Ray Tracing

a.)

Glass Object
(reflective & refractive)

Point
light
source

Point
light
source

Camera

b.)

Glass Object
(reflective & refractive)

Point
light
source

Point
light
source

Camera

c.)

Glass Object
(reflective & refractive)

Point
light
source

Point
light
source

Camera

d.)

Glass Object
(reflective & refractive)

Point
light
source

Point
light
source

Camera

Figure 2.2: Recursive (whitted-style) ray tracing in a simple scene consisting
of a camera, some diffuse geometry, a partially specular glass object, and
two point light sources (a): A primary ray from the camera hits an object.
While “shading” that ray, shadow rays are sent towards the two light source
to determine their visibility (b). In order to compute reflection off the glass,
a secondary ray is recursively traced into the reflection direction to compute
the amount of incoming light. To do this, it can cast new shadow rays, or – if
necessary – additional reflection or refraction rays (c). After having finished
the reflection ray, the glass shader also computes the refraction direction, and
recursively casts a refraction ray (d).

usually goverened by well-known physical formulae), recursively tracing this
ray, and taking into account how much of this incoming light is actually
reflected into the direction of the incoming ray. By successively performing
these operations for each pixel in the virtual image plane, eventually the color
of all the pixels are computed, and the rendered image can be displayed.

In this recursive form, ray tracing has first been used by Turner Whit-
ted [Whitted80] in 1980. Therefore, it is often termed “whitted-style” ray
tracing, or “recursive” ray tracing7. It is this recursive application of ray
tracing that is most commonly used, and what most people associate with
the term “ray tracing”.

7Other popular names for whitted-style ray tracing are “classical” ray tracing, or “full-
featured ray tracing”.

2.2 The Ray Tracing Rendering Algorithm 13

2.2.3 Cook (1984): Distribution Ray Tracing

Whereas whitted-style ray tracing already allowed for computing reflections,
refraction, shadows and glossy highlights, it was originally limited to perfectly
specular reflections and refraction, point light sources, and instantaneous
shutters.

These restrictions have lateron been removed by Cook [Cook84a], who
extended the range of ray tracing effects to also include more realistic effects
like glossy reflections, smooth shadows from area light sources, motion blur,
depth of field, and glossy reflections. This was achieved by modeling all these
effects with a probability distribution, which allowed for computing them via
stochastic sampling.

Glossy reflections for instance can then be computed by stochastically
sampling this probability distribution and recursively shooting rays into the
sampled directions8. However, in order to achieve a sufficient quality, distri-
bution ray tracing requires to generate a relatively large number of samples,
and is usually quite costly.

2.2.4 Programmable Shading

Apart from the ability to accurately compute shadows and reflections, one of
the most important aspects of ray tracing is “programmable shading”, in the
sense that the color of a ray can be computed in an arbitrary way, including
the ability to shoot secondary rays.

Whereas Appel, Whitted, and Cook still used simple, fixed lighting mod-
els, many researchers have soon noted that ray tracing offers the option
to easily change the appearance of an object by modifying the way that
a ray is shaded. Over time, a huge toolbox of shading effects have been
developed, including different lighting models like e.g. Blinn, Phong, Cook-
Torrance, Torrance-Sparrow, Ward, Ashikmin, Lafortune, etc., texture map-
ping, bump mapping, different camera models, displacement mapping, pro-
cedural shading, and many others (for an overview of these techniques,
see [Foley97, Akenine-Möller02, Glassner94, Ebert02]).

However, the real breakthrough for programmable shading came with the
introduction of programmable “shading languages” like RenderMan [Pixar89,
Apodaca90, Hanrahan90, Upstill90, Apodaka00]. Such shading languages

8Note that Cooks “distribution ray tracing” approach was originally called “distributed
ray tracing”. As “distributed” ray tracing also refers to a special term in parallel ray
tracing (i.e. ray tracing on non-shared memory machines), the name for Cooks concept of
considering probability distribution functions has lateron be changed to distribution ray
tracing.

14 Chapter 2: An Introduction to Ray Tracing

clearly separated the shading process from the actual ray tracing, and allowed
to describe the shading process using a convenient, easy-to-use high-level
language. Shaders could be written independently of the application and
independent of other shaders. The effects of different shaders could be easily
combined in a plug-and-play manner.

2.2.4.1 The Shader Concept

Originally, ray tracers usually supported only one kind of “shader” that was
attached to all objects at the same time. This function for computing the
“color” of a ray typically consisted of a physically motivated lighting/material
model that was the same for all primitives, and which could be parameterized
by different parameters like material properties or textures.

Today however ray tracers usually follow a much more general concept
in which each respective primitive may have a different function for “shad-
ing” the ray (i.e. for computing its color). This function can be completely
independent of all other surfaces, and does not have to follow any physical
properties at all. All that has to be done to implement this concept is to
require that each object has one shader, and that this shader alone is re-
sponsible for computing the color of each ray hitting that object. Using this
concept allows for a “plug and play” mechanism in which different shaders
can cooperate in rendering an image, without any shader having to know
anything out the other ones.

For example, a scene might contain a sphere with a specular metal shader,
as well as another object with a shader simulating wood with procedural
methods. In order to shade a ray hitting the metal sphere, the metal shader
simply casts a ray into the reflection direction, and recursively calls the shader
of the respective hitpoint to compute that reflected ray’s color. This way,
the wooden object can reflect off the metal sphere without the metal having
to know anything about a “wood” shader at all.

This kind of abstraction can also be applied to light sources, the camera,
or the environment. Each of these concepts is described by a separate kind
of shader, resulting in camera, surface, light, environment, volume, and pixel
shaders (also see Figure 2.3).

Camera Shaders: Camera shaders are responsible for generating and cast-
ing the primary rays. Typically ray tracers use a perspective pinhole camera
(see e.g. [Glassner89]), but other effects like e.g. fish-eye lenses or realistic
lens systems are easy to implement, too. More importantly, it is possible
to also compute advanced effects like motion blur and depth of field by us-
ing camera shaders that simulate real cameras with finite lens aperture and

2.2 The Ray Tracing Rendering Algorithm 15

glossy
surface

"lost" ray

reflection
 ray

shadow
ray

light source

camera

primary
rays

Figure 2.3: A typical ray tracing shader framework with camera, surface,
environment, and light shaders: The camera shader generates the primary
rays to be cast into the scene. At the points where a ray hits a surface, the
respective primitive’s surface shader computes the color of this ray, potentially
shooting new rays (which in turn get shaded by surface shaders if they hit
anything). In order to query the incident illumination from a light source, the
surface shader can call back to the respective light’s light shader to compute
this value, and can then cast a shadow ray to determine visibility. Rays
that get “lost” into the environment (i.e. which do not hit any primitive) get
shaded by the environment shader.

shutter times [Cook84a, Glassner89, Kolb95].

Surface Shaders: Once a ray hits a geometric primitive, the respective
“surface shader” of that primitive is responsible for computing the “color” of
this ray. In order to do this, the surface shader first computes the incident
light onto the surface by calling the light shaders to supply it with information
on the incoming light (so-called “light samples”, see below). The surface
shader can then cast shadow rays to account for occlusion and computes the
light that is reflected into the direction of the incoming ray. Additionally,
the surface shader may cast new secondary rays to account for light coming
in from other directions, e.g. via reflection or refraction.

Light Shaders: In order not to restrict the ray tracer in what kind of light
sources it supports, a flexible shader concept allows for “light shaders”. Given
a surface hit point, a light shader generates a “light sample” for this surface

16 Chapter 2: An Introduction to Ray Tracing

point, i.e. it returns a vector pointing towards this light source, the distance
to this light source, and the “intensity” that this light sample contributes to
the surface sample9.

Environment Shaders: As the scene is often not “closed”, it may easily
happen that rays are cast into directions in which there is no geometry that
they can hit. Such rays get “lost” into the environment. In order to compute
their contribution, they can be passed to an “environment shader” which typ-
ically looks up a value from a texture representing the distant environment.
However, environment shaders can also be used to simulate more complex
effects like skylight models.

Volume Shaders, Pixel Shaders, etc.: Obviously, it is possible to extend
the just mentioned shader concept even further. For example, it is often
common to use “volume shaders” to compute the attenuation that a ray is
subject to when traveling between two surfaces. As the volumetric effects
are beyond the scope of current interactive ray tracing systems, we will not
go into details here. Some ray tracers also support “pixel shaders” or “image
shaders” that perform some post-filtering (e.g. tone mapping) on the image.

This “shader concept” allows for a high degree of flexibility and ex-
tendibility. All the above mentioned shaders – except for volume shaders
– are also supported in the RTRT/OpenRT system (see Part II). For some
examples of what is possible with this concept, see Chapter 11.

2.3 General Ray Tracing based Algorithms

Though recursive ray tracing is undoubtedly the most common form of us-
ing ray shooting for generating images, there is also a wider range of “ray
tracing algorithms” that do not fit the category of recursive ray tracing.
For example, many global illumination algorithms only use ray tracing for
visibility computations (like radiosity), or also start rays/paths at the light
sources (like light path tracing, bidirectional path tracing, photon mapping,
and metropolis light transport). Ray tracing is even being used for several
applications outside the graphics domain. For example, it can be used for

9Note that “intensity” is actually the wrong term. In a physically correct renderer,
the value returned by a light shader should actually be “radiance”. Still, “color” and
“intensity” of the light sample are more commonly used terms in practice. This may
stem from the fact that in a general ray tracer light sources do not always have physical
meanings (i.e. lights with negative power, or with constant distance falloff), for which the
term “radiance” does not make sense.

2.3 General Ray Tracing based Algorithms 17

planning the optimized placement of antennas for wireless communication
(e.g. [Agelet97, Dandekar99, Hoppe99, Durgin97, McKown91]), or in com-
puting radar cross sections [Chase00].

Most of these algorithms only use the basic concept of ray tracing, i.e. fast
traversal and intersection, but otherwise have few in common with recursive
ray tracing. Even most global illumination algorithms – which are often con-
sidered a mere “extension” to the ray tracing algorithm – are fundamentally
different from ray tracing. For example, the above-mentioned shader concept
is typically not flexible enough for most global illumination algorithms, nor
do all of these algorithms parallelize as easily as recursive ray tracing. Sim-
ilarly, the types, order, distribution, and coherency of the rays shot in such
algorithms can be drastically different from standard recursive ray tracing.
Because of this, it is not yet clear to what degree these kinds of algorithms
would benefit from a realtime ray tracing engine, or how well they could be
implemented on possible future hardware architectures such as the SaarCOR
hardware. However, even if these algorithms can thus not benefit from all
advances in realtime ray tracing, it is still likely that they will still benefit
from better algorithms and improved implementations of the core ray tracing
concepts.

18 Chapter 2: An Introduction to Ray Tracing

Chapter 3

A Brief Survey of Ray Tracing
Acceleration Methods

As discussed previously, the concept of ray shooting has many applications
in computer graphics, be it simple ray casting, recursive ray tracing, full
ray-tracing based global illumination, or just a toolbox for more advanced
algorithms. While most of these applications are quite different from each
other, they all have one thing in common: They usually require an enormous
amount of rays to be shot (usually in the millions) and thus spend a large
fraction of their run time on ray shooting.

Thus, finding ways of accelerating ray tracing has always been of major
importance since the very invention of ray tracing1. Consequently, a vast
amount of different techniques for accelerating ray tracing (and its different
variants) have been proposed over the last two decades.

Though the RTRT/OpenRT system uses only very few of all these dif-
ferent concepts2, any introduction on ray tracing would surely be incom-
plete without at least summarizing the most often used concepts. Because
of the vast amount of research that has already been performed on this
topic, any such summary will be incomplete. As such, I will intentionaly
only cover the most basic concepts and publications3. For a more com-
plete summary and discussion of ray tracing acceleration techniques, I refer
to the respective sections in the various books on Ray Tracing and Com-

1Already in 1980[Whitted80], Whitted noted that 95% of compute time was spent on
intersection calculations.

2For example, we make massive use of hierarchical data structures, but few use of
adaptive sampling, shadow caches, first hit optimizations, etc.

3Furthermore, most techniques have been proposed independently or similarly by many
different researchers, or have been proposed in many different variants. Because of brevity
of space, I will typically include only the (to my esteem) most common reference.

20 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

puter Graphics (like e.g. Glassner [Glassner89], Shirley [Shirley02, Shirley03],
Möller-Haines [Akenine-Möller02] or introductory graphics [Foley97]), or to
the original publications4.

Outline

All the different techniques that have been proposed over the last two decades
can be structured and ordered in many different ways. Most commonly, this
ordering is performed on the kind of “coherence” these different techniques
employ5. However, though exploiting coherence undoubtedly most often is
the key to fast and efficient ray tracing, the term coherence is used incon-
sistently by many different researchers, and many acceleration techniques
actually use a mix of different kinds of coherence. As a consequence, the fol-
lowing summary of techniques will be ordered based on the goals that they
try to achieve.

Based on that, the different techniques that have been proposed over the
last two decades can be roughly grouped into two categories: One category
consists of techniques that aim at reducing the number of rays to be traced,
which can be performed either by (re-)constructing an image with less sam-
ples on the image plane (e.g. through adaptive sampling), or by reducing
the number of rays to be traced for each such sample (e.g. by shooting less
shadow rays, or through pruning of the shading tree6).

Please note that many of these techniques are applicable to only a small
subset of all the variants of ray tracing. For example, shadow caching (see
below) can not be used to accelerate ray casting, and first hit optimizations
will hardly benefit global illumination algorithms.

4Very extensive surveys of ray tracing articles (though usually not including the newer
ones) can also be found in [Wilson93]

5Coherence refers the degree of similarity between two problems. Obviously, two similar
problems can be solved faster if this similarity can be exploited in one or another way.
Ray tracing contains many different forms of coherence that can be exploited, like e.g. ray
coherence, temporal coherence, image space coherence, object coherence, ray coherence,
memory access coherence, frame-to-frame coherence, etc.

6Note that the term “shading tree” (or shade tree) also has another, totally different
meaning: The term “shade tree” is (as in this context) commonly used to refer to the tree
formed by all secondary rays that have recursively been invoked by a given ray. This may
not be confused with Cook’s “shade trees” (see [Cook84b]), which essentially form a way
of elegantly expressing the way that a certain (single) ray is shaded, similar to a shading
language. Though the term “ray tree” might be a better name for the former concept, the
ambiguous term “shade tree” is already widely used in practive.

3.1 Computing less Samples in the Image Plane 21

3.1 Computing less Samples in the Image Plane

Obviously, the rendering time of a frame is closely related to the number of
pixels that have to be computed for this frame. As such, one of the most
obvious approaches to reducing the compute time for a frame is to reduce
the number of primary rays shot for each frame.

3.1.1 Pixel-Selected Ray Tracing and Adaptive Sampling

One of the most (in)famous methods for doing this is to sample the image
plane adaptively. Instead of tracing a ray through each pixel, the image
plane is subsampled at a fixed spacing. Depending on some heuristics (e.g. if
the contrast and depth difference between two neighbouring pixels is small
enough), the color of the pixels in-between is either interpolated from the
four corner pixels, or the sampling density in this image location is adaptively
increased. This process is repeated recursively until either interpolation can
be performed, or until all pixels have been traced. For a closer description
of this method, see e.g. [Glassner89]. Obviously, it is also possible to trace
at least one ray per pixel, and use the described method only for adaptive
super-sampling.

However, adaptive methods work best if the features in a scene are quite
large. For highly detailed geometry and high-frequency features (such as tex-
tures), it is very likely that some of the fine features are missed, and get lost
due to the interpolation. Thus, except for trivial scenes these methods break
down very quickly, and lead to disturbing artifacts, especially in animations.

3.1.2 Vertex Tracing

Another method for reducing the number of primary samples is “Vertex Trac-
ing” [Ullmann01a, Ullmann01b, Ullman03]: Instead of tracing primary rays
through each individual pixel, vertex tracing targets primary rays directly
towards the vertices of visible triangles, computes the color of these vertices
by recursive ray tracing, and uses graphics hardware to perform the interpo-
lation between the vertices. In order to avoid excessive interpolation, vertex
tracing uses several heuristics that adaptively subdivide the triangles (with
new rays being shot to the newly created vertices) if certain criteria are met.
Additionally, rays are only shot towards objects that are explicitly marked
as “ray tracing objects”, all other objects are rendered with rasterization
hardware.

If the objects to be ray traced are rather simple (i.e. if they have few
visible vertices) vertex tracing can greatly reduce the number of rays that

22 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

have to be traced, and can achieve interactive update rates even on a single
desktop PC. The number of rays shot in vertex tracing also depends to a large
degree on how often triangles are subdivided. Obviously, coarser subdivision
is much faster, but is also likely to miss certain features, and thus to generate
disturbing artifacts. In order to increase interactivity, vertex tracing allows
for interactively changing the quality parameters: During user interaction,
reduced quality parameters are used for fast user feedback, while the image
is progressively improved as soon as interaction stops.

However, using reduced quality settings can result in rather poor ren-
dering quality due to excessive interpolation and under-sampling of features.
This becomes especially pronounced if the image to be rendered contains
many detailed features.

3.1.3 The Render Cache

Another combination of interpolation and sparse sampling of the image plane
is Walter et al.’s “Render Cache” approach [Walter99, Walter02]: The render
cache keeps a cache of “old” image samples from previous frames, and repro-
jects those to each new frame. These reprojected samples provide a sparse
sampling of the image plane, our of which the full image is then reconstructed
using certain heuristics to resolve occlusion, disocclusion, and interpolation
inbetween samples.

Asynchronously to this reprojection process, new samples are generated
by continuously tracing new rays. To improve performance, the render cache
uses heuristics to decide which regions of the image plane need to be sampled
most, and preferably generates new samples in those regions. New samples
are inserted into the render cache data structure, thereby evicting older sam-
ples.

The render cache allows for decoupling frame rate from sample genera-
tion speed, and therefore allows interactive frame rates even for very slow
renderers. However, the reprojection and image reconstruction steps are
quite costly, and only really pay off for extremely costly renderers. As such,
the render cache is most beneficial for extremely complex computations, such
as global illumination. For simple ray tracing, however, it is often faster to
simply ray trace the whole image.

However, the worst problem of the render cache is its limited rendering
quality: Even though the render cache uses several heuristics to resolve the
worst artifacts, not all artifacts can be avoided: While the render cache
quickly converges to a high-quality image when no user interaction occurs,
under-sampling of certain objects or image regions, use of outdated samples,
and excessive blurring (especially across under-sampled discontinuities) are

3.2 Reducing the Number of Secondary Rays 23

frequently visible during user interaction. These artifacts become especially
apparent for highly detailed scenes with a high degree of user interaction,
e.g. with fast camera movement and many moving objects.

3.1.4 Edge-and-Point-Image (EPI)

An extension to the render cache has already been proposed in the form of
the EPI (“Edge and Point Image”) approach by Bala et al. [Bala03]. Instead
of reconstructing the image only based on the sparse pixel samples, the EPI
approach also tracks discontinuities such as object silhouettes and shadow
borders, and uses those to improve the reconstruction step. Compared to
the render cache, the EPI approach avoids interpolation and blurring over
these discontinuities, thereby greatly reducing reconstruction artifacts.

Sadly, however, the EPI is not completely orthogonal to a ray tracer.
For example, it requires projection of scene features (e.g. object silhouettes)
onto others to determine discontinuities, and thus does not follow a “point
sampling” approach. As such, it can not easily be layered “on top” of an
existing interactive ray tracing system to further increase the performance7.

3.2 Reducing the Number of Secondary Rays

All the previously discussed techniques have aimed at improving the render-
ing time by reducing the number of primary rays traced per image. Apart
from the number of primary rays per frame, the most obvious factor gov-
erning the total rendering time is the average number of rays per pixel, as
the product of these two numbers determines the total number of rays shot
during each frame.

In practice, this number of secondary rays per pixel can be quite large,
especially for scenes with many light sources and with a large amount of
specular objects. The number of light sources often has a near-linear im-
pact on rendering time, as each ray cast into the scene (primary rays as
well as secondary rays) requires to shoot shadow rays to each light source.
Furthermore, highly specular scenes require to shoot many secondary rays
per pixel for computing reflection and refraction effects. Especially objects
that require to compute both reflection and refraction rays usually lead to an
excessive number of rays per pixel due to an exponential growth of the ray
tree with the number of recursion levels being considered.

7Though a fast ray tracer could certainly be used to generate the EPI samples at a
faster rate.

24 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

As such, practical scenes (which usually contain both many light sources
as well as specular objects) require a large number of rays per pixel. Reducing
this number can then lead to significant improvements in rendering time.

3.2.1 Shadow Caching

Typically, the majority of all rays shot in a ray tracer are shadow rays,
as each primary or secondary ray usually triggers many shadow rays. For
shadow rays, however, it is sufficient to find any occluding object to guarantee
occlusion. Furthermore, many shadow rays are very similar (e.g. all shadow
rays to the same point light source), and are often occluded by the same
object. “Shadow caching” [Haines86] exploits this coherence by storing at
each light source the last occluder. Each new shadow ray to this light source is
then first intersected with this cached occluder. If any of these cached object
yields a positive intersection, occlusion of the shadow ray is guaranteed,
thus the shadow ray does not have to be traced any more. For many light
sources with a high degree of occlusion, shadow caching can greatly reduce
the number of shadow rays. Furthermore, shadow caching does not require
any approximations, does not generate any artifacts, and is orthogonal to
most other techniques (i.e. it can easily be combined with other techniques).

However, shadow caching also has some drawbacks: For example, it
quickly breaks down if the primary and shadow rays get incoherent, as
this leads to “thrashing” of the shadow caches. This is especially true for
area light sources and global illumination algorithms. Even worse, by design
shadow caches can only accelerate shadow rays that are actually occluded.
For non-occluded shadow rays, there is even some overhead due to the cost for
intersecting with the cached occluder. Finally, shadow caching often breaks
down in complex scenes, as small triangles are less likely to occlude several
successive shadow rays. Due to these reasons, shadow caching is generally
not used in the RTRT/OpenRT engine.

3.2.2 Local Illumination Environments

Recently, a more sophisticated optimization for shadow rays has been pro-
posed in the form of “Local Illumination Environments” [Fernandez02] (also
dubbed “LIEs”): LIEs subdivide the scene into a set of “voxels”, each of
which stores information on how the different light sources influence that
respective region of space. Each voxel stores a list of light sources that will
be fully occluded, fully visible, or partially visible with respect to that voxel.
With this information, the number of shadow rays to be show can be sig-
nificantly reduced: Light sources that are fully occluded from the respective

3.2 Reducing the Number of Secondary Rays 25

voxel do not have to be considered at all, and fully visible light sources can be
considered without having to trace any shadow rays. Only partially occluded
light sources require shooting of shadow rays. Once the LIE data structure
is available, all that has to be done in order to shade a hit point is to look up
the respective voxel for the hit point, and use the information stored within
that voxel as just described.

However, building the LIE data structure can be quite involved. To be
accurate, it would require to solve the visibility problem in object space,
which can be quite complicated. Using shadow rays it can however be well
approximated. To avoid the preprocessing time and memory consumption
for builing the whole data structure in advance, the LIE data structure can
be built “on demand”. Furthermore, the data structure can be built hierar-
chically: A light source that is fully occluded in a certain voxel will also be
fully occluded in any of its subvoxels.

Using local illumination environments, only a small fraction of all shadow
rays have to be traced. Especially for scenes with many light sources, this
can lead to a significant reduction in rendering time.

3.2.3 Adaptive Shadow Testing

Another form of reducing the number of shadow rays has been proposed by
Ward [Ward91]: In “adaptive shadow testing”, all light samples are sorted by
their contribution to the surface point, and only the most important ones are
actually traced. The occlusion of light samples with a small contribution is
estimated based on other samples, and tracing these shadow rays is avoided.

3.2.4 Single Sample Soft Shadows

In order to reduce the number of shadow rays for computing smooth shad-
ows, Parker [Parker98b] has proposed a method that approximates smooth
shadows with a single shadow ray. The method shrinks the light source to
a point, and traces a single shadow ray to this point light, which is then at-
tenuated depending on on how narrowly it misses potential occluders. While
the method produces only approximate results, the generated shadows look
very convincing.

3.2.5 Pruning the Ray Tree

As ray tracing is well known for its ability to compute reflections and re-
fraction, it is often used in highly reflective scenes. This can easily result
in an excessive number of rays to be shot in each frame, due to so-called

26 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

“explosion of the ray tree”: If each surface shader on average shoots more
than one secondary ray (e.g. one for reflection and one for refraction), the
number of secondary rays grows exponentially with the recursion depth.

However, secondary rays are usually weighed with reflection and refrac-
tion coefficients (usually depending on surface properties and incoming ray
direction), which may get rather small. Furthermore, these attenuation fac-
tors multiply with each further surface interaction, resulting in most rays
having a rather small pixel contribution. In order to avoid tracing all these
“unimportant” rays, it is common to “prune” the ray tree by tracking each
rays “pixel contribution”, and to terminate the recursion once this contribu-
tion drops below a certain threshold.

However, simply terminating such rays without compensation results in
a loss of illumination, and in “biased” images8 Pruning the ray tree can also
be made unbiased by terminating the rays probabilistically with correct re-
weighting (so-called russian roulette termination [Arvo90b]). This however
usually leads to noise in the image, which might be even more disturbing to
the viewer.

3.2.6 Reflection Mapping and Shadow Maps

Finally, the number of both secondary and shadow rays can be greatly re-
duced by approximating shadows and reflections with reflection maps and
shadow maps. Both reflection maps and shadow maps are well-known con-
cepts in realtime rendering (see e.g. [Akenine-Möller02]). Though they are
typically used in triangle rasterization to approximate effects that can not be
computed at all, they can also be used in ray tracing to approximate effects
rather than shooting rays for computing them.

However, both methods are infamous for their tendency to generate ar-
tifacts. As such, they somewhat contradict the concepts of ray tracing, and
should be used with extreme care.

3.2.7 Sample Reuse for Animations

In the special case of ray tracing animations, it is also possible to reuse sam-
ples from other frames without re-tracing the respective rays. For example,
Formella et al. [Formella94] has proposed to store the complete “ray tree” of
each pixel, and to only re-trace those parts of a ray tree that are intersected

8Pruning by pixel contribution becomes especially problematic in scenes with strongly
varying light source intensity: If connected to a bright light source, even a ray with small
attenuation factors may still have a stronger impact than a less attenuated ray illuminated
by a dark source.

3.2 Reducing the Number of Secondary Rays 27

by a moving object. If a pixel is not affected by a moving object, it can
simply be reused in other frames without tracing any new rays. Similar tech-
niques have also been used by others. However, these techniques only apply
to ray tracing animations, and are often complicated to use in practice.

3.2.8 Sample Reuse with Interpolation

Another way of reusing samples is to store previously computed samples, and
to interpolate new samples from old ones instead of tracing new ones.

For primary rays, this approach has first been proposed by Ward in his
“Holodeck” system [Larson98, Ward99]: Rays from previous frames have
been stored in a spatial data structure, and new primary rays have been in-
terpolated between those stored samples. New samples are generated asyn-
chronously all the time, thereby improving the image quality when looking
at an object for an extended period of time.

The approach has been generalized by Bala et al. [Bala99]. Instead of
restricting the approach to primary rays – which are likely to create the
most visible artifacts when interpolated – Bala extended the approach to also
interpolate between secondary rays. This allowed to restrict the interpolation
to regions where it is least likely to result in artifacts. While this still allows
for a notable reduction in rays to be shot, it still generates high image quality.

Furthermore, Bala’s approach allows for tracking the maximum interpo-
lation error. This in turn makes it possible to render an image – using this
approximate technique – with strict error bounds, which is a very important
property, especially for practical applications.

3.2.9 First Hit Optimization

A much simpler, and more widely used technique for avoiding the shooting of
rays is the so-called “first-hit optimization” (also called “vista buffering” or
“ID rendering”), which uses rasterization hardware to speed up tracing the
primary rays: In this technique, the scene is first rasterized in “ID rendering”
mode, i.e. each primitive is rendered with a unique color that enables to
identify it. Then, the primitive hit by a primary ray going through a certain
pixel can be identified by looking up that pixels color value from the frame
buffer.

However, the impact of the method is rather small. First, it only helps
in accelerating the primary rays, which usually make up only a rather small
fraction of all rays. For real scenes – with secondary effects and several light
sources – the impact is rather small. Furthermore, for realistically complex

28 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

scenes (and a reasonably fast ray tracer) it is often faster to trace the primary
rays than first rasterizing the scene.

Summary

From all the just mentioned techniques, shadow caches are the most com-
monly used, and are still widely used in practice. Also adaptive sampling is
used quite often, especially in the “demo community”, which aims more to-
wards artistic and highly impressive ray tracing demos than for a general ray
tracing engine. However, most of these techniques require special restrictions
(e.g. point lights and spot lights only for efficient shadow caching), or easily
break down in practice. As such, the RTRT/OpenRT system (see Part II)
does not use any of these techniques, and only concentrates on tracing all
rays as quickly as possible9.

3.3 Accelerating Ray-Scene Intersection

Apart from trying to reduce the number of rays to be shot for an image,
another obvious method of accelerating ray tracing is to improve the core
ray tracing algorithms such that the rays can be traced faster.

3.3.1 Faster Intersection Tests

Usually a large fraction of the compute time in ray tracing is spent in ray-
primitive intersections. This was already noted in 1980 by Whitted [Whitted80],
who reported 95% of his compute time to be spent on intersection computa-
tions.

3.3.1.1 Different Variants of Primitive Intersection Tests

Obviously, the intersection between a ray and any kind of primitive can be
computed in multiple ways. Each of these different algorithms has differ-
ent properties such as the number of floating point operations vs. integer
operation vs. conditionals, memory consumption, or numerical accuracy).

9While RTRT/OpenRT does not in general use these techniques, some of them have still
been used in some special applications: For example, shadow caching has been used in the
original “Instant Global Illumination” system [Wald02b] (see Chapter 13), and probabilis-
tic pruning of the ray tree has been used for visualizing the “Headlight” model [Benthin02]
(see Chapter 11.2)

3.3 Accelerating Ray-Scene Intersection 29

Different applications favor different of these properties, and varying avail-
ability of certain hardware features (e.g. a fast floating point unit) further
shifts the respective advantages and disadvantages.

Consequently, a large number of different algorithms are known for most
kinds of primitives. For triangles alone, many different algorithms exist
(e.g. [Möller97, Badouel92, Erickson97, Shoemake98, Woo90]). Additionally,
there exist dozens of variants of different algorithms (see e.g. [Möller, Held97])
also for other kinds of primitives, most of which are considered “common
knowledge” and which thus are not even sufficiently documented anywhere.
The same essentially is true for other kinds of primitives, as virtually each ray
tracing system has its own special implementation for each kind of primitive.

However, RTRT supports only triangles anyway, and uses its own spe-
cially designed ray-triangle intersection test (see Section 7.1). As such, we
will not go into detail on any of the different intersection tests. Good
overviews of the different techniques can be found in most introductory books
(see e.g. [Glassner89]).

3.3.1.2 Bounding Volumes

For ray tracers that support complex primitive types (such as e.g. parametric
surfaces), many costly ray-primitive objects can be avoided by tightly en-
closing these costly primitives with “bounding volumes” (see e.g. [Rubin80,
Kay86]). A bounding volume is a simple geometric primitive (usually a box
or a sphere) that can be intersected very quickly. If a ray misses the bounding
volume (which can be checked quite cheaply), it does not have to be inter-
sected with the complex primitive at all. Only rays hitting the bounding
volume have to be checked also against the original primitive. Bounding vol-
umes are a standard-technique in ray tracing, but unfortunately pay off only
for complex primitive types. Even though RTRT only supports triangles, it
uses bounding volumes e.g. for bounding dynamic objects, to avoid having
to transform the rays to the coordinate system of the dynamic object.

Note that the use of Bounding Volumes for bounding more complex prim-
itive types may not be confused with Bounding Volume Hierarchies for hi-
erarchical scene subdivision (see below), but is a complementary (though
related) technique.

3.3.2 Spatial and Hierarchical Scene Subdivision

Usually the most successful way to accelerating ray tracing is to reduce the
number of ray-primitive intersection operations. This is usually achieved
by building an index data structures that allows for quickly finding those

30 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

primitives that are “close” to a given ray, and to skip primitives that are far
away. During “traversal” of this acceleration structure, only those potential
candidates thus have to be intersected, and the total number of intersection
tests can be significantly reduced.

Over the last 20 years, many different kinds of acceleration structures
have been developed, like e.g. uniform, non-uniform, recursive and hierarchi-
cal grids [Amanatides87, Klimaszewski97, Cohen94, Gigante88, Fujimoto86,
Hsiung92, Jevans89], Octrees [Glassner84, Cohen94, Whang95, Samet89],
Bounding Volume Hierarchies [Rubin80, Kay86, Haines91a, Smits98], BSP
trees (or kd-trees) [Sung92, Subramanian90a, Havran01, Bittner99], and even
higher-dimensional, directional techniques such as ray classification [Arvo87,
Simiakakis95].

As already noted by Kay [Kay86] in 1986, in principle these techniques
mainly differ in whether they hierarchically organize the scene primitives (as
done by Bounding Volume Hierarchies), or whether they subdivide object
space (or ray space) into a set of unique voxels (as done by BSPs, kd-trees,
or Grids).

3.3.2.1 Bounding Volume Hierarchies

In the first class (Bounding Volume Hierarchies) each primitive is stored
only once in the hierarchy. This usually leads to a predictable memory con-
sumption, and guarantees that each primitive is intersected only exactly once
during traversal of the hierarchy (which is usually not the case for spatial
subdivision techniques, see below). On the other hand, different parts of the
hierarchy may overlap the same regions in space. This often leads to inef-
ficient traversal such as intersecting the primitives in the wrong order10 or
traversing the same space multiple times).

3.3.2.2 Spatial Subdivision (Grids, Octrees, BSPs, etc.)

In contrast to BVHs, spatial subdivision techniques subdivide three-dimen-
sional space into a finite, non-overlapping set of volume elements (voxels), in
which each voxel keeps a list of references to all the primitives overlapping
that respective voxel.

Traversing a ray through the spatial acceleration structure then sequen-
tially iterates through all the voxels encountered by a ray, thereby intersecting

10The correct order can be guaranteed by organizing the not-yet-traversed parts of the
hierarchy in a priority queue and always traversing the closest one. This however incurs
additional cost in each traversal step. Also, please keep in mind that the correct order is
not important at all for shadow rays.

3.3 Accelerating Ray-Scene Intersection 31

the primitives referenced by the voxels. If this traversal is performed in front-
to-back order, spatial subdivision techniques allow for early ray termination:
As soon as a valid intersection is found at a certain distance along the ray,
all the voxels behind this distance can be immediately skipped without any
further computations. On the other hand, spatial subdivision has the draw-
back that the number of encountered primitives is most reduced if the voxels
get very small, which usually requires lots of memory. In that case, however,
primitives will usually overlap many different voxels. This not only further
increases the memory consumption of these techniques, but often leads to
the same primitive being encountered several times during traversal of a ray.

Mailboxing: Fortunately, these multiple intersections of a primitive can
be helped by mailboxing: In mailboxing [Amanatides87, Glassner89, Kirk91,
Wald01a], each ray gets a unique ID assigned to it, and each primitive records
the ID of the last ray it was intersected with. During traversal then, multiple
intersections can be avoided by simply comparing the current ray ID with
the ID of the last intersected ray11.

On the other hand, mailboxing itself incurs a certain cost (e.g. for de-
ciding whether an intersection has to be performed or not), requires a sig-
nificant amount of memory (one integer or pointer per primitive), and can
easily lead to costly, incoherent memory accesses and cache thrashing. Fur-
thermore, both memory consumption and cache thrashing get worse when
using multiple threads, as the mailbox cannot be shared between threads.
This makes mailboxing problematic especially for multiprocessor systems
and multithreaded hardware architectures. For single-threaded systems with
sufficient memory however mailboxing usually still improves performance.

In order to remove memory consumption and improve the caching be-
havior, hashed mailboxing can be used (see [Wald01a]). Though this has
shown to be less efficient than “standard” mailboxing in the general case,
it is usually preferrable if many threads are to be used and/or if memory is
scarce.

3.3.2.3 Algorithmic Variants and Optimizations

As discussed so far, the different acceleration data structured mainly differ
conceptually, e.g. spatial subdivion vs. BVHs, or uniform vs. hierarchical
subdivision. However, even if the data structure itself is fixed, the perfor-
mance is still significantly affected by the exact way in which the respective
data structure is constructed and traversed.

11Please keep in mind that mailboxing is not required at all for Bounding Volume
Hierarchies, as these do not lead to multiple intersections with the same primitive.

32 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

Different Traversal Algorithms: Though a different traversal algorithm
should still traverse exactly the same voxels (and thus intersect the same
primitives), the traversal algorithm often consumes a significant fraction of
compute time 12. As such, a different traversal algorithm can significantly
affect performance.

Today, there exist several different traversal algorithms for each of the dif-
ferent kind of acceleration structure, each of which have different advantages
and disadvantages.

While most of these alternative traversal algorithms do not actually change
the underlying data structure, some methods require to slightly modify the
data structure itself, e.g. by adding neighbour links [Samet89, Havran98] for
faster “horizontal” traversal from one voxel to its neighbour.

Variants of Building the Hierarchy: Apart from the traversal algorithm,
the eventual performance of an acceleration structure is significantly affected
by the algorithm for constructing the data structure. As the traversal algo-
rithm itself usually does not change either the number nor order of voxels
(and thus primitives) encountered by the ray, the number of traversal steps
and primitive intersections is mostly determined by the way that the acceler-
ation data structure has been built (i.e. by the number, size, and organization
of the voxels).

Even for uniform subdivision (whose structure is determined entirely by
the grid resolution, there usually is a tradeoff between reducing the number of
primitive intersections and performing too many traversal steps. In practice
the optimal grid resolution is hard to determine, and can only be guessed
approximately using some heuristics. For hierarchical data structures, finding
“the best” organization is even more complex13.

Though there are several groundbreaking papers on the optimal construc-
tion of ray tracing hierarchies (e.g. by Goldsmith and Salmon [Goldsmith87],
Subramanian [Subramanian90b, Subramanian90a, Cassen95], or MacDon-
ald and Booth [MacDonald89, MacDonald90]; also see [Havran01] for an
overview), the importance of using these techniques is often underestimated
in practice. Even the RTRT/OpenRT system at its original publication only
considered a naive kd-tree construction algorithm. Havind added a Surface
Area Heuristic [Havran01] for building the kd-tree afterwards since then has
roughly doubled performance (see Section 7.3).

12In practice (i.e. for realistically complex scenes and relatively simple primitives),
traversal is usually several times as costly as the ray-primitive intersections.

13For hierarchical subdivision, the decision whether to continue subdivion or not, as well
as the exact position of the split have to be performed anew in each construction step.

3.3 Accelerating Ray-Scene Intersection 33

Shadow ray optimizations: As already noted in the previous section,
traversal of shadow rays can be accelerated by immediately terminating
traversal after any intersetion has been found along the ray. This is a simple
optimization that can usually be integrated into the traversal algorithm with
a single conditional, and as such is present in virtually every ray tracer.

This optimization is especially useful since in most applications of ray
tracing most of the rays cast are shadow ray. As such, this optimization
is implemented in most avaiable ray tracing systems. Obviously, it is also
implemented in RTRT/OpenRT.

Optimizations for finding all intersections along a ray: As already
noted before, certain algorithms (e.g. global illumination with “global lines”
[Sbert97], or computing transparency along a shadow ray) can benefit from
finding all intersections along a ray at once. This can significantly improve
performance for these tasks, as finding N intersections in one costly traversal
is usually much faster than performing N successive traversals from each hit
point to the next (even though the ’find all’ traversal is more costly than a
single ’find nearest’). This optimization however is only useful for a restricted
set of applications. As such, it is not implemented at all in RTRT/OpenRT.

Using special hardware features: Finally, a huge potential for making
ray tracers faster lies in exploiting different and more powerful hardware
resources. Examples include ray tracing on highly parallel supercomput-
ers [Keates95, Parker99b, Muuss95a], the use of SIMD-extensions present in
almost all of today CPUs [Wald01a], ray tracing on current programmable
GPUs [Carr02, Purcell02], exploitation of more general programmable de-
vices (e.g. [Mai00, Anido02, Du03]), and eventually the use of dedicated
hardware that has been especially designed for ray tracing [Humphreys96,
Hall01, Schmittler02]. Fortunately, the use of more powerful hardware plat-
forms often is orthogonal to the “algorithmic” acceleration techniques, and
thus can often be combined with such techniques. Even so, special hardware
features may be easier to employ with some algorithms than others14. As
the algorithmic issues of ray tracing are increasingly considered to be mostly
solved, such optimizations for specific new hardware features are likely to
receive more and more attention.

14For example, a SIMD traversal is easier to implement on a kd-tree than on other
acceleration structures.

34 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

3.4 Summary

In this chapter we have given a brief overview over the different methods and
techniques for accelerating ray tracing that have been proposed over the last
two decades. As mentioned in the beginning, this list of techniques is not
complete, but should contain at least the most famous and most commonly
used techniques.

Among all these techniques, hierarchical subdivision methods are the
most important, as they allow for reducing the computational complexity
(from O(N) to O(log N) [Havran01]), whereas all other methods, roughly
speaking, only improve “the constants” of the ray tracing algorithm. As
such, any non-trivial ray tracing system today uses one or another form of
the previously discussed scene subdivision and traversal techniques.

While all of these acceleration methods are commonly agreed to have the
same computational complexity of O(NlogN), their respective performance
in practive varies from case to case, depending on scene, implementation,
hardware platform, and application (i.e. ray distribution). As such, it is
not possible to name one single method that is always best, though prac-
tice has shown that kd-trees usually perform at least comparable to any
other technique [Havran01, Havran00]. Though much of the original ray
tracing literature covers Octrees, in practive today the most commonly used
techniques are either uniform grids or kd-trees. Grids (especially uniform
ones) are advantageous because of their simplicity. Because of this, they are
also well suited for implementation on hardware architectures with restricted
propgramming model (such as e.g. GPUs)15), whereas kd-trees usually adapt
better to varying scene complexity, and often achieve superior performance
if used correctly.

Except for faster intersection tests and hierarchical subdivision, most of
the other previously discussed techniques (such as reducing the number of
rays in one or another form) are limited to special cases and to a restricted
set of applications. As such they are of limited use for a ray tracing system
that is to be used for as many applications as possible, and will thus not
receive any further attention in the remainder of this thesis. Even so, many
of those are orthogonal to the techniques used by RTRT/OpenRT, and can
still be combined with the RTRT/OpenRT system to achieve even higher
performance for those applications in which they are effective.

In order to be as wide a class of applications as possible the RTRT core
has concentrated mostly on those topics that influence the performance of

15Uniform grids do not need to maintain a recursion stack, and can be implemented
with few floating point operations

3.4 Summary 35

any ray tracer: fast intersection, a good acceleration data structure, fast
traversal algorithms, and high-quality algorithms for building the hierarchy.
These four topics – with respect to the RTRT realtime ray tracing core – will
be discussed in more detail lateron in Part II of this thesis.

36 Chapter 3: A Brief Survey of Ray Tracing Acceleration Methods

Chapter 4

Interactive Ray Tracing

In the form just presented, ray tracing is a well-known technique, and is – in
one or another variant – the dominating technique for almost all high-quality
offline rendering tasks. For interactive applications however, it is used rarely.
In fact, many researchers still believe that ray tracing will never be suitable
for realtime applications, or that – if this were to come at all – it is a remote
option for the distant future.

However, ray tracing has many advantageous features that would be
highly beneficial to have, also – and especially – in the field of realtime
rendering. In this chapter, we are going to summarize these advantages of
ray tracing, and will argue that ray tracing also – and especially – offers
many benefits for interactive rendering.

Having outlined all the advantages of ray tracing over rasterization based
approaches, we are going to discuss the reasons why – even though it seems
to be the technologically superior technique – ray tracing has not emerged as
the standard technique for realtime rendering in the first place. Based on a
brief discussion of currently ongoing trends towards larger scenes and more
realism, we then argue that these reasons no longer apply today, which makes
it likely that ray tracing will play a larger role for realtime graphics in the
near future. By shortly summarizing the currently ongoing work in realtime
ray tracing, we will finally show that the trend towards this technology is
not to happen in a remote future, but that this is already happening today.

4.1 Why Interactive Ray Tracing ?

Interactive rendering today is almost exclusively the domain of rasterization-
based algorithms that have been put into highly integrated and optimized
graphics chips. Their performance increased dramatically over the last few

38 Chapter 4: Interactive Ray Tracing

years and now even exceeds that of (what used to be) graphics supercom-
puters. In important aspects like floating point performance, memory band-
width, and chip complexity1 they have even overtaken state-of-the-art CPUs.
At the same time this hardware can be provided at low cost such that most
of today’s PCs already come equipped with state-of-the-art 3D graphics de-
vices.

Even though the performance increase of 3D graphics hardware has been
tremendous over the last few years, it is still far from sufficient for many
applications. In particular computer games, visualization applications, and
virtual design/virtual prototyping applications have strong demands on ren-
dering speed, image quality, realism, and scene complexity. Furthermore
many of these applications demand a large degree of reliability, both on the
rendering algorithm itself (e.g. when combining different rendering effects),
as well on the quality and correctness of the rendered images.

Current graphics hardware has seen a number of difficulties in these re-
spects because it is quite limited in both image quality and efficiency: In
image quality, the achievable effects are usually quite limited, especially if
compared to ray tracing. Though many applications (especially games) fea-
ture stunning visual effects, these effects are often due to manual design of
the scene. In games, for example, it is quite common to manually design
textures and scene levels to achieve certain effects like (smooth) shadows,
reflections, indirect lighting, etc.

Recently, the affects achievable by graphics devices has been significantly
improved by features like multi-texturing, programmable vertex processing,
programmable fragment processing, dependent texture lookups, and many
more. However, it becomes increasingly difficult for applications to actu-
ally take advantage of these features as they are hard to program and even
simple shading effects are difficult to express in terms of these extensions.
Especially global effects like shadows and reflections – let alone plug-and-
play interaction between different shaders – are hard to achieve. While all
these extensions are important tools for achieving impressive effects in the
above-mentioned manual design process, they are still far from providing the
same level of simplicity and automaticity in achieving the same global effects
as ray tracing. Finally, this process of manually enhancing the visual ap-
pearance of scenes (e.g. through hand-drawn textures) is only feasible for a
restricted set of applications. For example, adding realism through manual
user intervention is tolerable for computer games that require several months
to a few years to be implemented anyway, but it is not an option for the av-
erage end user application, in which such effects are desired to be generated

1Measured in transistors per chip.

4.1 Why Interactive Ray Tracing ? 39

automatically after simply loading a model.

Also in scene complexity, graphics hardware is quite limited, as raster-
ization exhibits essentially linear cost in the number of polygons. In order
to achieve sufficient rendering performance sophisticated preprocessing is re-
quired for reducing the number of rendered polygons per frame. This can be
accomplished through techniques such as geometric simplification, level-of-
detail, occlusion culling, and many others. Again, for game-like applications
this often involves a special design and manual “optimizations” of the scene
by the game designer.

The problem of limited scene complexity becomes furtherly aggravated by
the affect that – even with programmable shading – many advanced effects
require multiple rendering passes of the same scene. For example, shadows
are still costly to compute interactively for dynamic scenes of reasonable
complexity.

Especially in these two domains where graphics hardware becomes prob-
lematic – realism and scene complexity – ray tracing is widely accepted as
being the “better” algorithm. Ray tracing is famous for its ability to generate
high-quality images, and widely accepted as “the” primary tool for realistic
image synthesis. Similarly, the fact that ray tracing is logarithmic in scene
complexity – and thus very efficient for complex scenes – can be considered
common knowledge in computer graphics. In fact, ray tracing actually offers
a long list of features that would be beneficial for interactive, high-quality
graphics as demanded by many applications. In the following, we will briefly
summarize the most important of these advantages:

4.1.1 Flexibility

Ray tracing allows us to trace individual or unstructured groups of rays. This
provides for efficient computation of just the required information, e.g. for
sampling narrow glossy highlights, for filling holes in image-based rendering,
and for importance sampling of illumination [Ward91]. This flexibility of effi-
ciently tracing arbitrary individual rays even allows for computing completely
unstructured light paths (see e.g. the Headlight example in Section 11.2).
Eventually this flexibility is required if we want to achieve interactive global
illumination simulations based on ray tracing.

4.1.2 Occlusion Culling and Logarithmic Complexity

Ray tracing enables efficient rendering of complex scenes through its built
in occlusion culling as well as its logarithmic complexity in the number of

40 Chapter 4: Interactive Ray Tracing

scene primitives. Using a simple search data structure it can quickly locate
the relevant geometry in a scene and stops its front to back processing as
soon as visibility has been determined. This approach to process geometry
on demand stands in strong contrast to the “send all geometry and discard
at the end” approach taken by current triangle rasterization hardware.

The importance of occlusion culling can also be seen from the fact that
even the newest generations of rasterization hardware offer extensions for
some degree of occlusion culling (e.g. occlusion queries [NVidia01] and de-
ferred shading [Olano98]). These however are usually quite limited, and not
as generally applicable as in ray tracing.

4.1.3 Output-Sensitivity

Ray tracing is “output-sensitive” in the sense that it only computes what is
actually needed for the final image. For example, triangle rasterization often
requires to process the entire scene (e.g. for computing a shadow map or a
reflection map) even though it is not yet clear whether this effect is actually
needed at all (i.e. if the object with the reflection map is visible or not). In
contrast to that, ray tracing only computes effects that are actually visible.

This output-sensitivity applies to many different aspects: Only those tri-
angles are intersected that are close to a ray, only those parts of a scene are
touched that are actually visible, only those reflections or shadows are com-
puted that actually influence a pixel to be shaded, etc. Most importantly,
this output-sensitivity applies to each individual pixel. For example, costly
shading effects such as multiple relfection and refraction affect the compute
time of only those pixels in which they are actually seen, and do not affect
the cost of any other pixel.

4.1.4 Efficient Shading

This output-sensitivity also applies to shading. With ray tracing, samples
are only shaded after visibility has been determined. Given the trend to-
ward more and more realistic and complex shading, this avoids redundant
computations for invisible geometry.

Note that “deferred shading” [Olano98] has also recently been proposed
for graphics hardare. In ray tracing, however this concept is much more au-
tomatic. For example, deferred shading in ray tracing also affects secondary
shading effects (e.g. via reflections). For hardware multipass rendering, this
would require the hardware to decide automatically which rendering passes
to use.

4.2 Why not earlier, and why today ? 41

4.1.5 Simpler Shader Programming

Programming shaders that create special lighting and appearance effects has
been at the core of realistic rendering. While writing shaders (e.g. for the
RenderMan standard [Apodaka00]) is fairly straightforward, adopting these
shaders to be used in the pipeline model of rasterization has been very dif-
ficult [Peercy00]. Though todays programmable graphics hardware supports
many of the core shading operations (like texturing or procedural computa-
tions), expressing the global interaction of different shaders is quite hard to
achieve. Since ray tracing is not limited to this pipeline model it can make
direct use of shaders [Gritz96, Slusallek95].

4.1.6 Correctness

By default ray tracing computes physically-correct reflections, refractions,
and shading2 . In case the correct results are not required or are too costly
to compute, ray tracing can still make use of the same approximations used to
generate these effects for rasterization-based approaches, such as reflection or
environment maps. This is in contrast to rasterization, where approximations
are the only option and it is difficult to even come close to realistic effects.

4.1.7 Parallel Scalability

Ray tracing is known for being “embarrassingly parallel”, and thus trivially
parallelizable as long as a high enough bandwidth to the scene data is pro-
vided. Given the exponential growth of available hardware resources, ray
tracing should be better able to utilize it than rasterization, which has been
difficult to scale efficiently [Eldridge00].

It is due to this long list of advantages that ray tracing is an interesting
alternative even in the field of interactive 3D graphics. The challenge is to
improve the speed of ray tracing to the extent that it can compete with –
and eventually outperform – rasterization-based algorithms.

4.2 Why not earlier, and why today ?

Having just argued that ray tracing offers so many advantages over triangle
rasterization, there are two obvious questions that become apparent: First,

2In the sense that the visibility term is handled correctly. This does not mean that
all the shading computations performed by the shaders are automatically and necessarily
“physically-correct”.

42 Chapter 4: Interactive Ray Tracing

why it has not emerged as the leading interactive technique in the first place,
and second, why we think that this situation is fundamentally different today.

The first question is rather easy to answer: When interactive computer
graphics first emerged, demands on computer graphics have been fundamen-
tally different from today. 20 years ago, scenes have been quite simple – in the
order of a few dozen to a few hundred triangles – for which the logarithmic
complexity of ray tracing could not pay off, and for which the high initial cost
of ray tracing was too high. Similarly, occlusion culling in such simple scenes
was not an issue, as overdraw was minimal. Second, shading was quite simple
(not even considering per-pixel shading), for which the programmability of
ray tracing could not pay off. Furthermore, rasterizing a few big triangle with
simple shading allowed rasterization to efficiently exploit coherence by using
incremental, cheap integer operations for rastering a triangle. Finally, these
incremental integer operations – with minimal demand for on-chip memory
– eventually made it possible to dramatically accelerate rasterization by ded-
icated hardware. For these simplified demands, and with these restricted
hardware resources, ray tracing would simply have been the wrong choice.

On the other hand, with this argument in mind it is also clear why these
reasons do no longer hold today: Due to increasing demand for more com-
plex shading, triangle rasterization today performs all operations in floating
point, too. Similarly, most operations today are performed per pixel (and
often on triangles covering at most a few pixels), for which interpolation and
incremental operations no longer work. Also memory demands for graphics
hardware are quite high today, due to the need to support many textures for
faking certain effects. Actually, modern graphics chips use more hardware re-
sources than even complete CPUs. Furthermore, scene complexity increases
to million-triangle scenes with significant overdraw (especially for multi-pass
algorithms like shadow volumes), for which the logarithmic complexity of
occlusion culling features of ray tracing are simply the better choice. Finally,
there is increasing demand for advanced features like realistic shadows, re-
flections, caustics, or global illumination, which get increasingly costly to
approximate in a convincing way on graphics hardware.

Obviously, there are still several important applications for which ray
tracing does not make any sense at all, or for which it is unclear how to
ray trace them at all (like wire-frame rendering, point based rendering,
immediate-mode rendering, etc), or for which it is not yet efficient enough
(like many games, etc). Even so, with the strong and unbroken trend towards
increasingly complex scenes, increasingly complex shading, and increasing de-
mand for advanced features, it seems only a question of time until ray tracing
will eventually overtake triangle rasterization. In fact, for many kinds of ap-
plications (see some of the applications demonstrated lateron in this thesis),

4.2 Why not earlier, and why today ? 43

this is already the case today. This is even more surprising given the fact that
realtime ray tracing today is still an upcoming, and software-only technol-
ogy, which in these applications is compared against sophisticated hardware
implementations of triangle rasterization.

However, being a de-facto standard for interactive rendering, triangle ras-
terization is an “entrenched” technology that is hard to challenge even with
technological advantages. For example, all commonly accepted APIs, graph-
ics libraries, scene graphs, games, and applications being used in practice
today build on triangle rasterization. In order to become a ubiquitously
accepted technology for the end user, many of these issues still have to be
overcome.

44 Chapter 4: Interactive Ray Tracing

Chapter 5

Towards Realtime Ray Tracing –
Related Work

“There are many ways of going forward, but only
one way of standing still.”

Franklin D. Roosevelt

Today, there are three main different hardware platform on which realtime
ray tracing can be realized:

CPUs that run highly optimized and parallelized software implementations
of the classical ray tracing algorithm,

Programmable GPUs that can be used as massively parallel, powerful
streaming processors, that essentially run a specially designed software
ray tracer, and

Special-purpose hardware that is explicitly designed for realtime ray trac-
ing.

Software-based systems essentially run fast implementations of the tra-
ditional ray tracing algorithm. However, they have specifically been op-
timized for speed rather than for quality and flexibility. Additionally, they
often use parallel or distributed processing to achieve interactive frame rates.
This parallelization can be realized on both shared-memory multiprocessor-
machines [Keates95, Muuss95a, Muuss95b, Parker99b, Parker99a, Parker98a],
as well as on loosely-coupled clusters of commodity PCs [Wald01a, Wald01c,
Wald03a, DeMarle03].

Recently, Purcell et al.[Purcell02] have shown that ray tracing can also
be realized on programmable graphics hardware. In his work, Purcell has

46 Chapter 5: Towards Realtime Ray Tracing

exploited the programmability of today’s GPUs by using the graphics card as
a massively parallel, highly efficient streaming processor. Here, the recursive
ray tracing algorithm is first reformulated as a stream processing task, by
expressing the core algorithms of ray tracing – i.e. traversal, intersection, and
shading – as small “kernels” that operate on a stream of pixels and textures,
where each pixel corresponds to exactly one ray. The different kernels can
then be implemented using pixels shaders, and can be executed by applying
the respective pixel shader to the pixels of a screen-aligned quad.

Finally, the third alternative to realizing ray tracing is the design of cus-
tom hardware that is specialized for ray tracing. In that approach, the whole
ray tracing algorithm is embedded in hardware. Given todays hardware re-
sources, Schmittler et al. [Schmittler02] have recently shown that this ap-
proach is indeed feasible. In fact, it apparently can be realized using less
hardware resources than used in a modern GPU, and promises to achieve
full-screen ray traced images at interactive rates even on a single graphics
chip.

This PhD will concentrate mostly on specific details of the Saarland
RTRT/OpenRT engine. However, we first want to give an overview and
short summary of the different approaches to realtime ray tracing that have
been taken so far.

5.1 Realtime Ray Tracing in Software

In order to reach realtime ray traced frame rates with a software system,
one has to focus on two different aspects: First, the system has to be built
on a highly optimized ray tracing kernel that optimally uses the CPU. This
includes both using the best available algorithms and paying careful atten-
tion on implementing them optimally on the given hardware. Second, as
even the best algorithms and the fastest CPUs today cannot yet deliver the
performance needed for practical applications, a software based system also
requires exploiting the tremendous potential for parallel processing in ray
tracing. This allows for combining the resources and compute power of mul-
tiple CPUs (or PCs) by using parallel or distributed ray tracing.

Especially the latter is common to all software approaches to realtime ray
tracing so far. This is both true for shared-memory systems (e.g. by Keates
and Hubbold [Keates95], Muuss et al.[Muuss95a, Muuss95b], and Parker
et al.[Parker99b, Parker99a, Parker98a]), as well as for current systems based
on PCs and PC clusters (e.g. [Wald01a, Wald01c, Wald03a, DeMarle03]).

5.1 Realtime Ray Tracing in Software 47

5.1.1 Interactive Ray Tracing on Shared-Memory Systems

Figure 5.1: Two examples from the Utah Interactive Ray Tracing System.
a) A typical ray-traced scenes with parametric patches, shadows and reflec-
tions. b) A ray tracing test scene with smooth shadows. c) Complex volume
rendering. (Image courtesy Steve Parker)

Though ray tracing itself trivially lends itself to parallelization, special
care has to be taken in an interactive setting where only a minimum amount
of time can be spent on communication and synchronization. Generally,
these issues – fast inter-processor communication and synchronization – can
best be handled on shared-memory computers.

Thus, it is not surprising that interactive ray tracing has first been re-
alized on massively parallel shared-memory supercomputers. These systems
provided the required floating point power and memory bandwidth, and com-
bined the performance of many CPUs with relatively little programming ef-
fort.

The first to achieve interactive frame rates on such platforms were Muuss
et al. [Muuss95a, Muuss95b] who used interactive ray tracing to simulate
radar systems in highly complex CSG (Constructive Solid Geometry) envi-
ronments that would otherwise have been impossible to be rendered interac-
tively1.

On a similar hardware platform, Parker et al. [Parker99b, Parker99a,
Parker98a, Parker98b] were the first to show a full-featured ray tracer with
shadows, reflections, textures, etc. (see Figures 5.1a and 5.1b). Addition-
ally, their system allows for high-quality volume rendering [Parker99a] and
isosurface visualization [Parker98a] (see Figure 5.1c).

1At the same time, Keates and Hubbold [Keates95] also presented a massively parallel
interactive ray tracer on the KSR-1 machine. The achieved performance however was only
close to interactivity, and did not allow for the same practical applications as Muuss’s
approach.

48 Chapter 5: Towards Realtime Ray Tracing

5.1.2 The Saarland RTRT/OpenRT Engine

Today, a more cost-effective approach to obtain high compute power is the use
of a clusters of commodity PCs. Such systems are already widely available
and usually cost only a fraction of a shared-memory machine while providing
equivalent performance. However, PC clusters do have many drawbacks com-
pared to a shared-memory supercomputer, i.e. they do not offer hardware-
supported inter-processor communication, and they have less memory, less
communication bandwidth, and much higher latencies.

In 2001, Wald et al. [Wald01a, Wald01c] showed that interactive ray trac-
ing can also be realized on such low-cost hardware. Their system – the
Saarland University’s RTRT/OpenRT ray tracing engine2 – combines a fast
ray tracing core with sophisticated parallelization on a cluster of commodity
PCs. In the meantime, this system has been extended to a complete render-
ing engine featuring a fast ray tracing core, efficient parallelization, support
for dynamic scenes, and a flexible and powerful API. Most of the following
discussions on kernel issues, parallelization, dynamic scenes, and API issues
will be based on this system.

5.1.3 The Utah “Star-Ray” Architecture

Figure 5.2: Example images from the cluster-based Utah Star-ray system.
Left: One frame from an eight gigabyte volume data set rendered interactively
with analytic isosurfacing. Right: Performance comparison of their new,
cluster based system is comparison to the Onyx. Using the same number of
nodes, their cluster based system provides roughly the same performance as
the Onyx system. (Image courtesy David E. DeMarle)

2Note: “RTRT” refers to the “Real-Time Ray Tracing” core of the engine, while
“OpenRT” refers to the API through which this engine is driven (see Section 10)

5.1 Realtime Ray Tracing in Software 49

Just recently, the above-mentioned “Utah-system” [Parker99b, Parker99a,
Parker98a] (now called “Star-Ray”) has also been ported to run on a PC clus-
ters [DeMarle03]. It too consists of a sophisticated parallelization framework
around a highly optimized ray tracing core. In its core, the new system
uses the same algorithms as on the original system on the Onyx [Parker98a]:
Highly efficient traversal of the volume data set that quickly skips uninter-
esting regions, efficient data layout using bricking to improve caching (re-
ported to bring up to a tenfold performance improvement on certain archi-
tectures [Shirley02]), optimized algorithms for analytic ray-isosurface inter-
section computation, and efficient parallelization in the image plane.

While certain of the systems aspects – i.e. the distribution framework
and optimization for memory accesses – are similar to the RTRT/OpenRT
engine, the system has been optimized mainly for the interactive visualization
of volumes and isosurfaces, and does not primarily target polygonal scenes
and lighting simulation.

Due to the above-mentioned drawbacks of using PC clusters – less mem-
ory, less communication bandwidth, and higher latencies – the paralleliza-
tion and communication layer of the PC-based Star-Ray system had to be
adapted [DeMarle03]. Similar to the Saarland System, they now use a client-
server approach, in which the server controls the clients via TCP/IP by send-
ing them image tiles to be computed. Using the same number of nodes, their
cluster-based system achieves roughly the same performance as the original,
shared memory based system on the Onyx (see Figure 5.2).

The new Star-Ray system is also able to handle massively complex vol-
ume data sets by implementing a software layer offering a distributed shared-
memory architecture: Volume data is separated into disjoint regions that are
kept distributed among the different machines. If a client needs access to re-
mote data, this software layer transparently fetches and caches the required
data. Additionally, they perform several optimization to reduce the band-
width for transferring these tiles. Their system for handling massive volume
data is similar to the approach that Wald et al. have taken for rendering
massive polygonal data sets [Wald01c], but uses a better, distributed scheme
of storing the data. While this distributed data storage costs roughly half
the performance of their system, it allows them to render an eight gigabyte
dataset (of a Richtmyer-Meshkov instability) at interactive rates with high-
quality analytic isosurfaces, as shown in Figure 5.2.

As can be seen, both the Saarland Engine as well as the new Utah engine
have concentrated on similar issues: First, a highly optimized kernel that
especially considers memory effects. Second, sophisticated parallelization
with special emphasis on handling the bandwidth and latency issues of a PC

50 Chapter 5: Towards Realtime Ray Tracing

cluster.
While volume rendering obviously requires different algorithms and opti-

mizations than ray tracing in polygonal scenes, many of the concepts are still
similar. In the remainder of this thesis, we will concentrate only on polygonal
scenes. However, most of the discussed concepts should apply similarly to
volume rendering.

5.2 Ray Tracing on Programmable GPUs

Whereas GPUs have originally been designed for triangle rasterization, it
soon became popular to “abuse” the capabilities of GPUs for other tasks,
e.g. by using multi-pass algorithms for higher-quality shading [Proudfoot01,
Mark01]. Due to popular demand – mainly driven by the game indus-
try – graphics hardware has recently evolved to become increasingly pro-
grammable, from a reconfigurable rasterization pipeline, over register com-
biners and vertex shaders, down to todays fragment programs [NVidia01].

Today, fragment programs allow for executing small programs, including
multiple accesses to textures – potentially depending on each other – and
very fast, SIMD-style arithmetic operations. This programmability is still
somewhat limited, e.g. with respect to the number of instructions or texture
accesses that can be executed, in the number of kind of write operations,
loops, and branches. While it is unlikely that GPUs will ever be as flexible
and programmable as CPUs, many of these limitations will probably be
reduced.

With this programmability of graphics hardware, it now becomes possible
to use the GPU also for other tasks that have previously been the domain
of CPU based systems, e.g. for linear algebra operations, matrix solvers, and
simulation tasks [Larsen01, Harris02, Krüger03, Bolz03]. Essentially, the
GPU is well suited for any kind of algorithm that is highly parallel and com-
pute intensive, which obviously also includes many algorithms in computer
graphics. As such, there have already been several approaches for using the
GPU for ray tracing [Purcell02, Carr02], and for photon mapping [Purcell03].

5.2.1 Hybrid CPU/GPU Ray Tracing: The Ray Engine

One of the first approaches to using GPUs for ray tracing was taken by Carr
et al.’s “Ray Engine” [Carr02], which uses the GPU as a very powerful “co-
processor” for ray intersection computations. Their approach was motivated
by the observation that GPUs as extremely powerful at compute-intensive
tasks (such as e.g. ray-triangle intersection), but rather weak at algorithms

5.2 Ray Tracing on Programmable GPUs 51

with a complex control flow such as kd-tree traversal, which require branch-
ing, looping, and recursion.

With this observation in mind, they have chosen to build a hybrid system
that attempts to combine the advantages of CPUs and GPUs by splitting the
ray tracing algorithms in two separate parts – a compute-intensive part, and
the parts with complex control flow – and execute those respective parts on
GPU and CPU in parallel. Ray-triangle intersection is completely moved to
the GPU, which was reported to be able to compute up to 114 ray-triangle
intersections per second [Carr02], which was roughly 3–5 times as much as a
the best published ray-triangle intersection rate on a CPU at that time3. To
feed the GPU with ray-triangle intersection tasks, the CPU performed the
traversal of rays through the acceleration data structure, and forwarded the
intersection tasks to the GPU.

Inclucing scene management and traversal on the CPU, they have re-
ported an effective rate of 218,000 rays per second in the teapot model,
which already met the lower end of the fastest availabel CPU ray tracer at
that time: However, the ray engine suffered from several architectural limita-
tions: First, the approach required too much communication between CPU
and GPU, which often does not pay off due to the high communication cost.
For example, the cost for sending the data for a ray over a PCI bus is rather
high compared to just performing the intersection on the CPU itself. Even
worse, the traversal algorithm on the CPU depends on the results of the
intersection computations, requiring read-back from the GPU, which is both
rather slow and has very high latencies. Finally, achieving optimal perfor-
mance would have required to use both CPU and GPU at full utilization
by balancing the cost for traversal and intersection. This however is quite
hard, as the ratio of traversal cost over intersection cost changes from scene
to scene, and often from frame to frame.

Thus, while the ray engine did achieve a speedup over their own software
implementation, it never actually matched the speed of the RTRT/OpenRT
system running on a single CPU. Still, the ray engine was a highly interesting
bit of research, as it has clearly shown two facts: First, that GPUs are
considerably faster in compute intensive tasks. And second, that hybrid
approaches are too complicated, and that using GPUs for ray tracing requires
to map the entire ray tracing algorithm to the GPU as done by Purcell et
al.[Purcell02].

3The best published results at that time resulted from [Wald01a], which reported 20–40
million ray-triangle intersections per second on a 800MHz Pentium III CPU (in 2001).

52 Chapter 5: Towards Realtime Ray Tracing

5.2.2 Ray Tracing on Programmable Graphics Hardware

In contrast to Carr’s work, the goal of Purcell et al. was not to use the
GPU as a coprocessor, but rather to map the whole ray tracing algorithm
to the GPU. Their basic idea [Purcell02] was to view the GPUs as a stream
processing hardware4 (see Figure 5.3): Rendering a screen-aligned quad with
a programmable shader can be viewed as executing a kernel (i.e. the pro-
grammable shader) on a stream of input elements (i.e. the fragments of the
quad). The input data for each stream element can be read from correspond-
ing screen-aligned textures, will be processed by the kernel-code during per-
pixel shading, and will be stored in the frame buffer after processing. Finally,
the loop can be closed by copying the frame buffer to a texture as an input for
the next kernel. Additionally, the kernels can also access shared global data,
which can also be stored in textures. As the newest generations of graphics
hardware support floating point formats for both textures and frame buffer,
all operations can be performed in floating point.

Intersect
Triangles

Shade Hit
and Generate
Shading Rays

Traverse
Acceleration

Structure

Generate
Eye Rays

Camera

Grid of
Triangle List

Offsets

Triangle List
Triangles

Normals

Materials

27 69 ... 7860 4 17

1 3 45 ...0 3 21

... xyzxyz xyz xyz xyz

vox1 vox2 vox3 vox4 vox5 voxmvox0

vox0 vox1

... xyzxyz xyz xyz xyz

... xyzxyz xyz xyz xyz

tri1 tri2 tri3tri0 trin

v2

v1

v0

Grid
Texture

Triangle List
Texture

Triangle
Vertex

Textures

Figure 5.3: The GPU as a stream processing hardware. Left: Each pixel
corresponds to a stream element. Rendering one screen-aligned quad with an
appropriate programmable shader then executes a “kernel” over each pixel,
reads the data from corresponding screen-aligned textures, and writes the pro-
cessed stream elements into the frame buffer. Right: Organizing the scene
data in textures. (Image courtesy Timothy J. Purcell)

In order to realize a ray tracer on such a hardware architecture, Purcell et
al. have reformulated the ray tracing algorithm in a streaming manner: Each
ray corresponds to a stream element, and each operation that is performed on

4Note that there are ongoing discussions on the actual programming model offered by
GPUs: While most researchers see the GPU as a streaming processor, other researchers
view it as a general parallel processor, a SIMD processor, or a vector processor.

5.2 Ray Tracing on Programmable GPUs 53

a ray – e.g. ray-object intersection, grid traversal, or shading – is expressed as
a small compute kernel, which in turn is realized in a programmable shader.

For example, one would start with a “ray generation” kernel to generate
a ray for each pixel. The rays generated by this kernel are then be stored in
screen-aligned textures, i.e. one 3-float texture for ray origin, and one 3-float
texture for ray direction. Other kernels, e.g. a ray-triangle intersection kernel,
could then read this ray data for each pixel by accessing those textures.

All global data, e.g. the triangle descriptions, the acceleration structure,
etc., then has to be stored in textures, from where they can be read by the
kernels. “Pointers” between different data items can be realized by using
one-dimensional float textures, whose float values can be used as texture
coordinates to index into a second texture using a dependent read operation5.
Figure 5.3 shows how the scene was organized in several textures as used by
Purcell et al [Purcell02].

Whereas the just discussed “ray generation” kernel can simply be exe-
cuted for all pixels, control flow is gets much more complicated for other al-
gorithms: During traversal, different rays may perform different operations:
Some rays may still be traversing the grid, others are already intersecting
triangles, and yet other rays might already be shaded. On a streaming archi-
tecture, each stream would always only contain rays that undergo the same
operation.

As however the screen-aligned kernel is actually called for every pixel, the
streaming control flow has to be emulated by “skipping” pixels that should
not undergo the current kernel computations. This can be realized by mark-
ing each ray to be in a certain “state”, which specifies which operations it is
subject to. For example, a ray in state “traversal” would only undergo traver-
sal operations. After entering a non-zero voxel, the intersection kernel would
then change the rays state to “voxel intersection”, putting the ray into the
“voxel intersection” stream. As such, rendering a quad with an “traversal”
kernel would perform exactly one traversal step for each ray in “traversal”
state, a “intersection” kernel would compute exactly one intersection for each
ray intersecting a triangle, and so forth.

Using the just described approach makes it possible to map the whole ray
tracing algorithm to the GPU, without the need for costly communication or
feedback to the CPU. In a simplified view, all the CPU has to do is issuing
screen-aligned quads with the programmable shaders for the different kernels.

Having the full ray tracing algorithm on the GPU allowed for exploiting
the full performance of the GPU (see Figure 5.4). In a prototype system

5Note that the “index” actually is a float value, as GPUs currently do not support
integers.

54 Chapter 5: Towards Realtime Ray Tracing

running on a Radeon 9700 Pro [ATI02], interactive frame rates of up to
3 frames per second including shadows and reflections have been reported
at least for resolutions of 256x256 pixels and relatively simple scenes. In a
“Cornell Box”, even frame rates of 15 fps at 256x256 pixels could be achieved
including shadow computations. While this already corresponds to roughly
2 million rays per second, the results are likely to significantly benefit from
the improvement of next-generation graphics hardware.

Figure 5.4: Examples from Purcell’s ray tracer on a Radeon9700 Pro GPU,
rendered at 256x256 pixels. Left: Cornell box scene ray traced with soft shad-
ows, running at up to 15 fps. Right: “Teapotahedron” scene ray traced with
shadows and reflections, with up to 3 fps. (Image courtesy Timothy J. Pur-
cell)

However, the limitations of graphics hardware still poses several prob-
lems: For example, having to store the complete scene in texture memory
severely limits the complexity of the scenes that can be rendered. Further-
more, recursion is hard to implement on graphics hardware (due to the lack
of branching and dependent writes), making it hard to use hierarchical data
structures such as kd-trees, and restricting the proposed approach to less
efficient regular grids that do not require recursion. The lack of recursion
also makes it hard to implement full-featured recursive ray tracing.

Furthermore, current hardware is quite limited in the number and kind
of “write” operations, incurring some overhead due to the need to break up
one kernel with too many writes into a larger number of smaller kernels with
the correct number of write ops.

Another drawback of the approach is that it is quite bandwidth-intensive.
Often, a rather small kernel has to read in data from many textures, and then

5.3 The SaarCOR Realtime Ray Tracing Engine 55

only performs a simple operation on it. In order to pass any information to
the next (probably just as small) kernel, it first has to write all temporary
data to a texture, which in turn the next kernel has to read.

Finally, the proposed way of having rays in different states and having
the kernels “skip” rays in the wrong state becomes increasingly inefficient
for a larger number of computational states (that are likely to be required
for practical applications). Though certain optimizations are possible, the
proposed solution is still a poor substitute for the actually preferable, missing
branching behavior.

In his work, Purcell has shown that it is indeed possible to do ray tracing
on a GPU. However, while it is certainly true that GPUs have a significant
performance advantage over CPUs in compute intensive tasks, ray tracing
is actually much more control-flow intensive than compute intensive. While
it is important to know that it is at least possible to realize such complex
control flow at all on a GPU, the overhead incurred by realizing it currently
negates its advantages.

This drawbacks of using GPUs for ray tracing can probably be avoided
by future GPU architectures if they allow dependent writes, branching, and
shader programs of higher than current complexity. At that point however,
a GPU has actually evolved into a full-featured CPU.

5.3 The SaarCOR Realtime Ray Tracing Archi-
tecture

Apart from writing software ray tracers to either run on CPUs or on pro-
grammable GPUs, ray tracing can also be realized by mapping the whole
algorithm to custom hardware. In the past, building hardware support for
ray tracing has been pursued by several researchers: Most approaches fo-
cussed on volume ray casting, since this is considerably less complex than
full-featured, recursive ray tracing for polygonal scenes. For volume ray cast-
ing, several practical solutions with realtime frame rates have been proposed,
e.g. [Meissner98, Pfister99, Pfister01, Meißner02]. For full-featured ray trac-
ing, however, most approaches supported only parts of the ray tracing pro-
cess, and were thus limited to accelerating offline ray tracing that could not
achieve interactive frame rates, e.g. [Humphreys96, Hall01, Pulleyblank87,
Kedem84, Leray87]. Even with these severe restrictions so, some of these ap-
proaches even made it into commercial products [ART, Hall01]. Nonetheless
neither of these approaches have ever been designed for, nor have they even
targeted realtime ray tracing of polygonal scenes.

56 Chapter 5: Towards Realtime Ray Tracing

The reason for this lack of realtime ray tracing hardware is that it requires
a considerable amount of hardware resources that until recently have been
hard if not impossible to realize: For example, ray tracing hardware usually
requires to store the whole scene in on-board memory. This requires many
megabytes of on-board memory that would have been unaffordable only a
few years ago. Quite recently, it has been shown that a virtual memory
architecture can help in reducing the amount of physical memory required
for a ray tracing hardware: As shown by Schmittler et al. [Schmittler03], such
a virtual memory architecture needs only a small fraction of the scene data in
physical on-board memory, and can page in missing data from host memory
if required. This allows for interactively ray tracing even highly complex
scenes with only a small amount of on-board memory6. Only a few years ago
however even these significantly reduced memory requirements would have
been impossible to realize.

Even more importantly than physical memory is chip complexity and
floating point performance: Not too long ago even a single floating point
unit was considered costly in terms of the required numbers of transistors.
Ray tracing however does require floating point computations, and – at least
in order to reach interactive performance – requires to have many of such
units available in parallel and on the same chip.

In summary, the hardware resources for realtime ray tracing hardware
have simply not been available a few years ago, thereby severely limiting the
results of previous attempts towards ray tracing hardware. Only recently,
progress in hardware technology has removed most of these limitations. Typ-
ical on-board memory sizes are sufficient for ray tracing, and many parallel
floating point units can be put on a single chip. Even today, standard graph-
ics chips are capable of performing hundreds of floating point computations in
each cycle. As such, the raw hardware resources for ray tracing are becoming
readily available.

5.3.1 Basic Concepts of the SaarCOR Architecture

Even if the both memory size and raw floating point power are now avail-
able, many problems remain: Though it has become reasonably easy to put
many parallel FPUs on a chip, it is often quite hard to feed these functional
units fast enough to keep them busy, due to limited off-chip bandwith, and
dependencies in the calculations.

This is especially problematic for a bandwidth-intensive tasks, and for
tasks with almost-random and unpredictable memory access patterns. Un-

6Though the scene still has to fit into the main memory of the host machine

5.3 The SaarCOR Realtime Ray Tracing Engine 57

fortunately, both are true for classical recursive ray tracing: Each ray often
performs rather few operations on each data it accesses (e.g. one cheap traver-
sal step on a whole BSP node), and unrelated rays usually access memory
almost randomly. As such, a chip that simply traces hundreds of individual
and unrelated rays in parallel is not feasible, even though its required raw
floating point performance could be realized.

5.3.1.1 Packet Tracing

Last year, Schmittler et al. [Schmittler02] have shown that these bandwidth
limitations can be overcome by using the same ideas used for fast software
ray tracing [Wald01a] (also see Section 7): Tracing packets of coherent rays
can dramatically reduce the average bandwidth required per ray – both off-
chip as well as on-chip bandwidth: Coherent rays usually access the same
BSP nodes and triangles. If such rays are traced together, each accessed data
value can be reused for many rays, thereby reducing the average amount of
data fetched per ray.

Actually, the SaarCOR architecture carries these concepts even further
than the software implementation, as the packet sizes used in SaarCOR are
usually much larger than used in RTRT/OpenRT (usually 8x8 or 16x16).
In the software implementation, experiments with larger packet sizes have
shown that more than only four rays per packet will not pay off, as the
SIMD architecture cannot perform more than four floating point operations
in parallel, and since the ray tracer is not bandwidth bound anyway. In fact,
larger packets get costly for the software implementation due to a higher
overhead.

#lights with reflection-
scene #triangles shadows depth textures
Cruiser 3 637 101 0 0 –
BQD-1 2 133 537 0 0 –
BQD-2 2 133 537 0 0 –
Quake 39 424 0 0 bilinear
Conference 282 000 2 0 –
Office 33 952 3 3 –

Table 5.1: Some statistical data on the scenes used for benchmarking. The
scenes have been chosen to test a wide range of parameters: from simple to
complex geometry, and with and without textures, shadows and reflection.
For the respective images, see Figure 5.6.

58 Chapter 5: Towards Realtime Ray Tracing

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 16 64 256 1024 4096
 0

 10

 20

 30

 40

 50

 60

t
o
t
a
l

m
e
m
o
r
y

x
f
r
d

p
e
r

f
r
a
m
e

[
i
n

M
B
]

a
v
g
.

m
e
m
o
r
y

x
f
r
d

p
e
r

p
a
c
k
e
t

[
i
n

K
B
]

number of rays per packet

total mem: Office, 3,9 mio rays shot
avg. mem: Office, 3,9 mio rays shot

total mem: Cruiser, 2,4 mio rays shot
avg. mem: Cruiser, 2,4 mio rays shot

Figure 5.5: Influence of the number of rays per packet on the amount of
memory transfered during rendering of one frame, and the average amount
of memory requested by a packet. As can be seen, the total amount of memory
transfered drops quickly and significantly with the number of rays per packet
(data courtesy of Jörg Schmittler [Schmittler02]).

For the hardware architecture, however, larger packets are still beneficial
(see Figure 5.5): The larger the packet, the total memory has to be transfered
per frame. However, larger packets are also likely to traverse BSP regions that
not all rays would have required to traverse if traced alone. While this results
in considerable overhead for SIMD implementations, this does not happen
for the SaarCOR architecture, as the hardware contains some simple logic to
track which rays in a packet are “active” in a given subtree, and does not
perform any more computations on those rays. As such, incoherent packets
that traverse regions in which only part of the rays would have traversed just
become smaller (resulting in less bandwidth reduction), but will not perform
any excess computations.

Furthermore, at the targeted full-screen resolutions of 1k×1k pixels (prob-
ably plus antialiasing) even packets of 8 × 8 or 16 × 16 rays will be highly
coherent. This allows for using rather large packet sizes, which dramati-
cally reduces the required bandwidth, and thus enables to almost completely
overcome the bandwidth issue.

5.3 The SaarCOR Realtime Ray Tracing Engine 59

Figure 5.6: Some of the scenes used for benchmarking. Some statistical data
on these scene is summarized in Table 5.1.

5.3.1.2 Simultaneous Multi-Threading

The second fundamental problem of ray tracing hardware is the high degree
of data dependencies: Each ray usually has to fetch one data value (e.g. a
BSP node), process it, and – depending on the outcome of this processing
– fetch the next node, and so forth. As each fetch depends on the previous
traversal step, prefetching the data is not possible7. If any such data value is
not readily available, it has to be read from off-chip memory, and will arrive
with considerable latency. If unhandled, this would lead to excessive pipeline
stalls, idle times, and low performance of the hardware.

To avoid such idle times, SaarCOR uses a concept similar to HyperThread-
ing [Intel02c], but with a significantly larger number of virtual threads, as
inspired by the SB-PRAM architecture [Paul02]: To realize this concept, each
pipeline in the SaarCOR architecture processes several (e.g. 16) number of
packets at the same time, and switches to another packet after each traversal

7Though the node obviously can be prefetched, the time span between one travesal
step and the next is much too small to hide a the high memory access latency.

60 Chapter 5: Towards Realtime Ray Tracing

step. Like the SB-PRAM, SaarCOR is built in such a way that the entire
memory latency (even from off-chip memory) can be hidden by working on
other packets during that time.

5.3.2 Hardware Architecture

The SaarCOR architecture is a very modular architecture, and can be config-
ured in many different ways: The main ray tracing computations (traversal
and intersection) are performed in a ray tracing core (called RTC in Fig-
ure 5.7), which consists of three stages: traversal, triangle-list-fetch, and
triangle intersection. Each operation is always performed on a whole packet
of rays. Together with its corresponding unit in the ray generation and shad-
ing unit (RGS), each RTC realizes a full ray tracing pipeline. Each pipeline
also implements the HyperThreading mechanism as described above.

To account for the difference in cost of traversal and intersection, all
stages inside one pipeline can again be realized by multiple functional units,
for example a pipeline could have 4 traversal units, but only one intersection
unit. The exact number of units is configurable, as are packet size and
number of parallel threads.

Additionally, the SaarCOR architecture supports a configurable number
of parallel pipes (see Figure 5.7). The different pipes are all controlled by
the RGS unit, which assigns ray packets to the individual pipes, similar to
the techniques used for parallelizing the software architecture, see Section 8.

Due to the previously mentioned bandwidth reductions, multiple pipes
can share the same memory controller. Even more importantly, data flow in
SaarCOR is quite simple, and does not require costly data routing mecha-
nisms between the different functional units.

5.3.3 Results

As the SaarCOR hardware architecture has not been physically built yet,
all experiments can only be simulated. For this task, a special simulator
has been developed, which uses a modified version of the RTRT software
system to gather data on real-world rays including their memory accesses.
The resulting raw data is then fed into a cycle-accurate simulator, that sim-
ulates the performance (including all effects like memory accesses, caches,
latencies, bus-contention, unavailability of resources, etc) of the SaarCOR
hardware. The simulator allows for simulating all the parameters of the
SaarCOR hardware, like number of pipes, number of threads, cache size, and
caching method, etc.

5.3 The SaarCOR Realtime Ray Tracing Engine 61

64,29,21

64,29,18

64,29,21

64,29,18

Intersection

List

Traversal

Master

112

MemCtrl L−SR

I−SR

T−SR
64,29,18

32,29,18

288,29,18

Trav−Cache

List−Cache

Int−Cache

M−SR
SD−RAM3
SD−RAM2
SD−RAM1
SD−RAM0

ho
st

 u
pl

oa
d:

 s
ce

ne
 d

at
a

64,29,16

32,29,16

288,29,16 Intersection

List

TraversalRTC−MI

Slave−1 Slave−2

RGS

host upload: shading data, cameraPCI−bridge

RTC−1 RTC−2

301

208

204

117

138

111

SD−RAM, frame−buffer

16,27,6

MemIntSaarCORSaarCOR

Figure 5.7: Overview of the SaarCOR hardware architecture: The SaarCOR
hardware model is split into three parts: The ray tracing core (RTC), the
ray-generation and shading unit (RGS), and RTC’s memory manager (RTC-
MI). To allow for easy scaling, several RTCs are supported. Please note the
simple routing scheme used: it contains only point-to-point connections and
small busses, whose width is also shown separated into data-, address-, and
control-bits (courtesy of Jörg Schmittler).

Using this simulator, a large number of scenes has been tested. For a
complete overview of these experiments and their results, refer to the origi-
nal SaarCOR paper [Schmittler02]. Note, however, that most of the results
published in the original paper are outdated, as some newer developments
(like better BSP trees from the software implementation) have considerably
improved these early results. Some of the newer resuls are shortly summa-
rized in Table 5.3.3.

scene Cruiser BQD-1 BQD-2 Quake Conference Office
Frame Rate 170 137 59 129 77 44

Table 5.2: Simulated performance of a standard SaarCOR chip in different
scenes. Numbers denote frames per second at 1024 × 768 pixels. Note that
the different scenes shoot a varying number of rays, due to varying reflectivity
and number of light sources, see Table 5.1.

62 Chapter 5: Towards Realtime Ray Tracing

Even in the originally published results a “Standard Configuration” of the
SaarCOR architecture (which even requires less hardware resources than a
state-of-the-art rasterisation chip), realtime frame rates at full-screen resolu-
sions could be reached for OpenGL like-shading (with more than 100 fps even
for highly non-trivial models, see Figure 5.6). Additionally the SaarCOR ar-
chitecture allowed to easily scale the performance of the chip by adding more
pipelines, resulting in an almost linear scaling in number of pipelines.

Being based on ray tracing, the SaarCOR architecture showed a logarith-
mic behaviour in scene size, making it possible to scale to highly complex
models of up to millions of triangles while still maintaining realtime frame
rates.

Finally, SaarCOR allowed to also compute effects like shadows and reflec-
tions at interactive rates. In fact, SaarCOR has shown to be roughly linear
in the number of ray that have to be traced.

In summary, these results allow for drawing some interesting conclusions:
First, that realtime framerates for full-screen, full-featured ray tracing can
indeed be realized with todays hardware technology. Second, that packet
tracing combined with simultaneous multithreading allow for efficiently re-
moving the bandwidth bottleneck memory latency issues of ray tracing hard-
ware. And finally, that even for OpenGL like shading at comparable frame
rates, this ray tracing hardware would require less hardware resources than
are used on todays graphics cards, meaning that for many tasks, ray tracing
would already be more efficient than rasterization already today.

5.3.4 Remaining Problems

Even though the results obtained by the SaarCOR architecture have been
quite impressive, many questions still have to be adressed: First of all, it yet
remains to be seen how the integration of programmable shading into the
SaarCOR architecture would influence some of the results. For example, it is
not clear whether the same bandwidth reductions could also be realized for
packet shading as have been achieved for packet tracing. Furthermore, costly
programmable shading is likely to actually become more costly than the cost
for tracing a ray. This trend can already be seen in the RTRT/OpenRT
software ray tracer, and is likely to also be true in the SaarCOR architecture.

Furthermore, it is not yet clear how large packets of rays can efficiently
by maintained in the context of complex programmable shaders and large
packet sizes. While it is rather easy to create coherent ray packets for a fixed
lighting model and for point light sources, this gets much more complicated
for arbitrary shaders. In a fully programmable setting where each surface

5.4 Towards Realtime Ray Tracing – Conclusions 63

point might spawn an arbitrary number of arbitrary rays, eventually some
kind of sorting and scheduling would have to be performed to sort all these
rays into a small number of coherent packets. This problem has not yet been
investigated.

Finally, efficient handling of dynamic scenes also has to be investigated.
While some of the algorithms from the RTRT/OpenRT system (see Section 9)
can probably also be employed for the SaarCOR architecture, eventually
some new algorithms (and probably hardware support) will be required for
handling incoherent motion at realtime frame rates.

5.4 Towards Realtime Ray Tracing – Conclu-
sions

On currently existing technology, there exist several options for realizing
realtime ray tracing, including software ray tracing on commodity CPUs,
ray tracing on programmable graphics hardware, and the design of special
purpose ray tracing hardware.

So far, the above systems are mostly prototype systems that are not yet
widely used for practical applications. Still, they already achieve impressive
performance and enable applications that have been impossible with different
technologies: Walk-throughs of massive models without the need for approx-
imations (e.g. [Parker99b, Wald01c]), interactive visualization of massively
complex scientific and volumetric data sets [Parker99a, DeMarle03], interac-
tive visualization of non-polygonal surfaces [Parker98a, Muuss95a], interac-
tive simulation of complex reflection patterns [Benthin02], interactive global
illumination [Wald02b, Benthin03], etc. (for an overview of what is possible
with interactive ray tracing today also see Chapter 11). As shown for exam-
ple in Section 5.3, this increased flexibility, quality, and performance can even
be realized with less hardware resources than used in today’s rasterization
technology.

All these approaches to realtime ray tracing are fundamentally different
and have different advantages and disadvantages: Software ray tracing offers
the largest flexibility because commodity CPUs impose no restrictions on
the program they are running. On the other hand, software systems suffer
from the fact that most CPUs concentrate on accelerating single-threaded
applications, and thus cannot optimally exploit the inherent parallelism in
ray tracing. Also, modern CPUs are designed for a much wider range of tasks
are not optimized for ray tracing like computations.

In contrast, programmable GPUs can leverage the superior performance,

64 Chapter 5: Towards Realtime Ray Tracing

bandwidth, and – especially – parallelism of modern chip design for ray trac-
ing. Additionally, GPUs have become cheap and are commonly available
in most PCs, providing a cost-effective approach to fast ray tracing on the
desktop. However, the programming model of GPUs still imposes severe re-
strictions on the algorithms that can be implemented efficiently. As a result,
ray tracers on GPUs today are usually not faster than CPU ray tracers. The
restricted programming model of todays GPUs usually leads to a significant
overhead by forcing the use of less optimal algorithms (e.g. uniform grids
vs. kd-trees, etc). This overhead then often over-compensates the perfor-
mance advantage. While some of these restrictions will eventually disappear,
it seems unlikely that GPUs will ever be as flexible as CPUs.

Finally, special-purpose hardware promises optimal performance given
current hardware technology, but is obviously more expensive and time-
consuming to realize. However, the performance of special-purpose hardware
is what other implementations will have to be judged against.

The presented approaches cover a wide spectrum in terms of flexibility
(software ray tracing), cost efficiency (GPUs), and performance (SaarCOR).
While it is not yet clear which one will be most successful, they all have the
potential of eventually providing realtime ray tracing performance on every
desktop.

Part II

The RTRT/OpenRT Realtime Ray
Tracing Engine

.

Chapter 6

General Design Issues

“Some argue that in the very long term, rendering
may best be solved by some variant of ray tracing, in
which huge numbers of rays sample the environment
for the eye’s view of each frame. And there will also
be colonies on Mars, underwater cities, and personal

jet packs.”

Tomas Möller and Eric Haines,
“Real-Time Rendering”, 1st edition (page 391)

After the first part of this thesis has concentrated on the foundations and
state of the art in ray tracing and realtime ray tracing, this second part is
going to take a closer look at the RTRT/OpenRT realtime ray tracing system.
In the following chapters, most of the actual algorithms and implementation
issues of this system will be presented and discussed in detail. Before doing
this however it is important to first discuss the higher-level design decisions
that had to be taken when designing and building this system.

When setting out to build a realtime ray tracing system, there are many
issues to be addressed. For example, one has to decide

• whether one wants to support only triangles vs. also supporting more
general primitives,

• which kind of index structure one to use (e.g. grids vs. BSPs),

• whether to optimize for processor-specific extensions or rather targeting
a portable system;

• whether to target commodity hardware (i.e. desktop PCs and clusters)
vs. concentrating on shared-memory machines

68 Chapter 6: General Design Issues

• whether to design new, better algorithms or rather use a brute-force
approach,

• what kind of compromises one is willing to make for the sake of perfor-
mance (e.g. static-only scenes vs. dynamic scenes, recursive ray tracing
vs. only ray casting, etc).

Though already quite long, this list is all but complete. Even worse,
none of these questions can be answered by one final, definite answer. For
example, realtime ray tracing can be realized just as well on PC clusters as on
shared-memory machines1. Finally, many of these design decisions influence
others. For example, some kind of index structures may be better suited for
certain hardware platforms than others, whereas it might be vice versa on
another architecture 2). As such, none of these issues may be addressed in
isolation, and have to be seen in the context of the whole system. Therefore,
we will discuss some of these design questions below before describing any of
the actual implementation details.

6.1 General Design Decisions

All the previously mentioned design issues are important issues to address,
and heavily influence the outcome of the project. However, it is even more
important to first discuss two questions that determine the overall “design
philosophy” that one is going to follow: First, whether one prefers a “brute
force” philosophy or a “smart” philosophy, and second, whether one uses a
“top-down” approach or rather a “bottom-up” approach.

Smartness vs. brute force: In the “smart” approach, one strives to derive
new, clever algorithms that achieve the same goal (i.e. producing a cer-
tain image) in a more clever way, e.g. by doing interpolation wherever
possible instead of tracing certain rays. In the brute-force approach,
one rather implements the same simple, well-known algorithm, but tries
to achieve that as efficient as possible by optimally combining the most
efficient algorithms, low-level optimizations, and available hardware re-
sources.

1Compare e.g [Parker99b] and [Wald01c].
2For example, grids are better suited for implementation on a GPU [Purcell02] than

kd-trees, whereas kd-trees lend better to implementation on processors with SIMD exten-
sions [Wald01a]

6.1 General Design Decisions 69

Top-down vs. bottom-up: This determines whether one wants to redesign
a completely new system from scratch (bottom-up), or whether one
wants to progressively optimize an existing system (top-down).

Once this general design philosophy has been determined, the questions
to many of the above design questions follow naturally.

6.1.1 Smartness vs. Brute Force

In the past, most approaches towards accelerating ray tracing have followed
the “smart” approach, and have tried to avoid doing certain work for the
same outcome (also see the overview in Section 3). With this approach
however there is the continuous danger to invest more work for avoiding a
certain operation than just performing that operation in the first place. For
example, evaluating several heuristics to decide whether a single ray has to
be traced or not may easily cost more than just shooting this ray, especially
if the ray shooting operation is implemented efficiently3.

In contrast to this, brute-force optimizations usually do not introduce
additional cost factors or performance tradeoffs. Furthermore, brute-force
approaches have proven very successful in other applications. In hardware
rasterization, for example, todays most efficient graphics chips are just ex-
tremely optimized brute-force implementations of triangle rasterization as
used ten years ago. Finally, a huge advantage of the brute-force approach
is that such optimized algorithms still perform exactly the same operations
as the original algorithms (just faster) and do not have to rely on special
assumptions (e.g. on the type and order of rays shot). In contrast to this,
“clever” approaches often rely on certain assumptions, fail if these assump-
tions and restrictions are not met, and thus are not applicable for the general
case.

With all the work that over the last two decades has been invested in op-
timizing ray tracing, a common impression is that a brute-force approach
might not carry far for ray tracing because of little potential being left
for further optimizations. Though this argument sounds convincing, it is
wrong nonetheless: While it is true that many people have worked on op-
timizing certain and isolated parts of a ray tracer (e.g. faster ray-triangle
intersection [Möller97, Möller, Badouel92, Held97, Woo90, Haines91b], and

3This does not imply that following “clever” approaches does not make sense at all:
While trying to avoid shooting single rays may not pay off, such approaches may still be
very successful if they help avoiding much more costly operations. The render cache for
example (see Section 3) can hardly accelerate a realtime ray tracer, but may still be highly
beneficial for a full-featured global illumination system)

70 Chapter 6: General Design Issues

better acceleration structure construction and traversal [Glassner84, Kay86,
Fujimoto86, Amanatides87, Arvo87, Goldsmith87, Arvo88, Jevans89, Samet89,
MacDonald89, Arvo90a, Haines91a, Sung91, Kirk91, Spackman91, Hsiung92,
Sung92, Cohen94, Cassen95, Whang95, Klimaszewski97, Smits98, Simiakakis95,
Havran01, Subramanian90a]), most of these achievements have been pro-
posed in isolation. For example, a system with a new, better traversal method
does not automatically use the best intersection method, the best construc-
tion method, or the best implementation. Furthermore, most of the previous
approaches to accelerating ray tracing have concentrated on algorithmic im-
provements (such as better acceleration data structures), while few effort has
been spent on optimizing towards modern CPUs4. On the other hand, those
approaches that have concentrated on efficient implementations have often
neglected algorithmic issues. Finally, many optimizations to ray tracing have
been derived quite some time ago, and have therefore been designed for archi-
tectures that are fundamentally different from a modern CPU with different
limitations and bottlenecks. This leaves plenty of room for performance gains
when building a complete ray tracing system.

With this in mind, the RTRT system was designed to follow a brute-force
approach, with the general design philosophy to not re-invent the wheel, but
rather to pick the best algorithms that have been developed over the recent
years, to combine them in an optimal way, and to put special emphasis on
an efficient implementation that is optimized towards modern CPUs.

Surprisingly enough, when starting the project it was not even clear what
level of performance could be expected to be achievable at all. While the
algorithmic complexity of ray shooting has been sufficiently investigated (and
is commonly agreed to be O(logN) on average [Szirmay-Kalos98, Havran01]),
is was totally unclear what kind of practical performance would be possible
to achieve with today’s hardware resources, i.e. how many rays per second
one would be able to shoot in a given scene an on a given CPU. As the
performance of a ray tracer is influenced by many factors, this question still
is not answered sufficiently. Even the fastest ray tracers today (including the
RTRT kernel) still leave plenty of room for optimizations.

6.1.2 Top-Down vs. Bottom-Up

Except for optimally combining the best available algorithms, a brute force
approach obviously requires very efficient implementation and extensive low-
level optimizations in order to exploit the available hardware as well as pos-

4While much effort has been spent on such specialized optimizations, few of such work
ever gets published, as such low-level optimizations are often not considered “scientific
research”.

6.1 General Design Decisions 71

sible. In order to do this, it is usually better to design a new system from
scratch than trying to optimize an existing system.

Optimizing an existing system has the obvious advantage that each im-
provement has an immediate benefit for already existing users and applica-
tions. Furthermore, existing systems allow for working with (and optimize
for) real-world applications and data. However, existing systems also tend
to be quite complex. As a result, many of the bottlenecks are not immedi-
ately obvious. Furthermore, many important design issues are fixed already,
and cannot be easily changed without major effort. Furthermore, optimizing
and profiling complex systems is complicated and error-prone, as each single
change might influence many different parts of the system.

In contrast to this, building from scratch allows for starting with a small
set of core routines, which can then be thoroughly optimized and profiled be-
fore adding new functionality. Adding new functionality incrementally also
has the benefit that the cost for each added feature can instantly be deter-
mined when adding it. This makes the cost of each extended feature much
more transparent, which in turn simplifies follow-up design decisions. For
example, just clearing the frame buffer before casting the first rays hardly
has a (percentile) influence on the rendering time of an existing offline ren-
derer, and would as such hardly be identified as being a limiting factor. In
a realtime ray tracing kernel however it would have a significant (relative)
performance impact, and can be avoided before many such small cost factors
have accumulate to a state where none of these individual small sources of
overhead can be identified any more.

Because of these reasons, we have chosen the bottom-up approach in the
sense that we have implemented everything from scratch. In this process,
the “golden design rule” was (and still is) to optimize for speed first – with
all compromises on portability, flexibility, supported features, etc – and to
look out for ways to extend and enhance the concept lateron. Though this
seems obvious, it is important to note that this approach – optimize first,
extend lateron – also implies that from the very beginning, everything should
always be kept as simple as possible5. When in doubt whether a certain
feature might lateron be beneficial or not, it is safer to not implement it in
the beginning, and only implement it once it is really needed. Once some
code is implemented and carefully optimized, it is also important that it
gets modified as little as possible when adding new features lateron. On
the other hand, code that has once been optimized has to be continuously
re-checked and re-optimized, due to newly available compilers and tools,

5This approach is also famous under the name “The KISS Principle”, where KISS is
an abbreviation of “keep it simple, stupid”.

72 Chapter 6: General Design Issues

slightly changed program structure or slightly changed parameters of newly
available hardware. Because of this, the core routines of RTRT (i.e. triangle
intersection and BSP traversal) are continuously re-optimized, and have been
completely re-implemented several times since their original implementation.
Because of these continuous improvements, the newest implementation of the
RTRT code (see Section 7) is – when measured on exactly the same CPU
with the same clock speed – roughly two to four times faster than the original
(already quite heavily optimized) implementation as presented in [Wald01a].

6.2 Efficiency and Optimization Issues

In order to achieve optimal performance, code has to be optimized towards
the underlying hardware. Modern CPUs can be extremely powerful, but
often achieve only a fraction of their performance if used incorrectly.

Due to various economic reasons, todays CPUs still follow the traditional
“single-threaded” approach. To achieve their level of performance, they
rely primarily on three techniques: Extremely high clock rates, very long
pipelines, and extensive caching. Roughly speaking, increasing the pipeline
length allows for further increasing clock speed, and bigger caches allow for
longer pipelines.

Though this approach has been economically very successful, it is nonethe-
less becoming increasingly problematic, as pipeline stalls (e.g. through de-
pendency chains, branch mis-predictions, or cache misses) get increasingly
costly. Modern processors have several hardware features such as branch
prediction, speculative execution, semi-automatic prefetching, out-of-order
execution, and other techniques [Hennessy96, Intel, AMDb, AMDb] in order
to avoid such pipeline stalls6. However, the success of these hardware ap-
proaches is fairly limited and depends to a large degree on the complexity of
the input program code. The same in fact is true for compiler technology:
Though modern compilers [Intel02a, GNU] perform highly sophisticated op-
timizations (e.g. to optimally reorder and schedule operations), their success
is quite limited, and depends on the input code.

6In fact, todays CPUs spend more die area on techniques like branch prediction or
speculative execution than they spend for their floating point units.

6.2 Efficiency and Optimization Issues 73

6.2.1 Reducing Code Complexity

Pipeline stalls are especially likely for code with many conditionals. Condi-
tionals tend to create dependency chains 7, which often make it impossible
for the CPU to predict what instructions will be executed in the near future.
Without being able to predict which instructions will have to be executed
in the near future, the CPU can not keep the pipeline filled with soon-to-
be-executed instructions, and has to stall. Though the negative effects of
conditionals can be lessened by hardware features such as branch prediction
and speculative execution, these features are effective only up to a certain
degree of complexity, and often fail for code sections containing many condi-
tionals, especially if these are nested or depend on each other.

Complex code also often contains many function calls. Though these help
in structuring complex code, they are extremely costly due to the need for
many costly stack operations. Even though “inlining” of functions may help,
the compiler may decide not to inline a function even if the programmer
expects this. Especially “virtual” functions should be avoided wherever pos-
sible. Virtual functions cannot be inlined8, always generate a pipeline stall,
and are quite costly overall9.

Therefore, we prefer simple code that contains few conditionals, and or-
ganize it such that it can execute in tight inner loops10. Such code is easier
to maintain and can be well optimized by the programmer as well as by the
compiler. These optimizations become more and more important as proces-
sor pipelines get longer and the gap between processor speed and memory
bandwidth and latency gets bigger.

7Some dependency chains can by avoided by “dependent moves” (which in C-code
correspond to the “question mark” operator “a?b:c”). A “dependent move” (v=c?r1:r2)
avoids having to perform a conditional, and is usually significantly faster than (if (c)
v=r1; else v=r2;). This optimization is often performed automatically by the compiler,
which however cannot always detect this case.

8Virtual functions can be inlined if the callee type is known to the caller already during
compile time, which is, however, usually not the case.

9Inserting a single virtual function call during ray shooting was measured to slow the
overall RTRT performance down by up to five percent!

10Of course, this does not imply that the entire RTRT/OpenRT system is written in
low-level, unstructured C-code. Such low-level optimizations are only used in the most
performance critical sections, which only form a small fraction of the overall system. Most
other parts are written in C++, and make extensive use of the concepts of structured and
object oriented programming [Gamma94].

74 Chapter 6: General Design Issues

6.2.2 Optimizing for Memory and Caches

Keeping the CPUs functional units busy also requires to continuously keep
it supplied with data to work on. Given the increasing gap between compute
performance and memory bandwidth (and latency) this gets increasingly
complicated.

Due to the traditionally high floating point demands of ray tracing – which
in the past was poorly supported by the CPUs – ray tracing even today is
often considered to be compute bound11. While this may have been true in the
past, todays CPUs offer very high compute performance, but suffer from an
increasingly bad ratio between compute performance to memory bandwidth.
As such, most ray tracers today are actually limited much more by memory
bandwidth (and its high latency) than by compute power: If the ray tracer
requires too much memory bandwidth, the CPU requests data faster than
the memory can deliver it, and has to stall.

In order to reduce accesses to external memory, modern CPUs have ex-
tremely large caches12. Even so, realistic scene sizes will never completely fit
into processor caches.

Even if memory bandwidth were not the limiting factor, its latency is a
major issues. For example, each access to memory – e.g. due to a cache miss
– stalls the pipeline until the data is available. Given the high clock-speed
vs. memory latency ratio, each single cache miss can therefore cost dozens
to hundreds of cycles13. Obviously, the longer the pipelines, the more costly
are pipeline stalls.

As a result, code and memory layout should be structured to reduce
bandwidth, and especially to use the caches as well as possible. Most im-
portantly this requires to reduce the “memory footprint” of the algorithm, a
carefully designed and cache-friendly data layout of data structures, avoiding
incoherent (random) memory accesses, alignment of data, and prefetching.

6.2.2.1 Prefetching

Data that is likely to be used in the future should be prefetched. Modern
CPUs have special operations for cache control, with which data can be
prefetched, and with which one can influence how data is being cached, e.g. in

11An algorithm is compute bound if its performance is mostly limited by the lack of
sufficient compute performance.

12Modern CPUs often spend more than half their die area on on-chip caches!
13This makes many “traditional” optimization techniques problematic. For example,

avoiding a costly operation by tabulating may lead to cache misses when reading the
tabulated values, which may be more costly than performing the operation itself in the
first place.

6.2 Efficiency and Optimization Issues 75

which level in the cache hierarchy to prefetch data, or whether to write data
into the cache or route it around it (i.e. directly to memory) 14.

Prefetching can be very effective at hiding cache miss latencies. However,
prefetching requires to know in advance which data will be needed for future
operations. To be most effective, this requires to predict data accesses at least
a hundred cycles in advance. This gets especially problematic for complex
data structures, which often require “pointer chasing” to traverse. Here once
again, simple code is preferable over complex code, as predicting data accesses
in simple code is much easier for both the compiler and the programmer.

6.2.2.2 Alignment and Data Organization

Efficient cache usage also requires data to be aligned in a cache-friendly way.
For example, data should be kept aligned with cache lines wherever possible.
Compound data types that are not aligned have a certain probability of
overlapping a cache-line boundary, thereby require fetching two cache lines
from memory where one might have been sufficient. Furthermore, such data
may also generate two cache misses while loading.

Furthermore, data that is likely to be used at the same time should be
stored next to each other. This increases the chance of cache hits, as after
each access to the first value it is guaranteed that the second value is already
in the cache. Similarly, having both values stored in the same cache line
allows for prefetching both with a single instruction. On the other hand,
data that will not be used at the same time should be stored in separate
places, to avoid spending half of a cache line for data that is not required at
that time.

For the same reason we also separate read-only data (e.g. preprocessed
triangle data as described below in Section 7.1.4 from read-write data such as
mailboxes [Amanatides87, Glassner89, Kirk91]. If a mailbox would be stored
with the triangle data (as it is usually implemented), an entire cache line
would be marked changed even though only a single integer has actually been
modified. This becomes a huge problem in a multi-threaded environment,
where by constantly changing mailboxes each processor keeps invalidating
cache lines in all other processors15.

14Not storing data in the cache when writing it to memory is useful when writing data
to memory that is likely not to be needed in the near future. If such data were written
to the cache (which is the default behavior), it may “overwrite” other cached data that
might be more likely to be needed in the near future (an effects that is known as “cache
pollution”). This is especially useful if large blocks of such data have to be written, as
these are likely to otherwise overwrite large parts of the cache.

15Note that this can be avoided by “hashed mailboxing”[Wald01a]: In hashed mailbox-
ing, each thread stores its mailbox information in a small hash table that easily fits into

76 Chapter 6: General Design Issues

6.2.2.3 Storage Reduction and Bandwidth Reduction

For many applications, it can also be useful to compress data, e.g. by storing
boolean values in chars or single bits instead of 32-bit integers, or using 16-
bit shorts vs. 32-bit ints16. Compressing data allows for fitting more values
into the cache, and at the same time reduces memory bandwidth for loading
them. However, this often has to be performed very carefully, as the overhead
for extracting the information from a compressed form may easily offset the
gain achieved by reduced bandwidth and improved caching. For example, an
older version of the RTRT core used to store the kd-tree splitting dimension
(see below) in the upper two bits of another value (see [Wald01a]), which
required a “shift” to extract them. Storing this value in the lower two bits
instead allowed for replacing the shift operation with a bitwise “and”, which
resulted in an overall traversal speedup of up to 5 percent17.

Data alignment and caching issues are extremely sensitive issues that are
hard to “plan” and “design” correctly. Most often, the best solution has to
be found by manual trial and error. Though this is often tiresome and time-
consuming work, these issues are extremely important in order to extract
the maximum performance out of a modern CPU. In fact, memory issues
are probably as important for the speed of the RTRT system as any other
issue. Furthermore, considering memory and caching effects gets even more
important for every new processor generation, as the gap between CPU speed
and memory bandwidth and latency will continue to increase.

6.2.3 Exploiting Processor-Specific SIMD Extensions

Because of their good price/performance ratio and ubiquitous availability,
we have chosen to optimize towards commodity PC processors based on
the ia32/x86 architecture, i.e. the Intel PentiumPro [Intel01] and AMD
Athlon [AMD03a] families.

Whereas floating point operations have traditionally been very expensive,
todays processors are extremely fast at floating point code, with float opera-
tions often as fast as integer operations18. However, floating point units are

the processor cache.
16Note that this depends very much on the application. If cache usage is not an issue,

accesses to ints on many architectures are faster than accesses to shorts or chars. (Side
note: Accessing and operating with unsigned ints is usually faster than accessing signed
values)

17This high performance impact can easily be explained by taking into mind that ’shift’s
have a much higher latency than ’and’s, and that this operation is performed in each
traversal step.

18Typically, these processors have several parallel pipelines, some for floating point op-

6.3 Efficient use of SIMD Extensions 77

often not fully utilized due to badly written code, and due to the awkward
programming model of the “standard” x87 FPU. The x87 FPU is operated
like a stack machine, and often requires several FPU stack operations before
performing an actual computation, leading to a bad FPU utilization.

In order to provide more floating point performance, newer processors pro-
vide SIMD19 extensions, in which multiple (usually four) floating point oper-
ations can be executed with a single instruction. Examples of such extensions
are Intel’s SSE [Intel02b], AMD’s 3DNow! [AMDa], and IBM/Motorola’s Al-
tiVec [AltiVec]. Whereas AMD originally introduced its own SIMD extension
(3DNow!), it now also supports Intel’s SSE instruction set. Generally, these
processors achieve their best performance only when using these extensions.
This is especially true for the newer members of these processor families:
Whereas the AMD Athlon and Pentium-III processors have still been rea-
sonably efficient at standard non-SSE floating point code, the Pentium-IV
definitely requires to use SSE in order to achieve its peak performance. As
such, we have chosen to derive algorithm that allow for the efficient exploita-
tion of these SIMD extensions (see Section 7.2.3). Because almost all pro-
cessors today supports Intel’s SSE instruction set, we have opted for SSE20.
Note that the described algorithms and data layout issues are not restricted
to Intel’s SSE, but apply similar to 3DNow! or others.

6.3 Efficient use of SIMD Extensions

As just described, efficient use of the SIMD capabilities is a key requirement
for unfolding the full performance of modern CPUs. Unfortunately using
these SIMD extensions is often quite complicated. As we will lateron use
these extensions quite heavily (especially in Chapters 7 and 13.3), we first
have to discuss some important issues that have to be kept in mind when
trying when (re-)designing algorithms to make use of these extensions.

erations, some for integer and logical operations. These can best be used by code that has
a good mix of floating point and integer/logical operations. As such, “optimizing” code
by replacing floating-point operations by integer operations can back-fire, as the floating
point pipeline runs idle, and the integer pipeline gets overloaded by the additional work
that has to be done.

19SIMD = Single Instruction, Multiple Data [Hennessy96]
20SSE today is supported on both the Intel Pentium-III and Pentium-IV/Xeon pro-

cessor families, as well as on AMD’s Athlon MP/XP, and even on the 64-bit AMD
Opteron/Athlon64. It seems likely that the SSE instruction set will also be supported
in future Intel/AMD processor generations

78 Chapter 6: General Design Issues

6.3.1 Instruction Parallelism vs. Data Parallelism

Perhaps the biggest issue with using SIMD extensions is that they can only
exploit parallelism in programs if there is any, and as such often require
to restructure the program to offer more parallelism. Parallelism can be
exploited in two different ways: Instruction-level parallelism, and data par-
allelism. Instruction-level parallelism can be exploited by reordering existing
sequential programs to combine independent operations for parallel execu-
tion. For example, a dot product of two four-dimensional vectors requires
four multiplications, which can be performed in parallel with one single 4-
float SIMD multiply. In contrast to this, data parallel approaches perform
exactly the same operation on four different values in parallel. In the ex-
ample of the dot product, a data parallel approach would perform four dot
products at the same time.

The SSE instruction set has been optimized for data parallel approaches.
For example, it cannot be efficiently used for the above example of acceler-
ating a single dot product: Though the four multiplies can be executed in
one single operation, adding the four resulting values together is a “horizon-
tal” operation that does not fit the SIMD philosophy and as such is quite
costly to implement with the SSE instruction set. If instead the code can be
restructured (and data realigned) such that four such dot products can be
performed in a data-parallel approach, these four dot products together can
be performed faster than a single dot product on the x87 FPU!

This also explains why data parallel approaches in general are preferably
to instruction parallel ones: As mentioned above, instruction parallelism
can only be exploited once there is any. Usually few algorithms (such as
some matrix or vector operations) will allow for performing four independent
operations in each cycle. If this is only the case every few instructions, the
utilization of the SIMD units will drop accordingly. In contrast to this, many
compute-intensive tasks often perform the same task (such as a dot product)
several times on different data, which then can be transformed to a data-
parallel form, in which a SIMD operation can be performed in almost every
cycle. However, even data parallelism can be exploited only if there is any:
If the algorithm only requires computing a single dot product (and not four
dot products at the same time), data parallelism can not be used. Most
often, this requires manual restructuring of the algorithm until such data
parallelism is available.

6.3 Efficient use of SIMD Extensions 79

6.3.2 SIMD-friendly Data Organization

Even if the algorithm itself offers enough parallelism to be exploited, efficient
use of SIMD extensions imposes several restrictions on data organization:
For example, SSE requires data to be aligned to 16 byte boundaries; access
to non-aligned data can be several times as expensive as access to aligned
data. Being able to best exploit the SIMD extensions thus often requires
to restructure the program: Best performance can usually be achieved for
“streaming”-like programs, i.e. programs that execute a simple sequence of
SIMD operations on a large stream of data (such as adding long vectors, or
multiplying large matrices). Furthermore, high SIMD performance requires
data to be already in the caches (see above), few conditionals, few data
dependency chains, and careful alignment of data.

ofs=36

ofs=24

ofs=12

ofs=0 ofs=0

ofs=16

ofs=32

V0.x V1.x V2.x V3.x

V0.y V1.y V2.y V3.y

V0.z V1.z V2.z V3.z

Structure of Arrays (SoA)

<−V0:

<−V1:

<−V2:

<−V3

V0.x V0.y V0.z

V1.x V1.y V1.z

V2.y V2.zV2.x

V3.x V3.y V3.z

Array of Structures (AoS)

Figure 6.1: SIMD data organization. Left: The usual, convenient “Array
of Structures (AoS)” organization for storing three four-float vectors. Right:
The “Structure of Arrays (SoA)” organization as required for efficient SIMD
computations. The latter typically requires manual reorganization of pro-
gram and data structures, and is often awkward to use (especially for object-
oriented programmers). However, it is a prerequisite for fast SIMD code.

Finally, using SIMD extensions requires to redesign all data structures:
Whereas it is usually most intuitive to organize data in a “array of struc-
tures” (AoS) form (such as storing four vectors as V0,V1,V2,V3), efficient
SIMD programming requires to reorganize such data into a more SIMD-
friendly “structure of arrays” (SoA) form (in the previous example, as V0.x,
V1.x, V2.x, V3.x, V0.y, V1.y. . . , see Figure 6.1). Though this SoA data
organization is a prerequisite for fast SIMD code, it is often awkward and
un-intuitive for the programmer, can not be generated automatically by the
compiler, and as such requires manual restructuring of all data structures.

These issues related to using SSE instructions bear several implications
for the data layout and algorithms used in the RTRT kernel. These will be
explained below.

80 Chapter 6: General Design Issues

6.3.3 SSE Code Generation

Given proper (manual) data organization and presence of enough data or
instruction parallelism, SSE code can be generated in three different ways:
Automatic code generation by the compiler, manual assembly programming,
and so-called “intrinsics” [Intel02a]. Modern compilers such as the GNU gcc
3.3.1 or Intel’s ICC 7.1 compiler [GNU, Intel02a] offer automatic “vectoriza-
tion” of existing C-code, which can be quite efficient for streaming-like code
operating on large arrays of numbers. However, initial experiments with hav-
ing the compiler automatically vectorize intersection or traversal code have
been quite disappointing so far, even if code and data structures have al-
ready been manually reorganized to a SIMD friendly form. On the other
hand, writing SIMD code by manual assembly coding requires significant ef-
fort. In order to avoid the tiresome manual coding of assembler code, we
use the “intrinsics” [Intel02a] offered by the Intel ICC and GNU gcc compil-
ers 21. Intrinsics allow for writing easily maintainable low-level SIMD code in
a C-style manner that can then be tightly integrated with standard C/C++
code [Intel02a, GNU]. Using intrinsics also allows the compiler to perform
automatic low-level optimizations such as loop unrolling, instruction schedul-
ing, constant propagation, common-subtree-elimination, register allocation,
etc. Given the extremely high complexity of modern processors – especially
when considering multiple inter-operating pipelines and instruction reorder-
ing – a good compiler can usually perform such low-level optimizations much
more efficiently (and often even better) than a human programmer.

6.4 Implications on the RTRT Core

In the previous sections, we have discussed some of the design issues that
have to be taken into mind when setting out to build a high-performance
system on modern commodity hardware. With these issues in mind, many
of the design decisions mentioned at the beginning of this chapter now follow
naturally. To summarize: As motivated above, overall design philosophy
is to follow a brute-force approach, in which we combine the best available
algorithms that are then combined and implemented as efficiently as possible.
As explained above, this is best done using a bottom-up approach, in which
we first implement and optimize the most performance-critical parts of the
system, and add needed functionality only once it is needed22. In order

21Intrinsics are only available in gcc since version 3.3. Since that version, they are also
compatible to ICC. As such, exactly the same code can be compiled with both compilers.

22For example, this implies that we first concentrate on static scenes and single CPUs
only, and care about parallelization and dynamic scenes only lateron.

6.4 Implications on the RTRT Core 81

to achieve the highest possible performance, we have to explicitly design
towards modern commodity CPUs. This in turn requires us to concentrate
on memory- and caching-effects, to use algorithms with as simple as possible
code, and to investigate means of efficiently using SIMD extensions, which
we have to best use in a data-parallel manner.

So far, we have intentionally kept the discussion on a more general level,
and have not yet explicitly applied them to ray tracing. In fact, all of these
just mentioned issues would apply equally well to other high-performance
applications on modern CPUs, and are not limited to ray tracing only.

As our eventual system nonetheless is building a realtime ray tracing
system, this section discuss the implications of these design issues on the
actual RTRT core.

6.4.1 BSPs, kd-Trees, BVHs, Octrees, or Grids

For traversing the scene, we use an axis-aligned BSP (binary space parti-
tioning) tree [Sung92, Subramanian90b, Havran01]: Its traversal algorithm
is shorter and much simpler compared to octrees, bounding volume hierar-
chies (BVH), and hierarchical grids23. While the traversal code for uniform
grids is comparably simple, uniform grids can not adapt as well to scene
complexity. Of course, we use axis-aligned BSP trees and not general BSPs
with arbitrarily oriented splitting planes, as these are cheaper to traverse,
and simpler to construct.

BSP tree traversal is most easily formulated recursively, and might there-
fore on first sight appear to contradict above mentioned goal of preferring
simple code and reducing function calls. However, BSP traversal can be
transformed to a compact iterative algorithm [Keller98, Havran01], with tight
inner loops and few conditional.

Finally, BSPs lend naturally to SIMD implementation (see below) and
thus allow for accelerating the traversal with SSE. It is unclear how SIMD
extensions could be efficiently used for traversing grids24.

23Quite commonly, axis-aligned BSP trees are also also called “kd-trees”, or simply
“BSPs” (e.g. [Subramanian90a]). Unfortunately both terms are not ideally suited: “BSP”
refers to the more general binary space partitioning tree with arbitrarily oriented splitting
planes. and “kd-tree” also refers to a special form of higher-dimensional binary trees
for efficiently storing points [Bentley75, Bentley79]. Such kd-trees are also used e.g. for
photon mapping [Jensen01], but are fundamentally different from axis-aligned BSP trees
as used in ray tracing. As such, the term “axis-aligned BSP tree” is most exact, and thus
preferable. Unfortunately, it is also quite awkward. In the remainder of this thesis, we
will equally use all three terms – BSP, axis-aligned BSP, and kd-tree – but will always
refer to the concept of axis-aligned BSP trees.

24Though it seems obvious to just perform one grid traversal step each for four inde-

82 Chapter 6: General Design Issues

6.4.2 Triangles vs. High-Level Primitives

We have also chosen to exclusively support triangles as geometric primitives.
As a result, the inner loop that performs intersection computations on lists
of objects does not have to branch to a different function for each type
of primitive (or even worse call a virtual function for each primitive to be
intersected). By limiting the code to triangles we lose little flexibility as
other surface types can be well approximated by triangle meshes 25. While
the number of primitives increases when tesselating more general primitives,
this is more than compensated by the better performance of the ray tracing
engine. Also note that similar observations hold for the shading process.

6.4.3 SIMD Ray Tracing

As described above, efficient use of the floating point units requires to use
SIMD extensions. As discussed above, this requires to either exploit instruc-
tion level parallelism, or to take a data-parallel approach (see Section 6.3).

Taking a closer look at the typical algorithms in ray tracing, there is little
potential for instruction level parallelism at all: The most compute-intensive
task during ray tracing (and thus the most likely to offer lots of instruction
parallelism for floating point operations) is triangle intersection. However,
most of the floating point operations in the various triangle intersection algo-
rithms are usually spent on dot products and vector products, which are not
well suited for SSE implementation as described above. Furthermore, trian-
gle intersection tests usually contain lots of conditionals, a complex control
flow, a non-streaming data access pattern, and data many data dependen-
cies. As a result of these reasons, ray-triangle intersection is badly suited
for an instruction parallel implementation, especially given the restrictions
of the SSE instruction set.

Unfortunately ray traversal offers even less potential for instruction-level
parallelism than triangle intersection, as traversing a BSP node requires but a
single subtraction and a single multiply, and otherwise only performs logical
operations26. Performing multiple traversal steps at the same time is not
possible either, as the input of each traversal step depends on the outcome of
the previous one. Since neither triangle intersection nor traversal offer lots
of instruction level parallelism, significant speedups by instruction parallel
approaches can not be expected.

pendent rays, this usually won’t work because the four rays will often require access to
different grid cells, which doesn’t easily map to implementation in SSE.

25Also see the discussion in Section 2.1.1.
26Similar arguments apply for other acceleration structures.

6.4 Implications on the RTRT Core 83

6.4.4 Data Parallel SIMD Ray Tracing

On the other hand, using ray tracing in a data-parallel fashion is not easy,
either. For ray triangle intersection, there are basically two different ap-
proaches, either intersecting one ray with several triangles, or intersecting
one triangle with several rays. Obviously, “several” in the context of SSE
usually means either “four” or multiples of four. Both methods can be easily
and efficiently implemented, and achieve near-perfect speedups (i.e. speedups
close to four).

However, apply them in practice requires to take additional measures. For
example, ray tracing typically traverses a single ray through a data structure
and intersects it sequentially with each of the triangles visited during traver-
sal. Thus, in order to take advantage of a fast data-parallel ray-triangle
intersection implementation, we need to modify the ray tracing algorithm
such that we always have four ray-triangle intersections available for compu-
tation each time we call the respective routine.

6.4.4.1 Alternative 1: Intersecting 1 Ray with 4 Triangles (1:4)

The most obvious of these two approaches is intersecting one ray with four
triangles (in the following called the “1:4” SIMD approach). The 1:4 ap-
proach is easy to implement, and does not require any actual changes to the
rest of the ray tracer except storing triangles that are likely to be intersected
together in batches of four.

However, this approach in practice is quite problematic, as it is only effi-
cient for rays that have to intersect many triangles at the same time. Unfor-
tunately this is usually not the case in ray tracing, as the whole idea behind
the use of acceleration structures is to reduce the number of triangles visited
in each traversal step to an absolute minimum. For example, well-built BSP
trees often have only one or two triangles in each voxel, and often intersect
less than four triangles on average (also see Table 7.5). If most voxels contain
less than four triangles the 1:4 approach leads to bad utilization of the SSE
units, and thus can not provide any significant speedup. Though it is the-
oretically possible to “gather” several intersections along different traversal
steps, this approach in practice is not feasible either: First, this approach
requires expensive data reorganization to combine triangles from different
voxels to an SSE-usable format (see 6.3.2); and second, always continuing
traversal until four intersections are available leads to the traversal of nodes
(and intersection of the triangles therein) that might not have been traversed
in the sequential algorithm (see Figure 6.2).

Apart from the question how to efficiently feed the 1:4 ray-triangle inter-

84 Chapter 6: General Design Issues

Figure 6.2: Left: Sequential traversal of a ray through a grid data structure,
intersecting one triangle. In that case, a 1:4 ray-triangle traversal would only
perform one out of four potential intersections, leading to low SSE utilization
and bad performance. Right: “Gathering” intersections (i.e. traversing until
four intersections are available before doing the intersections) leads to even
more overhead: In this simple (and common) example, it leads to both ad-
ditional traversal steps through the data structure, as well as to intersection
with triangles that would otherwise not have to be intersected at all.

A

B

E F

K L

C
A

B C

I

K L

1,2,3

D D

1,3,4 5 6,7,8 5,7,9

1,2,3,4

5 5,7,96,7,8

I

Figure 6.3: Being able to intersect four triangles at once with a fast 1:4
SIMD intersection routine allows for shallower BSP trees: If the cost for
intersecting four triangles is the same as for intersecting a single triangle,
the leaves “E” and “F” (left side) can be safely combined to one larger leaf
“B” with the same intersection cost (right side). Note however that this
argument does not allow for combining leaves “K” and “L”. Also note in
practive the impact of this technique is much less pronounced than in this
simple example, as the relative impact of removing some leaf nodes is much
less in a deeper BSP.

section code with enough suitable intersection operations, it is yet unclear
how the 1:4 approach could be generalized to the traversal of either BSP
trees, kd-trees, octrees, or grids: Successive traversal steps of one ray usually

6.4 Implications on the RTRT Core 85

depend on each other, and thus can not be performed in parallel. However,
as a ray tracer usually performs many more traversal steps than intersection
operations (see Table 7.5), accelerating the ray-triangle intersections alone
can not be expected to yield a significant speedup.

Note however that the 1:4 approach can still be beneficial when optimiz-
ing the BSP tree with the 1:4 intersection in mind (see Figure 6.3). A fast
1:4 intersection routine allows for larger leaves in the BSP tree, resulting in a
shallower and less complex BSP tree, which in turn leads to fewer traver-
sal operations and higher performance. Experiments with this approach
have shown some speedups over the pure C code single ray traversal. These
speedup however are usually rather small, and thus are not investigated any
closer in the remainder of this thesis.

6.4.4.2 Alternative 2: Tracing Packets of Rays (4:1)

Compared to the 1:4-approach, the alternative approach of intersecting four
rays with the same triangle is much more efficient. At first sight, the 4:1
approach seems infeasible due to the need to always have four rays available
for intersection. This is usually not the case in ray tracing, as rays are tra-
ditionally traced recursively and independently of each other. Furthermore,
different rays typically operate on different data, which conflicts with the
goal of handling them together on the same data item.

Fortunately, though randomly generated rays certainly operate on differ-
ent data, in practice we find surprisingly large coherence between rays: Most
of the rays are actually very similar to nearby rays, and perform similar op-
erations27. For example, neighboring primary rays most often traverse the
same regions of space, visit the same BSP nodes, and intersect the same tri-
angles. Though the nodes and triangles visited by two such rays may from
time to time vary, the majority of operations will be the same28. As such,
coherent rays can be easily and efficiently traversed and intersected together
in packets of four. This obviously requires algorithms that have been espe-
cially designed to traverse, intersect, and shade packets of rays in parallel,
which will be explained in the following chapter.

Efficiency: Obviously, the success of this approach depends to a large de-
gree on the amount of coherence between rays. Fortunately however co-
herence is not only high for primary rays, but is also largely present for

27At high resolutions, many primary rays actually intersect exactly the same triangles
as those in neighboring pixels.

28Even if rays diverge at the leaves of the BSP tree, they can still be traversed together
through the upper levels of the tree

86 Chapter 6: General Design Issues

secondary and especially for shadow rays: Coherent rays usually hit similar
regions in space, from which they form – when connected to the same light
source – packets of coherent shadow rays [Wald01a, Benthin03, Schmittler02]
(see e.g. Section 13.3). Though the coherence for shadow rays in prac-
tice is slightly less than for primary rays, coherence is still very high (see
e.g. [Schmittler02] for an investigation of packet traversal overhead for vary-
ing packet sizes). Even secondary rays resulting from reflection and refraction
often offer a significant amount of coherence. While it is relatively easy to
construct worst-case examples, the approach so far has shown to work quite
well in practice.

Interestingly, the approach benefits from the increasing trend towards
higher image resolutions29: At higher resolution, the same view is sampled
with a higher density, which translates to increased coherence of the primary
rays. If sampled densely, even reflection rays off a highly curved object show
significant coherence.

6.4.5 Shading

Once we have an efficient means of traversing and intersecting packets of
rays using SIMD extensions, we still have to shade the resulting hit points.
Obviously, a simple solution is to split the ray packet up into four individual
rays, and to feed them to their respective shaders one at a time. Though this
approach obviously works, it has two drawbacks: First, this is a quite costly
process, as it requires data reorganization and does not allow for a data-
parallel SIMD approach during shading. Second, after having split up a
packet of primary rays, each shader only operates on a single ray, and cannot
easily combine them with secondary rays cast by other shaders in order to
form coherent ray packets also for secondary and shadow rays. Without
having coherent ray packets for these secondary rays however we cannot use
the fast packet traversal code for these rays, either.

Instead of splitting the packets up, we can also follow the same approach
as during traversal, and just shade four rays in parallel. This is especially
promising for the generation of secondary ray packets: Such packets can
best be generated by processing all the four original rays in parallel, e.g. by
connecting them to the same light source. This simple and efficient way of
generating secondary ray packets is no longer possible once the rays have
been split up.

On the other hand, this data-parallel approach to shading is problematic,
too: A data-parallel SIMD approach only works efficiently if all four rays

29Obviously the same argument holds for pixel-supersampling

6.4 Implications on the RTRT Core 87

perform exactly the same computations (including their data accesses). For
shading, however, this is often not the case, as different rays can have hit
triangles with different shaders. Roughly speaking, shading only sets in at the
hitpoints, where the rays are furthest apart and most incoherent. As such,
shading is much less likely of performing the same operations and accessing
the same data for each ray in the packet, making it much less suited for a
data-parallel SIMD approach than traversal and intersection.

Note that this does not contradict our previous discussion on coherency
during traversal and intersection: Even rays that have traversed exactly the
same nodes, have visited exactly the same voxels, and have intersected ex-
actly the same triangles may easily end up having different intersections,
and thus different shaders (see Figure 6.4). As different shaders can perform
different operations, it is not possible to execute four different shaders in a
data-parallel approach.

LS

Figure 6.4: Coherence is worst during shading Left: Even rays that perform
exactly the same operations during traversal and intersection may easily end
up on different triangle with different shaders (though this drawing depicts a
regular grid for ease of illustration, exactly the same problem happens in BSP
trees). Even if the different triangles have the same shader, they still require
access to different data (e.g. vertex normals or texture coordinates). Note
that coherence during shading is even worse than for secondary ray (right):
For example, connecting the four hit points on different triangles to a point
light source (LS) can once again generate four coherent rays that traverse the
same voxels!

If we can guarantee that all rays are shaded by exactly the same shader30,
however, hitpoints on different triangles require the individual rays to operate
on different data. As this data is stored in different locations, it has to be

30Actually, it does not have to be exactly the shader: It is sufficient if the four shader
instances belong to the same shader class, and thus execute the same shader program
(with different parameters).

88 Chapter 6: General Design Issues

copied and rearranged to a SIMD-friendly manner (see above). This process
alone is usually quite costly.

Summary

In summary, the efficient shading of packets of coherent rays in a streaming
manner is still an unsolved problem and requires closer investigation. In first
experiments, a restricted data-parallel packet shading approach has shown
to work well for fixed lighting models [Benthin03], in which we can guarantee
that the scene contains only one kind of shader. For a less restricted setting
of having a mix of different, arbitrarily programmable shaders however it is
yet unclear how such packet shading would work. Especially the efficient
generation of coherent packets of secondary rays cast by different shaders is
an open question31.

As there is no single, final answer on how to best shade packets of rays, the
RTRT/OpenRT engine currently supports both of the previously mentioned
approaches: For those restricted cases in which the lighting model is fixed for
all rays, we use specialized packet shaders that work in a data-parallel man-
ner. Though a fixed lighting model indeed is a severe restriction, it still allows
for even as complex tasks as interactive global illumination (see Section 13.3)
or the fast visualization of highly complex models via ray casting.

For more sophisticated applications that require a mix of different shaders,
we split the rays up and pass them to arbitrarily programmable shaders that
are dynamically loaded from shared libraries. Though this obviously results
in a severe performance penalty (also see Table 7.6 in the following Chapter),
the flexibility of such shader plug-ins is essential for making a ray tracing
engine the general tool that enables all the applications discussed in later
sections, so this penalty is currently unavoidable.

31Obviously, it would be possible to reorder rays into coherent packets by following the
same approach as outlined in [Pharr97]. This approach however would most likely be too
costly for interactive use.

Chapter 7

The RTRT Core – Triangle
Intersection and BSP Traversal

“In theory, there is no difference between theory and
practice. But, in practice, there is.”

Jan L.A. van de Snepscheut

In the previous chapter, we have discussed the overall design issues of the
RTRT system. To summarize the most important points, we have chosen to
only support triangles, to exploit SIMD extensions in a data-parallel way, to
optimize for memory and caches, and to use BSP trees as an acceleration
structure. In this chapter, we are now going to discuss the actual algorithms
and implementation of these topics in more detail.

7.1 Fast Triangle Intersection in RTRT

Fast ray triangle intersection code has long been an active field of research in
computer graphics and has lead to a large variety of algorithms, e.g. Moeller-
Trumbore [Möller97, Möller], Glassner [Glassner89], Badouel [Badouel92],
Pluecker [Erickson97, Shoemake98], and many others. The RTRT core uses
a modified version of the projection method (see below), which has been
specially designed to run as fast as possible with single-ray C code, while
still being well suited for SSE code.

Essentially, the task of computing a ray-triangle intersection can be de-
scribed as follows: Given a ray R(t) = O + tD; t ∈ (0, tmax)

1 (going from its

1In practice, rays usually start at tmin = ε in order to avoid “self-intersection”, see
Section 2.1

90 Chapter 7: The RTRT Core – Intersection and Traversal

origin O into direction D), and a triangle with vertices A, B and C, deter-
mine whether the ray has a valid hit-point H = R(thit) with the triangle,
i.e. whether there exists a thit with tmin ≤ thit ≤ tmax and R(thit) is inside
the triangle.

In case of having found a valid hit point, many ray tracers require that
the ray-triangle intersection routine also returns the barycentric coordinates
(or local surface coordinates) of the hit-point for shading purposes. As these
coordinates are often computed anyway in the process of determining the
hit-point, we follow this pattern. Note, however, that this is not the case for
shadow rays, for which only the boolean yes/no decision is important, and
which can be slightly optimized by not storing these coordinates.

7.1.1 Barycentric Coordinate Tests

While there are many different methods for computing ray-triangle inter-
sections, many of them are based on computing the barycentric coordinates
of the hitpoint and using those for determining whether there is a valid in-
tersection or not2 (e.g. [Badouel92, Shirley03, Glassner89]). In fact, most
ray-triangle intersection algorithms (including the one proposed here) follow
this general pattern, and are often only variants and different implementa-
tions of the same idea.

In order to use barycentric coordinates for computing ray triangle inter-
sections, one fist computes the signed distance tplane along the ray to the plane
embedding the triangle. Given the geometric normal N = (B−A)× (C−A)

and a triangle vertex A, this can be computed as tplane = − (O−A).N
D.N

. The cal-
culated distance tplane is then tested for whether it lies in the interval in which
the ray is actually looking for intersections. If not, no valid intersection can
occur, and the triangle test returns “no intersection”. The triangle normal
N is often computed “on the fly”. This minimizes storage requirements, but
requires a costly vector product.

If this so-called distance test has been passed, one has to check whether
the ray actually pierces the triangle. To do this, the actual intersection point
with the plane is computed as H = R(tplane) = O+tplaneD, and is then tested
whether it actually lies inside the triangle. The barycentric coordinates of H
can then be computed in several ways, e.g. by solving the system of equations
H = αA + βB + γC, or geometrically by considering the relative signed (!)
areas of the triangles ABC, HBC, AHC and ABH.

Once the barycentric coordinates α, β and γ of H are known, one can

2The barycentric coordinates of H are the values α, β and γ for which αA+βB+γC =
H,α + β + γ = 1. If H is inside the triangle, both α,β and γ are positive.

7.1 Fast Triangle Intersection in RTRT 91

determine whether H is inside the triangle by and checking whether the
conditions

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1

are fulfilled. Note that it is sufficient to check whether β ≥ 0, γ ≥ 0 and
β + γ ≤ 1, which follows from the properties of barycentric coordinates
(α + β + γ = 1).

7.1.2 Projection Method

The projection method is an optimization of the barycentric coordinate test.
It exploits the fact that projecting both triangle ABC and hit-point H into
any other plane (except for the planes that are orthogonal to the plane ABC)
does not change the barycentric coordinates of H. The computations for
calculating the barycentric coordinates can then be optimized by projecting
both triangle and hit-point H into one of the 2D coordinate planes (XY-,
XZ- or YZ-plane), in which all further computations can be performed in
2D. For reasons of numerical stability, one should project into the plane in
which the triangle has maximum projected area. This so-called “projection
dimension” corresponds to the dimension in which the normal N has its
maximum absolute component.

After projection, all computations can be performed more efficiently in
2D. For example, projecting into the XY plane (i.e. projection dimension is
’Z’) yields

H ′ = αA′ + βB′ + γC ′,

where A′, B′, C ′ and H ′ are the projected points of A, B, C, and H, respec-
tively. Substituting α = 1− β − γ and rearranging the terms yields

β(B′ − A′) + γ(C ′ − A′) = H ′ − A′.

This can be solved (e.g. using the Horner scheme), yielding β = det |bh|
det |bc| , γ =

det |hc|
det |bc| , (where b = C ′−A′, c = B′−A′ and h = H ′−A′). In 2D, this can be
expressed quite efficiently as

β =
bxhy − byhx

bxcy − bycx

, γ =
hxcy − hycx

bxcy − bycx

. (7.1)

In pseudo-code, the projection method usually looks like the following:

// calc edges and normal
b = C-A; c = B-A; N = Cross(c,b);

92 Chapter 7: The RTRT Core – Intersection and Traversal

// distance test
t_plane = - Dot((O-A),N) / Dot(D,N);
if (t_plane < Epsilon || t_plane > t_max) return NO_HIT;

// determine projection dimensiondimensions
if (|N.x| > |N.y|)

if (|N.x| > |N.z|) k = 0; /* X */ else k=2; /* Z */
else

if (|N.y| > |N.z|) k = 1; /* Y */ else k=2; /* Z */
u = (k+1) mod 3; v = (k+2) mod 3;

// calc hitpoint
H[u] = O[u] + t_plane * D[u];
H[v] = O[v] + t_plane * D[v];

beta = (b[u] * H[v] - b[v] * H[u]) / (b[u] * c[v] - b[v] * c[u]);
if (beta < 0) return NO_HIT;

gamma = (c[v] * H[u] - c[u] * H[v]) / (b[u] * c[v] - b[v] * c[u]);
if (gamma < 0) return NO_HIT;

if (beta+gamma > 1) return NO_HIT;

return HIT(t_plane,beta,gamma);

7.1.3 Optimizing the Projection Method

Taking a closer look at the execution pattern of the above mentioned pro-
jection method, it becomes obvious that for different executions on the same
triangle many values will be recomputed every time: For example, the edges
and normal of a triangle will be recomputed for every intersection test with
this triangle, and also the result of determining the projection case will al-
ways remain the same. These - and other - computations are thus redundant,
and can be saved by precomputing and storing them. This saves the costly
computations for the normal, and enables to avoid the branches for deter-
mining the projection case. Once the normal is known, the two secondary
dimensions (u = (k+1)mod 3 and v = (k+2)mod 3) can then be determined
by a simple table lookup (intmodulo[5] = {0, 1, 2, 0, 1}), without having to
perform the two expensive modulo operations.

Note that we do not have to store the full normal: If k is the projection
dimension, N.k can never be zero. As such, we can divide the normal N

by N.k, yielding N ′ = N
N.k

. Then t = (A−O).N ′

D.N ′ =
A.N ′−Ou.N ′

u−Ov .N ′
v−Ok.N ′

k

Du.N ′
u+Dv .N ′

v−Dk.N ′
k

.

7.1 Fast Triangle Intersection in RTRT 93

Obviously the values d = A.N ′, N ′
u = Nu

Nk
and N ′

v = Nv

Nk
are constant for each

triangle and thus can be precomputed. By definition, N ′
k is equal to one, and

thus doesn’t have to be stored. Furthermore, knowing that N ′
k = 1 saves two

additional multiplications.

The same idea – simplifying the computations and precomputing as many
of the terms as possible – can also be applied to the edges: Rearranging the
terms for computing β and γ yields

β =
1

bxcy − bycx

(bxHy − bxAy − byHx + byAx)

=
bx

bxcy − bycx

Hy +
−by

bxcy − bycx

Hx +
byAx − bxAy

bxcy − bycx

= KβyHy + KβxHx + Kβd.

This equation now depends only on the projected coordinates Hx and Hy

of the hit-point H (which can be calculated entirely from N ′, O and D).
After precomputing and storing the constants Kβy, Kβx, and Kβ,d, β =
Kb,nuHx + Kb,nvHy + Kb,d

3 can be computed quite efficiently. Note that
no other values have to be stored for computing β. Obviously, the same
procedure works for the second barycentric coordinate, γ. The last one, α
then does not require any further storage space, as α = 1− β − γ.

With these simplifications and precomputations, only very few operations
have to be performed during runtime. In the worst case4, only 10 multiplies,
1 division, and 11 additions are needed for an intersection. If the ray fails
already at the distance test, only 4 muls, 5 adds, and 1 division are needed.
Neither geometric normal nor the edge vectors have to be stored or computed
during intersection.

7.1.4 Cache-optimized Data Layout

Obviously, preprocessing can save quite some amount of computations. How-
ever, as mentioned above this has to be done quite carefully: Due to the high
cost of a cache miss, using additional memory for storing precomputed val-
ues carries the chance of actually costing more than the operation itself. On

3It is interesting to note that the same three values can also be derived and ex-
plained geometrically. In that case, Kb,nu,Kb,nv and Kb,d correspond to the line equation
Lb(u, v) = Kb,nu.u + Kb,nv.v + Kb,d = 1 of side b = C ′ − A′ (hence the name of the
constants), properly scaled such that inserting the third vertex B′ into the line equation
yields Lb(B′

x, B′
y) = 0.

4Note that with a good BSP tree, this worst-case cost (a valid intersection) happens
quite frequently, as a good BSP tree already avoids most unsuccessful intersection opera-
tions, see Table 7.5.

94 Chapter 7: The RTRT Core – Intersection and Traversal

the other hand, careful data layout can even simplify the memory access
patterns, and can help in prefetching and in reducing cache misses. Using
the just mentioned simplifications, all data needed for a triangle intersection
can be expressed in only 10 values: 3 floats (d,N ′

u, N
′
v) for the scaled plane

equation, 3 floats each for the two 2D line equations in the u/v plane, and
one int (actually only 2 bits) for storing the projection case k.

Note that these 10 values comprise all the data required for the triangle
test. In fact, with these precomputed values it is not even necessary any
more to know the actual vertex positions of the triangle. Though these are
still stored somewhere for potential shading purposes (resulting in an actual
increase in total memory consumption), they do not have to be accessed at
all during traversal and intersection.

...

Px, Py, Pz Tx, Ty, Tz

accN−1

acc1
acc0

pos[Nvtx]triDesc[Ntri]accel[Ntri] nor[Nvtx]
shd.v2v1v9 Nx, Ny, Nz

texcoord[Nvtx]

Figure 7.1: The RTRT core organizes its geometry in the typical “Vertex Ar-
ray” organization (also called “Indexed Face Sets” in VRML97 terms [Carey97]):
Vertices are stored in arrays from where they are referenced by triangles. Each
triangle is described by pointers (or IDs in our case) to its three vertices, plus an
ID for specifying its shader (also see Figure 10.1 to see how this fits into the full
OpenRT system.). The different vertex attributes (e.g. position, normal, texture
coordinates etc) are stored in separate lists, thereby allowing to store only those
data that have actually be specified by the application. Additionally to this typical
data layout, the RTRT core keeps a separate acceleration record for each triangle
that stores all data required for an intersection in a preprocessed form. Thus, nei-
ther ID record nor vertex data is ever touched during traversal and intersection.
Whereas typical intersection algorithm require to fetch data from four different,
non-cache-aligned memory locations (thereby having to chase the pointers in the
ID record), RTRT fetches only this single acceleration data, which lends well to
caching and prefetching.

Since we know the access pattern of the intersection algorithm, we can
even store the 10 values in the order in which they are accessed by the CPU
to enable even better data access for the CPU. This leads to a very simple
data layout for our triangle acceleration structure:

7.1 Fast Triangle Intersection in RTRT 95

struct TriAccel
{

// first 16 byte half cache line
// plane:
float n_u; //!< == normal.u / normal.k
float n_v; //!< == normal.v / normal.k
float n_d; //!< constant of plane equation
int k; // projection dimension

// second 16 byte half cache line
// line equation for line ac
float b_nu;
float b_nv;
float b_d;
int pad; // pad to next cache line

// third 16 byte half cache line
// line equation for line ab
float c_nu;
float c_nv;
float c_d;
int pad; // pad to 48 bytes for cache alignment purposes

};

Though this data layout actually uses more memory than other intersec-
tion algorithms operating directly on the vertices (like e.g. Moeller-Trum-
bore [Möller97]), it is likely to use the cache better (see Figure 7.1): Operat-
ing directly on the vertices requires to first access a record that contains the
vertex IDs, which require to access at least one cache line. Then accessing
the vertices themselves again requires to touch three cache lines, except if the
vertices are incidentally stored next to each other. If the index record and/or
the vertices straddle cache line boundaries, another four cache lines might be
required. In contrast to these up to 8 cache lines, the above structure can be
guaranteed to use exactly two cache lines on 32 byte caches, and often only
one cache access for 64 byte or 128 byte caches5.

Furthermore, having all data for the intersection test in one contiguous
block also allows for efficient prefetching. Having reached a leaf, prefetching
the next triangle before intersecting the current one can guarantee that the
next triangle is already in the cache until needed. Finally, having all required

5Intel Pentium-III processors have 32 byte cache lines, whereas AMD Athlon-MPs have
64 bytes, and Intel Pentium IV Xeons have 128 bytes per cache line.

96 Chapter 7: The RTRT Core – Intersection and Traversal

data values stored sequentially one after another ideally lends to a streaming-
like SIMD implementation.

However, the additional memory overhead can be problematic for ex-
tremely complex scenes for which both main memory and address space
become quite a limiting factor. For these special cases, the RTRT ker-
nel also contains an efficient implementation of the Moeller-Trumbore al-
gorithm [Möller97] (in both a single-ray C-code as well as in an SSE imple-
mentation), which can be used for these cases.

7.1.5 C Code Implementation for Single-Ray/Triangle In-
tersection

Writing the code for the just derived intersection algorithm is straightfor-
ward, and can be expressed in only a few lines of code:

// lookup table for the modulo operation
ALIGN(ALIGN_CACHELINE) static const
unsigned int modulo[] = {0,1,2,0,1};

inline void Intersect(TriAccel &acc,Ray &ray, Hit &hit)
{
#define ku modulo[acc.k+1]
#define ku modulo[acc.k+2]

// don’t prefetch here, assume data has already been prefetched

// start high-latency division as early as possible
const float nd = 1./(ray.dir[acc.k]

+ acc.n_u * ray.dir[ku] + acc.n_v * ray.dir[kv]);
const float f = (acc.n_d - ray.org[acc.k]

- acc.n_u * ray.org[ku] - acc.n_v * ray.org[kv]) * nd;

// check for valid distance.
if (!(hit.dist > f && f > EPSILON)) return;

// compute hitpoint positions on uv plane
const float hu = (ray.org[ku] + f * ray.dir[ku]);
const float hv = (ray.org[kv] + f * ray.dir[kv]);

// check first barycentric coordinate
const float lambda = (hu * acc.b_nu + hv * acc.b_nv + acc.b_d);
if (lambda < 0.0f) return;

// check second barycentric coordinate

7.1 Fast Triangle Intersection in RTRT 97

const float mue = (hu * acc.c_nu + hv * acc.c_nv + acc.c_d);
if (mue < 0.0f) return;

// check third barycentric coordinate
if (lambda+mue > 1.0f) return;

// have a valid hitpoint here. store it.
hit.dist = f;
hit.tri = triNum;
hit.u = lambda;
hit.v = mue;

}

Note that the costly “modulo 3” operation has been replaced with a
precomputed lookup table. The most costly operation in this triangle test is
the division at the beginning, which in SSE code can be replaced by a faster
reciprocal operation with Newton-Raphson iteration (see e.g. [Intel, AMDb]).

Also note that the actual implementation uses a C code “macro” for the
intersection code, which (surprisingly) is even faster than an “inline” function
as shown above. Instead of the many memory indirections into the origin
and direction vectors it is also possible to do a switch-case statement based
on acc.k at the beginning, and then use hard-coded offset values. The speed
difference between these two implementations is small. Depending on the
actual CPU used (i.e. Athlon vs. Pentium-III vs. Pentium-IV), sometimes
one versions is faster, and sometimes the other.

7.1.5.1 Single-Ray Intersection Performance

The performance of this optimized implementation is given in Table 7.1, in
which the single-ray C Code version of this triangle test is compared to a
fairly optimized implementation of the standard Moeller-Trumbore triangle
test [Möller97]. As can be seen, our proposed triangle test in practice is
roughly twice as fast as the Moeller-Trumbore code.

7.1.6 SSE Implementation

By design, the chosen algorithm and data layout naturally lend to SSE im-
plementation. In fact, for our SSE triangle intersection we use exactly the
same code and data structures as described above in the previous Section.
The only major change is that instead of a single ray, we use a structure that
stores four rays together in a SIMD-friendly way (see Figure 7.2): Opposed

98 Chapter 7: The RTRT Core – Intersection and Traversal

CPU Cycles MT OP speedup
primary rays 144–172 69–74 2.1–2.3
shadow rays 127–144 68–73 1.9–2.0

Table 7.1: Performance for the RTRT optimized projection (OP) triangle test
algorithm as compared to the Moeller-Trumbore algorithm (MT) [Möller97],
measured in CPU cycles on a single 2.5 GHz Pentium-IV notebook. The
RTRT code is measured with the single ray C code implementation, not with
the fast SIMD code described in Section 7.1.6. Note that these measurements
have not been taken with synthetical ray distributions, but correspond to av-
erage case performance in typical scenes. The actual cost depends on the
probability with which a ray exits at a certain test (e.g. distance test, any of
the barycentric coordinate tests, or successful intersection) and as such varies
from one scene to another, and also differs for shadow and ’standard’ rays
(i.e. primary and secondary rays). For the RTRT OP triangle test, these
numbers correspond to more than 35 million ray-triangle intersections. Also
note that a 2.5GHz notebook CPU is not state of the art any more.

Ray 0
Array of Structures (AoS)

Ray 1 Ray 2 ...

... ...

... ... t2 t3

D0yD0xR0z

R0x R1x R2x R3x R0y R1y D0x D1x t0 t1

t[0..3]Dx[0..3]Ry[0..3]Rx[0..3]
Structure of Arrays (SoA)

R0x R0y D0z t0 R1x R1y R2x R2y

Figure 7.2: Array-of-structures (AoS) vs. structure-of-arrays (SoA) layout
for our ray packets. Each ray consists of origin (R) and direction (D) vectors,
as well as its maximum length (t). The same data layout has to be used for
the hit point information. While the AoS layout is more natural, efficient
SIMD code requires the reorganization to the SIMD-friendly SoA layout. In
order to achieve sufficient performance, this layout has to be used during all
computations, i.e. already during ray generation.

to the standard way of storing such four rays as an array of four ray struc-
tures (the “AoS” organization), accessing such values efficiently with SSE
requires to reorganize such data into a “SoA” (structure of arrays) organiza-
tion, i.e. first storing the four origin.x values, then the four origin.y values,
etc.

Using SSE intrinsics, implementing the above algorithm in SSE is almost

7.1 Fast Triangle Intersection in RTRT 99

straightforward. For example, the line

const float hu = (ray.org[ku] + f * ray.dir[ku]);

can easily be expressed as

const sse_t hu = _mm_add_ps(ray4.org[ku],

_mm_mul_ps(f,ray4.dir[ku])).

Though converting the whole algorithm in that way is quite simple, the actual
code is quite lengthy due to the low-level nature of the SSE operations, and
as such is omitted here.

7.1.6.1 Overhead

A potential source of overhead is that even though some rays may have
terminated early, all four rays have to be intersected with a triangle. For
coherent rays however this is unlikely. However, not all rays may have found
a valid hit, so the hit information may only be updated for rays that actually
found an intersection. To achieve this, information on which of the four rays
is still active is kept in a bit-field, which can be used to mask out invalid rays
in a conditional move instruction when storing the hit point information.

Though this is simple to implement, it results in a considerable overhead,
see Table 7.2: Whereas both shadow rays and ’standard’ rays undergo exactly
the same floating point computations until the hit/no hit information has
been determined, standard rays require several masking operations in order
to update the hit information only for those rays that have actually had a
valid intersection. Shadow rays have to perform significantly less of these
masking operations, as only a single flag has to be stored per ray, in contrast
to triangle and instance ID, distance, and barycentric coordinates for normal
rays.

7.1.6.2 Performance Results

The overall results of our fast ray-triangle intersection code can be seen in
Table 7.2: Whereas the C Code is already much faster than the Moeller-
Trumbore Test (see Table 7.1), the SSE code achieves an additional, signifi-
cant speedup: On a 2.5 GHz Pentium-IV CPU, the SSE code for intersecting
four rays with a single triangle requires 101–107 CPU cycles, depending on
where the code exits. Amortizing this cost over all four rays results in only
25–27 cycles per intersection. Compared to the C code implementation of
the RTRT OP algorithm, this results in a speedup of 2.7–2.8. Compared

100 Chapter 7: The RTRT Core – Intersection and Traversal

CPU Cycles C Code SSE 4:1 SSE 4:1 speedup rays per
single ray per packet per ray second

primary rays 69–74 101–107 25–27 2.70–2.76 92M–100M
shadow rays 68–73 80–93 20–23 3.17–3.4 108M–125M

Table 7.2: Cost (in CPU cycles) for our optimized ray-triangle test in a
single ray C code implementation and in its data parallel 4:1 SSE imple-
mentation. As in Table 7.1, these numbers correspond to average-case per-
formance in typical scenes. On a 2.5 GHz Pentium IV CPU, 20–27 cycles
correspond to 108–125 million ray-triangle intersections per second. Note
that the “speedup” is only calculated with respect to the single-ray C code
implementation. Comparison to a C code Moeller-Trumbore implementation
(see Table 7.1 would yield a speedup of more than 6.

to the C code Moeller-Trumbore implementation in Table 7.1, a speedup of
more than six can be observed.

As discussed above, shadow rays have significantly less overhead for stor-
ing the hit information, and as such are much faster: A shadow ray inter-
section costs only 80–93 cycles per packet, respectively 20–23 per ray. This
once again shows that SSE is extremely efficient for speeding up computa-
tions (the actual computations for shadow rays and primary rays are the
same), but quickly suffers from any non-computation overhead.

All these measurements have been performed on a 2.5GHz Pentium-IV
notebook CPU, on which these numbers correspond to 92–100 million ray tri-
angle intersections for standard rays, and even 108–125 million intersections
per second for shadow rays. The overall speedup compared to the single
ray C code implementation is around 2.7 for primary and secondary rays,
and 3.1–3.4 for shadow rays. This difference clearly shows the impact of the
above-discussed overhead for updating the hit information for non shadow
rays.

Note that this masking overhead for storing the results might be partially
hidden if more than four rays would be intersected in parallel. Generally,
operating on larger packet sizes would allow for a more streaming-like ap-
proach, in which the latencies of certain operations could be hidden much
better. Also note that the application of this data-parallel intersection algo-
rithm is not limited to the RTRT core, but could also be used to accelerate
other ray tracing-based rendering algorithms such as memory coherent ray
tracing [Pharr97].

7.2 Fast kd-Tree Traversal 101

7.2 Fast kd-Tree Traversal

Even before accelerating the triangle test, traversal of the acceleration struc-
ture was typically 2-3 times as costly as ray-triangle intersection, as a ray
tracer typically performs many more traversal steps than triangle intersec-
tions (see Table 7.5 for statistical traversal data in different scenes6). Once
the SSE triangle intersection code reduces the intersection cost by more than
a factor of three, traversal is the limiting factor in our ray tracing engine. Fur-
thermore, the SSE intersection procedure requires us to always have four rays
available anyway. Therefore, we need an algorithm for efficiently traversing
four rays through an acceleration structure in parallel.

As already discussed in Section 3.3.2 a wide variety of ray tracing acceler-
ation schemes have been developed over the last two decades. For example,
there are octrees, general BSP-trees, axis-aligned BSP-trees, uniform, non-
uniform and hierarchical grids, ray classification, bounding volume hierar-
chies, and several hybrids of several of these methods7. As already discussed
in Section 6.4.1, we have chosen to use axis-aligned BSP trees (kd-trees)
for the RTRT core. Their traversal code is quite simple, and can very well
be implemented in a highly optimized form. Furthermore, BSP trees usu-
ally perform at least comparable to other techniques [Havran00, Havran01],
and are well-known for their robustness and applicability for a wide range of
scenes. However, our main reason for using a BSP tree in the RTRT core
is the simplicity of the traversal code, which allows for efficiently traversing
packets of rays in parallel: Traversing a node is based on only two binary
decisions, one for each child, which can efficiently be done for several rays in
parallel using SSE. If any ray needs traversal of a child, all rays will traverse
it in parallel.

This is in contrast to algorithms like octrees or hierarchical grids, where
each of the rays might take a different decision of which voxel to traverse
next. Keeping track of these states is non-trivial and was judged to be too
complicated to be implemented efficiently. Bounding Volume Hierarchies
have a traversal algorithm that comes close in simplicity to BSP trees, and
could also be adapted to a SIMD-traversal method. However, BVHs do not
partition space, but rather organize the hierarchy. This leads to different
parts of the hierarchy overlapping themselves, does not allow for efficiently
traversing the voxels in front-to-back order8, and thus in practice makes

6Similar data hold for different acceleration structures, see [Havran01].
7See Section 3.3.2 for an overview and further references.
8It is possible to traverse BVHs in front-to-back order by keeping the yet-to-be-traversed

parts of the hierarchy organized in a priority queue [Haines91a]. This however makes each
traversal step considerably more costly than a BSP traversal step

102 Chapter 7: The RTRT Core – Intersection and Traversal

BVHs inefficient for complex scenes (for extensive statistical experiments,
see [Havran00, Havran01]). Furthermore, algorithms for building BVHs that
are well-suited for fast traversal are less well investigated than similar algo-
rithms for BSP trees.

7.2.1 Data Layout of a kd-Tree Node

As mentioned above, the ratio of computation to the amount of accessed
memory is very low for scene traversal. This requires us to carefully design
the data structure for efficient caching and prefetching.

For a typical BSP node, one has to store

• A flag specifying whether it is a leaf node or an inner node.

• For leaf nodes, an “item list”, i.e. a list of integer IDs that specify the
triangles in this leaf; consists of a pointer (or index) to the first item
in the list, and of the number of items in the list.

• For inner nodes, the addresses of the two children, the dimension of the
splitting axis (i.e. x, y, or z), and the location of the split plane.

All these values can be stored in a very compact, unified node layout of
only 8 bytes: Obviously, a node can either be a leaf node or an inner node, so
they can be stored in the same memory location (a union in C code) as long
as there is at least one bit reserved for determining the kind of the node.

For inner nodes, we need half the node for storing the float value that
specifies the split plane. Addressing the two children can be performed with
a single pointer if children of a node are always stored next to each other.
Furthermore, if all BSP nodes are stored in one contiguous array (with child
nodes always stored after their parent nodes), this single pointer can be
expressed as an offset relative to the current node. As this offset is positive,
we can use its sign bit for storing the flag that specifies the type of node.
Finally, having the nodes stored in an array guarantees that the offset is a
multiple of 8 (the node size), so its lower two bits can be safely used for
storing the splitting axis.

Leaf nodes can be expressed in quite the same way: The flag that specifies
the node type has to remain in place, and the pointer to the start of the item
list is stored just like the children pointer, as a relative offset stored in bits
2..30.

This leads to the following simple, compact structure:

7.2 Fast kd-Tree Traversal 103

struct BSPLeaf {

unsigned int flagDimAndOffset;

// bits 0..1 : splitting dimension

// bits 2..30 : offset bits

// bit 31 (sign) : flag whether node is a leaf

float splitCoordinate;

};

struct BSPInner {

unsigned int flagAndOffset;

// bits 0..30 : offset to first son

// bit 31 (sign) : flat whether node is a leaf

}

typedef union {

BSPLeaf leaf;

BSPInner inner;

} BSPNode;

Note that the exact order and arrangement of the bits has been very
carefully designed: Each value can be extracted by exactly one “bitwise and”
operation to mask out the other bits, and does not require any costly shift
operations for shifting bits to their correct positions.

#define ABSP_ISLEAF(n) (n->flag_k_ofs & (unsigned int)(1<<31))
#define ABSP_DIMENSION(n) (n->flag_k_ofs & 0x3)
#define ABSP_OFFSET(n) (n->flag_k_ofs & (0x7FFFFFFC))

As traversing a BSP node is by far the most common operation in a
ray tracer, it has to be implemented with extreme care. For example, an
older version of the RTRT kernel originally stored the dimension bits in the
upper bits of the flag word, from where they could be retrieved by a single
shift operation. While this seems comparably cheap, due to this single shift
operation (which is quite more costly than a “bitwise and”) the old version
was roughly 5 percent slower than the current version.

The presented data layout allows for squeezing the whole BSP node de-
scription into 8 bytes per node, or 4–16 nodes per cache line9. As we always
store both children of a node next to each other, both nodes are stored in the
same cache line10, and are thus always and automatically fetched together.

9Assuming 32 bytes per cache line on a PentiumPro Architecture (Pentium-III), 64
bytes on an AMD Athlon MP, and 128 bytes on an Intel Pentium-IV Xeon. Note that the
larger cache sizes on a Xeon CPU might benefit from an improved node packing inside a
cache line as discussed in [Havran97, Havran99, Havran01]

10In RTRT, all BSP node pairs are aligned to cache line boundaries: All nodes are stored
in one consecutive, cache-aligned array, and the cache line size is a multiple of the node
size.

104 Chapter 7: The RTRT Core – Intersection and Traversal

base+32 base+64base+0

x A B C E F ID K LG H

A

E

B C

F D I

LKHG

Figure 7.3: All BSP nodes (inner nodes as well as leaf nodes) in RTRT are
stored in one contiguous, cache-aligned array. Depending on cache line size,
either 4, 8, or 16 nodes form one cache line. Both children of the same node
are always stored next to each other, and thus land in the same cache line. As
cache line size is a multiple of node size, node pairs will never overlap a cache
line boundary. Both children can be addressed by the same pointer, which is
stored as an offset. As this offset is always positive and divisible by four,
we can squeeze both node type flag (leaf or inner node) and split dimension
(X,Y, or Z) in the sign bit and in the lower two bits, respectively. For leaves,
pointers to the item lists (not shown) are stored exactly like pointers to nodes.

Using the same pointer for both node types allows for reducing memory
latencies and pipeline stalls by prefetching, as the next data (either a node
or the list of triangles) can be prefetched before even processing the current
node. Note that though prefetching requires SSE cache control operations,
prefetching is also possible for the single-ray, non-SIMD traversal code. Simi-
larly, the benefits of using this optimized node layout, i.e. reduced bandwidth
and improved cache utilization, positively affect both the C-code as well as
the SSE implementation.

7.2.2 Fast Single-Ray kd-Tree Traversal

Before describing our algorithm for traversal of four rays in parallel, we first
take a look at the traversal of a single ray: In each traversal step, we maintain
the current ray segment [tnear, tfar], which is the parameter interval of the ray
that actually intersects the current voxel. This ray segment is first initialized
to [0,∞)11, then clipped to the bounding box of the scene, and is updated
incrementally during traversal12. For each traversed node, we calculate the
distance d to the splitting plane defined by that node, and compare that

11In practice, rather to [ε, tmax]
12Instead of clipping to the scene bounding box, it is also possible to not clip at all and

rather use six additional BSP planes that represent the bounding box sides. This is typi-
cally slower in a software implementation, but can be useful for hardware implementations
such as in the SaarCOR architecture

7.2 Fast kd-Tree Traversal 105

distance to the current ray segment.

+ + +

a.) cull "far" side b.) cull "near" side c.) traverse both sides

Figure 7.4: The three traversal cases in a BSP tree: A ray segment is com-
pletely in front of the splitting plane (a), completely behind it (b), or intersects
both sides (c).

If the ray segment lies completely on one side of the splitting plane
(i.e. d >= tfar or d <= tnear), we can “cull” the subtree on the other side and
immediately proceed to the corresponding child voxel13. If neither side can
be culled, one computes the ray parameter at which the plane intersects, and
traverses both sides in turn – the first side with ray segment [tnear, d], and
the second one with [d, tfar]. This actually leads to three different traversal
cases, as depicted in Figure 7.4.

Basing the traversal entirely on the current ray segments allows for per-
forming all computations in 1D: Only the actual ray parameters for start and
end of the segment, as well as distance to the split plane have to be known.
Neither the 3D coordinates of the actual entry, exit, or intersection points
are required, nor is it necessary to track the current voxel’s actual extent14.

13Note that using “<=” and “>=” instead of “<” and “>” requires careful programming
to correctly handle triangles that lie on the splitting plane. Also not that the exact
implementation is quite sensitive to issues such as having rays parallel to the split plane,
or rays actually lying inside the split plane. These special cases generate “Infinity”s and
“NaN”s during traversal, which need special attention to handle correctly.

14This implies that the actual size of the voxel is not known at any time during traversal.
Only the current ray segment – i.e. the overlap between the ray and the voxel – is known.

106 Chapter 7: The RTRT Core – Intersection and Traversal

Early ray termination: In the just described implementation, voxels are
traversed in front-to-back order, which allows for “early ray termination”: If
a valid hit point is found inside one voxel (i.e. thit <= tfar), traversal can be
immediately terminated, as all further potential primitive intersections can
only be be behind the already found hit point. This early ray termination
is actually responsible for the “occlusion culling” feature of ray tracing, and
can greatly enhance performance. Combined with a high-quality BSP tree
(see Section 7.3), early ray termination can in many scenes lead to an average
of less than two ray-triangle intersections per ray (see Table 7.5).

7.2.2.1 Recursive kd-Tree Traversal

In its most common recursive form, the whole traversal algorithm can be
expressed quite simply:

void Traverse()

{

(t_near,t_far) = (Epsilon, ray.t_max);

(t_near,t_far) = Clip(t_near,t_far);

if (t_near > t_far)

// ray misses bounding box of object

return;

RecTraverse(bspRoot, t_near, t_far);

}

float RecTraverse(node,t_near,t_far)

// returns distance to closest hit point

{

if (IsLeaf(node)) {

IntersectAllTrianglesInLeaf(node);

return ray.t_closest_hit;

// t_closest_hit initialized to t_max before traversal

}

d = (node.split - ray.org[node.dim] / ray.dir[node.dim];

if (d <= t_near) {

// case one, d <= t_near <= t_far -> cull front side

return RecTraverse(BackSideSon(node),t_near,t_far);

} else if (d >= t_far) {

// case two, t_near <= t_far <= d -> cull back side

return RecTraverse(FrontSideSon(node),t_near,t_far);

} else {

7.2 Fast kd-Tree Traversal 107

// case three: traverse both sides in turn

t_hit = RecTraverse(FrontSideSon(node),t_near,d);

if (t_hit <= d) return t_hit; // early ray termination

return RecTraverse(BackSideSon(node),d,t_far);

}

}

7.2.2.2 Iterative kd-Tree Traversal

Due to the reasons discussed in the previous chapter, a recursive solution is
not the best choice for high performance. However, the algorithm can be
easily reformulated in an iterative way (see e.g. [Keller98, Havran01]), which
in pseudo-code can be written up in only a few lines of code:

void Traverse() {
(t_near, t_far) = (Epsilon, ray.t_max);
(t_near, t_far)

= scene.boundingBox.ClipRaySegment(t_near, t_far);
node = rootNode;
if (t_near > t_far)

// ray misses bounding box of object
return;

while (1) {
while (!node.IsLeaf()) {

// traverse ’til next leaf
d = (node.split - ray.org[node.dim]) / ray.dir[node.dim];
if (d <= t_near) {

// case one, d <= t_near <= t_far -> cull front side
node = BackSideSon(node);

} else if (d >= t_far) {
// case two, t_near <= t_far <= d -> cull back side
node = FrontSideSon(node);

} else {
// case three: traverse both sides in turn
stack.push(BackSideSon(node),d,t_far);
(node, t_far) = (FrontSideSon(node), d);

}
}
// have a leaf now
IntersectAllTrianglesInLeaf(node);
if (t_far <= ray.t_closesthit)

return; // early ray termination
if (stack is empty)

108 Chapter 7: The RTRT Core – Intersection and Traversal

return; // noting else to traverse any more...
(node, t_near, t_far) = stack.pop();

}
}

Obviously, a realtime kernel requires a very high-performance implemen-
tation of this traversal code with many low-level optimizations. For example,
this includes precomputation of the “1/ray.dir[dim]” terms, an efficient stack
handling, efficient calculation of “FrontSideSon” and “NearSideSon”, careful
data layout, and especially efficient handling, organization and ordering of
the conditionals. Special emphasis has to be paid on handling all “special
cases” – like for example division by zero ray direction (leading to +/- Infin-
ity and NaN values), numerical issues (especially during the comparisons),
triangles lying in the splitting plane, “flat voxels” leading to zero-length ray
segments, etc – in an efficient though nevertheless correct manner. As the
discussion of all these implementation details is quite involved, the actual
low-level source code is omitted here.

7.2.3 SIMD Packet Traversal for kd-Trees

As discussed before, efficient use of the SSE instruction set during ray tracing
requires to trace packets of several rays in parallel. The algorithm for tracing
four different rays is essentially the same as traversing a single one: All four
rays are first initialized to (0, tmax) and clipped to the scene bounding box
using fast SSE code. In each traversal step then, SSE operations are used to
compute the four distances to the splitting plane and to compare these to the
four respective ray segments, all in parallel. If all rays require traversal of the
same child, traversal immediately proceeds with this child, without having
to change any of the ray segments. Otherwise, we traverse both children,
with the ray segments updated accordingly.

As discussed in the previous section, efficient ray tracing requires to tra-
verse the voxel visited by a ray in front-to-back order. However, when tracing
several rays at the same time in parallel, the correct traversal order for the
packet might be ambiguous, as different rays might demand a different traver-
sal order. In order to get a consistent traversal order for the whole packet, we
only allow such rays into the same packet for which the traversal order can
be guaranteed to match. This however is easy to guarantee for two common
cases, as discussed in more detail below: First, rays starting at the same
origin can be shown to never disagree on traversal order, whatever their di-
rection is. Second, rays with the same direction signs in all dimensions will
also have the same traversal order at any splitting plane.

7.2 Fast kd-Tree Traversal 109

7.2.3.1 Resolving Traversal Order Ambiguities: Same Origin vs. Same
Principle Direction

The first case already supports most of the rays in ray tracing, as all primary
rays from a pinhole camera, as well as all shadow rays from point light
sources fall under this category. However, the computations for determining
the traversal order depend on the relation between actual origins of the rays
and position of the splitting plane. As such, they have to be performed during
each traversal step in the inner loop of the packet traversal code, and as such
are quite costly. Furthermore, the operations for computing the respective
updated ray segments get relatively complex for this alternative.

The second alternative of only combining rays with matching direction
signs on first sight appears more costly: First, each packet of rays has to be
checked for matching signs, and rays with non-matching signs either have
to split up or require special handling. However, these special cases happen
only rarely for coherent rays, which typically have similar directions. Once it
is clear that the rays have matching direction signs, the computations in the
inner loop get very simple, and can be expressed quite efficiently. In fact, all
that is required in the inner loop of the traversal code is a simple XOR with
the respective direction sign bit of the first ray. Similar arguments hold for
the code computing the respective tnear/tfar values, which can be expressed
quite a bit more efficiently than for the case with common ray origin. As
such, the RTRT kernel only supports packets with matching directions signs.
Packets are automatically and quickly tested for complying to this rule, and
non-complying rays are traced with the fast single-ray traversal code.

7.2.3.2 Implementation Issues

After restricting the traversal code to packets with matching direction signs,
the respective computations get quite simple. The plane distances for all
four rays are computed with only one SSE “mult” and one SSE “add”, and
compared to the four respective tnear and tfar values with SSE compare in-
structions15. If either all ray segments lie in front of the plane, or are all
behind the splitting plane (corresponding to cases ’a’ and ’b’ in Figure 7.4),
the other side is culled, and no special operations have to be performed
for the near/far values, nor for the traversal stack. In the case that both
sides have to be traversed 16, the respective ray segments get updated to

15Note that SSE comparisons are actually not conditionals, but rather generate bit
masks that can be used for dependent moves

16Note that this case can also happen if neither ray wants to traverse both sides, as one
ray might want to only traverse the left side, while an other one demands traversal of only

110 Chapter 7: The RTRT Core – Intersection and Traversal

[tmin, min(d, tfar)] for the near side, respectively [max(d, tnear), tfar] for the
far side. The min and max operations are required as not all ray segments
may actually have overlapped the splitting plane. These ray segments may
obviously not get longer than they have been before.

Note that the “near” and “far” sides of a voxel (with respect to a given
ray R) are determined by the order in which a directed infinite line with the
same direction as R would cross this line17. As such, near and far side are
independent of both ray origin and actual BSP plane position, and can be
determined once at the start of traversal by the direction signs alone.

Deactivating invalid rays: Rays that get “forced” to traverse a subtree
that they would not have traversed had they been traversed alone should
obviously not influence any decisions in that subtree. This however can be
achieved quite efficiently: Using the SSE min/max for updating the respec-
tive ray segments operations as just described, it can be shown easily that
rays entering an “invalid” subtree automatically get their ray segments up-
dated to negative length (i.e. tnear > tfar), which can be used to determine
which of the rays are still “active” in a subtree. In SSE, this generates hardly
any overhead at all: A single SSE compare of tnear and tfar automatically
generates a bit-mask that can be used to mask out any of the latter decision
flags in a single operation.

This leads to the following pseudocode for SIMD packet-traversal:

void IterativePacketTraverse(ray[4],hit[4]) {
(t_near[i], t_far[i]) = (Epsilon, ray.t_max);
// i=0..3 in parallel
// t_near[i], t_far[i] are the near/far values for the i’th ray
(t_near[i], t_far[i])

= scene.boundingBox.ClipRaySegment(t_near[i], t_far[i]);
node = rootNode;
while (1) {

while (!node.IsLeaf()) {
// traverse ’til next leaf
d[i] = (node.split - ray[i].org[node.dim])

/ ray[i].dir[node.dim];
active[i] = (t_near[i] < t_far[i]);
if for all i=0..3 (d[i] <= t_near[i] || !active[i]) {

// case one, d <= t_near <= t_far for all active rays
// -> cull front side

the right side.
17The “near” side may not be confused with the “first” voxel visited by a ray, as the

origin may actually lie on the “far” side.

7.2 Fast kd-Tree Traversal 111

node = BackSideSon(node);
} else if for all i=0..3 (d[i] >= t_far[i] || !active[i]) {

// case two, t_near <= t_far <= d for all active rays
// -> cull back side
node = FrontSideSon(node);

} else {
// case three: traverse both sides in turn
// correctly update all near/far values
// push all near/far values for entire packet
stack.push(BackSideSon(node),

max(d[i],t_near[i]),t_far[i]);
(node, t_far[i])

= (FrontSideSon(node), min(d[i],t_near[i]));
}
}
// have a leaf now
IntersectAllTrianglesInLeaf(node);
if for all i=0..3 (t_far[i] <= ray[i].t_closesthit)

return; // early ray termination
if (stack is empty)

return; // noting else to traverse any more...
// restore all near/far values for entire packet
(node, t_near[i], t_far[i]) = stack.pop();

}
}

Note that all “x[i]” statements are always executed for all four rays in
parallel using a SIMD instruction. While this algorithm only operates on
packets of 4 rays, the extension to larger packet sizes is straightforward.

Note that the respective computations for properly computing the near/far
values (including marking invalid ray segments) get quite a bit more involved
for the alternative case in which the origin coincides but the directions differ.

The actual SSE implementation of this algorithm can be performed quite
efficiently. Obviously, the same iterative algorithm as in the single ray code
can be used, and many of the single-ray optimizations (such as changing the
divisions to multiplies with the precomputed inverse) can be performed as
well. All mathematical computations in the inner loop consist of only one SSE
multiply and one SSE add. As SSE does not easily work together with non-
SSE conditionals, many of the conditionals can be expressed more efficiently
by SSE “conditional moves” (realized via SSE bit operations). Furthermore,
all of the min/max operations for traversal case 3 can be expressed with a
single SEE instruction each.

112 Chapter 7: The RTRT Core – Intersection and Traversal

2× 2 4× 4 8× 8 2562 10242

ERW6 1.4% 4.4% 11.8% 5.8% 1.4%
Office 2.6% 8.2% 21.6% 10.4% 2.6%

Conference. 3.2% 10.6% 28.2% 12.2% 3.2%

Table 7.3: Overhead (measured in number of additional node traversals) of
tracing entire packets of rays at an image resolution of 10242 in the first three
columns: As expected, overhead increases with scene complexity (800, 34k,
and 280k triangles, respectively) and packet size, but is tolerable for small
packet sizes. The two columns on the right show the overhead for 2 × 2
packets at different screen resolutions.

7.2.4 Traversal Overhead

Obviously, traversing packets of rays through the acceleration structure gen-
erates some overhead: Even if only a single ray requires traversal of a subtree
or intersection with a triangle, the operation is always performed on all four
rays. Our experiments have shown that this overhead is relatively small as
long as the rays are coherent. Table 7.3 shows the overhead in additional
BSP node traversals for different packet sizes.

As can be seen from this experiment, overhead is in the order of a few
percent for 2×2 packets of rays, but goes up for larger packets. On the other
hand, increasing screen resolution also increases coherence between primary
rays.

Most important is the fact that the effective memory bandwidth has been
reduced essentially by a factor of four through the new SIMD traversal and
intersection algorithms as triangles and BSP nodes need not be loaded sep-
arately for each ray. This effect is particularly important for ray traversal as
the computation to bandwidth ratio in relatively low.

Of course one could operate on even larger packets of rays to enhance
the effect. However, our results show that we are running almost completely
within the processor caches even with only four rays. We have therefore
chosen not to use more rays per ray packet, as it would additionally increase
the overhead due to redundant traversal and intersection computations, and
would make the basic algorithm more complicated again18. For the SaarCOR
architecture however (see Section 5.3), the same packet traversal principle is
used with a significantly larger number of rays per packet.

18Larger packets especially suffer from the limited number of registers in the ia32 ar-
chitectures. Whereas most values for the single ray code can be kept in registers, larger
packets require frequent load/store operations to save and restore certain values into the
registers

7.3 High-Quality BSP Construction 113

Figure 7.5: Naive kd-tree vs. high-quality kd-tree in a simple scene consisting
of a room with one chair and one light source. Center: The scene with a
BSP tree as it would result from a typical naive BSP construction code that
always splits the biggest dimension in the middle, until a maximum depth or a
minimum number of triangles is reached. Right: The same scene with a high-
quality BSP as it results if the planes are placed based a good cost prediction
function. Obviously, the BSP with the cost function would be significantly
faster to traverse than the BSP with the naive plane placement. The effect
of a good BSP tree can be even more pronounced in practical, more complex
scenes.

7.3 High-Quality BSP Construction

Except for efficient traversal and intersection code as just described in Sec-
tions 7.1 and 7.2, the performance of a ray tracer using a kd-tree to a large
degree depends on the algorithms with which the BSP tree has been built.
Therefore, it is important to briefly discuss how good BSP trees can be built
(for a more in-depth discussion of this topic, see e.g. [Havran01]).

Once the kd-tree has been built – i.e. the location and orientation of the
BSP planes, and the decision when to stop subdivision have been fixed –
the number of traversal steps and triangle intersections for a given ray and
traversal algorithm is predetermined. As such, building a BSP tree that
better adapts to the scene complexity directly influences these two criti-
cal performance parameters. This can have a significant impact on overall
performance: For example, since its original publication in [Wald01a], the
RTRT core has been enhanced with a better BSP construction code which
has roughly doubled its performance – on top of the already very high per-
formance as originally published. This speedup of two is entirely due to the
improved BSP tree, and did not require any other changes to the core19.

19Note that similar speedups apply for the SaarCOR architecture as described in Sec-

114 Chapter 7: The RTRT Core – Intersection and Traversal

When building BSP trees, the most common approach is to always split
each voxel in the middle. In the most naive approach, the splitting dimension
is chosen in a round-robin fashion, and subdivision proceeds until either a
maximum depth has been reached, or voxel contains less than a specified
number of triangles20. However, it is common knowledge that the BSP tree
for non-cube-like scenes can be improved by always splitting the box in the
dimension where it has maximum extent21. This can be explained by the fact
that this approach produces the most cube-like voxels22. However, it is also
long known that putting the plane into the middle might not be a perfect
position, either [Havran01].

Many people assume that placing the split plane towards the object me-
dian (i.e. placing it such that both halves contain an equal number of tri-
angles) would be a better choice. Though this appeals to intuition, it is
actually a very bad choice. Splitting at the object median aims at building
a balanced tree with equal depth of all leaves. Though this is optimal for
binary search trees with equal access probabilities to each leaf node, it is
not optimal for ray tracing with a kd-tree: First, the probability of access-
ing different voxels is certainly not equally distributed, as larger voxels are
more likely to be hit than small ones. Furthermore, traversing a kd-tree is
actually not the same as a search in a binary search tree (in which traversal
always proceeds from the root to the leaf in one straight line), but rather a
range searching process in which several leaves have to be accessed, and in
which traversal frequently goes up and down in the tree. As such, BSP trees
should not be optimized towards having an equal number of traversal steps
towards each leaf (i.e. balancing it), but should rather minimize the number
of traversal steps for traversing a ray from one location to another. For this
kind of traversal, BSP trees behave best if they have large voxels of empty
space as close to the root node as possible, as large “empty space” allows for
traversing a ray over a large distance at small cost. Splitting at the object
median results in empty space being pushed far down the tree into many
small voxels, and thus leads to many traversal steps and bad performance.

tion 5.3: As the SaarCOR architecture uses exactly the same data structures as the RTRT
kernel (and in fact uses RTRT to generate the binary scene dumps it runs on), any speedups
due to better BSPs translate similarly to better SaarCOR performance!

20In practice, 20–25 for maximum depth, and 2–3 for the “triangles per leaf” threshold
are usually close to optimal values.

21Interestingly, though this is “common knowledge”, it is actually a misconception ex-
cept for extremely “non-cubic” voxels, as can be seen in Table 7.4 (columns ’RR’ vs. ’ME’):
For most scenes, splitting in the middle is actually slightly faster.

22For cube-like voxels, the ratio of voxel surface to voxel volume reaches its minimum.
As the voxel surface influences the probability of a voxel to be hit by a ray[MacDonald89],
a voxel of a given volume has the least chance of being traversed.

7.3 High-Quality BSP Construction 115

Scene #triangles absolute performance speedup
RR ME PS SAH PS ME/RR

ERW6 804 4.33 4.16 4.53 8.18 80 % 89 %
ERW10 83,600 1.30 2.74 3.03 5.51 81 % 101 %
Office 34,000 2.50 2.32 2.85 4.31 51 % 72 %
Theater 112,306 1.30 1.12 1.47 2.43 65 % 87 %
Conference (sta) 282,801 2.18 1.89 2.47 4.17 69 % 91 %
SodaHall (in) 2,247,879 2.50 2.13 2.87 3.46 20 % 38 %
SodaHall (out) 2,247,879 2.62 2.78 3.63 4.08 12 % 47 %
Cruiser 3,637,101 1.67 1.56 2.03 3.01 48 % 80 %
PowerPlant (in) 12,748,510 0.51 0.50 0.81 1.26 56 % 147 %
PowerPlant (out) 12,748,510 0.72 0.78 0.97 1.44 48 % 84 %

Table 7.4: Relative performance of rendering with BSPs built by different con-
struction algorithms: Kaplan-BSP with round-robin subdivision (RR), Split-
ting the voxel in the dimension of maximum extent (ME), “PlaneShifter”,
i.e. ME with shifting the plane to maximize empty voxels (PS), and a sur-
face area heuristic (SAH). Numbers correspond to million primary rays per
second with SSE code on a 2.2GHz Pentium-IV Xeon. Right two columns
show the relative SAH speedup as compared to PS, ME and RR. As expected
the SAH performs best. Except for Soda Hall, SAH usually performs 50–80
percent faster than the best other method. Note that the effect in practice is
even more pronounced: Whereas RR, ME and PS require extensive parameter
tuning to achieve the result given in this table, the SAH performs reasonably
well already with its default parameters.
The respective scenes can be seen in Figure 7.7, some statistical data on the
generated BSPs is given in Table 7.5.

Some other intuitive improvements to the split plane position lead to
more successful heuristics. For example, if one of the half-voxels produced
by a split is empty, the argument of empty space being beneficial suggests
that the split plane should be “shifted” as far into the non-empty half as
possible. This reduces the probability of the ray having to traverse the non-
empty leaf, significantly improves the BSP quality, and is easy to implement.
This heuristic can also be furtherly refined to yield even more improvements.
Though the results of such intuitive approaches are quite limited – in the
range of 30–50 percent over the naive construction method (see Table 7.4) –
they are relatively easy to implement, and thus should always be preferred
over the naive approach. However, these “simple” heuristics by far cannot
match the BSP quality that can be generated with a well-designed cost func-
tion (see below).

116 Chapter 7: The RTRT Core – Intersection and Traversal

Scene BSP num. number of Triangle-Isecs
(view) generation trav. traversed leaves mailboxing

strategy steps (total) (empty) (full) yes no
ERW6 Kaplan 32.22 8.05 1.60 6.46 15.51 6.35

PS 33.45 7.76 4.31 3.45 9.78 5.83
SAH 20.97 4.32 3.25 1.07 1.46 1.45

ERW10 Kaplan 51.14 9.88 1.66 8.22 17.31 8.39
PS 54.15 9.70 6.65 3.05 7.50 6.41
SAH 32.35 5.35 4.27 1.07 2.65 2.65

Office Kaplan 58.80 12.76 7.47 5.29 11.63 6.03
PS 60.04 12.10 10.64 1.46 3.39 2.73
SAH 35.09 6.53 5.37 1.15 3.46 3.36

Theater Kaplan 98.22 18.21 15.03 3.19 12.52 7.96
PS 88.48 15.19 13.44 1.74 5.21 4.07
SAH 64.86 10.40 9.13 1.28 3.79 3.68

Conference Kaplan 68.10 14.25 9.48 4.78 9.91 5.63
PS 68.91 13.61 12.31 1.29 2.82 2.38
SAH 38.32 6.87 5.63 1.24 2.53 2.30

Soda Hall Kaplan 61.96 8.70 5.45 3.25 9.58 6.20
(inside) PS 60.06 8.24 6.81 1.43 3.73 2.98

SAH 50.12 5.34 4.22 1.12 2.64 2.62
Soda Hall Kaplan 99.92 17.10 14.29 2.81 8.04 5.52
(outside) PS 73.16 11.56 10.38 1.17 2.89 2.67

SAH 62.70 9.136 8.09 1.04 1.78 1.78
Cruiser Kaplan 74.95 11.05 6.77 4.28 14.84 11.15

PS 78.40 11.2 9.52 1.68 5.31 4.08
SAH 52.34 7.019 5.74 1.28 2.73 2.57

PowerPlant Kaplan 108.7 15.62 11.30 4.33 105.22 81.73
(inside) PS 90.65 12.52 10.73 1.79 41.25 35.12

SAH 72.79 9.18 7.93 1.25 5.82 5.69
PowerPlant Kaplan 189.1 32.45 28.52 3.93 40.06 28.26
(outside 2) PS 132.7 22.02 19.82 2.20 15.75 12.13
(“overview”) SAH 109.7 19.61 17.99 1.62 10.12 9.79

Table 7.5: Impact of the different BSP generation strategies on traversal pa-
rameters: This table shows (for different scenes and views) the average number of
BSP traversal steps per ray, average number of leaves encountered during traver-
sal (empty vs. non-empty leaves), and number of ray-triangle intersections with
and without mailboxing, respectively24. Generation strategies measured include
“Kaplan”, “PlaneShifting”, and Surface Area Heuristic see Table 7.4). For both
Kaplan and PS, several parameter sets have been tested, the number given here
corresponds to the parameter set that achieved best performance. Note that the ex-
ceptionally high number of triangles visited for the Kaplan BSP in the PowerPlant
model results from the high memory consumption of the Kaplan BSP, which did
not allow for “deeper” BSP trees in a 32-bit address space.
This table clearly shows the improvements due to a better BSP tree, especially for
the number of non-empty leaves, and the number of triangles visited by each ray.
For images and performance of these scenes, also see Table 7.6 and Figure 7.7.

7.3 High-Quality BSP Construction 117

7.3.1 Surface Area Heuristic (SAH)

A more successful – though unfortunately also quite more complicated – ap-
proach is to optimize the positioning of the splitting plane via cost prediction
functions in the spirit of Goldman and Salmon [Goldsmith87], MacDonald
and Booth [MacDonald89, MacDonald90], and Subramanian [Subramanian90a].
Such a cost prediction function uses certain assumptions for estimating how
costly a split would be. This estimate can then be used to place the plane
at the position of minimal cost. Furthermore, the cost function provides a
much more effective termination criteria for the subdivision than the above-
mentioned “maximum depth and triangle threshold”: Using a cost-estimate
function, subdivision is simply terminated as soon as the estimated traversal
cost for a leaf node is less than the cost for the split with minimum estimated
cost.

The most famous of these cost prediction functions is the “surface area
heuristic” (SAH) as introduced by MacDonald and Booth [MacDonald89,
MacDonald90]: The surface area heuristic assumes that rays are equally
distributed in space, and are not blocked by objects. Under these (somewhat
unrealistic) assumptions, it is possible to calculate the probability with which
a ray hitting a voxel also hits any of its sub-voxels. More specifically, having
a voxel V that is partitioned into two voxels VL and VR, the probability of a
ray traversing these two sub-voxels can be calculated as

P (VL|V) =
SA(VL)

SA(V)
and P (VR|V) =

SA(VR)

SA(V)

where SA(V) = 2(VwVd + VwVh + VdVh) is the surface area of voxel V (with
Vw,Vh, and Vd being width, depth and height of the voxel, respectively).

Once these respective probabilities are know, one can estimate the cost of
a split: Assuming that a traversal step and a ray triangle intersection have
an average cost of Ctrav and Cisec respectively, the average cost of splitting
voxel V into VL and VR can be estimated as

Costsplit(VL, NL, VR, NR) = Ctrav + Cisec(P (VL|V)NL + P (VR|V)NR)

where NL and NR are the number of triangles in VL and VR, respectively.

7.3.1.1 Finding the best split positions

This function is continuous except for the split plane positions at which
the numbers NL and NR change (also see [Havran01]). These are exactly
the positions where either a triangle side ends (i.e. at a vertex), or where
a triangle side pierces the side of a voxel [Havran01, Hurley02]). These

118 Chapter 7: The RTRT Core – Intersection and Traversal

locations form the “potential split positions”, from which the position with
the minimum cost is chosen. Unfortunately, checking all potential splits
can be quite expensive, and requires a carefully designed algorithm to avoid
quadratic complexity during each splitting step. Furthermore, finding all
potential splits can be quite costly and numerically unstable, especially for
those potential splits that are computed by intersecting a triangle side with
the voxel surface.

Instead of performing these side-voxel intersections it is also possible to
only consider each triangle’s bounding box sides as potential split planes.
This is much easier to implement, and still performs better than not using
the SAH at all. However, “perfect” split positions usually achieve superior
performance than only considering the bounding box sides. As such, the
RTRT core uses perfect split positions, and uses a carefully designed imple-
mentation to avoid all potential numerical inaccuracies without sacrificing
performance.

7.3.1.2 Automatic termination criterion

Using the above assumptions, one can estimate the minimum cost of travers-
ing the split object. Similarly, one can estimate the cost of not splitting a
voxel at all, as Costleaf (V) = NV × Cisec. Simply comparing these two val-
ues provides a very simple and efficient termination criterion. Of course, it
is still possible to combine the surface area heuristic with other heuristics.
For example, it may make sense to still specify a maximum tree depth25,
or to add heuristics for encouraging splits that produce empty space (see
e.g. [Havran01]).

7.3.2 Post-Process Memory Optimizations

The BSP construction process in the RTRT core actually is a two-stage pro-
cess. While the optimized data layout described in the previous section is
quite easy to use during traversal, it would be quite awkward to use while
building the BSP. As such, we first build the BSP tree with a more easy-to-use
node layout that uses twice as much memory and lots of pointers. Once the
build-tree process is finished, RTRT performs several optimizations on the
BSP tree (see Figure 7.6): First, for some build-tree algorithms RTRT first
iterates over the whole tree a second time, thereby undoing any splits that
have not produced useful results (e.g. a node with two leaves containing the

25Compared to Kaplan-BSPs, a maximum tree depth with the surface area heuristic is
more likely to be in the range of 50 or more

7.3 High-Quality BSP Construction 119

same item lists)26. Then, this memory-unfriendly data layout is re-arranged
to the more cache-friendly form as described above. Though this data reor-
ganization is quite costly, it is much more convenient than having to program
the whole BSP construction code directly on the optimized data layout.

33 0 1 2 1 3

A

B C

E F IM

K L

D I

A

B

E F

G H K L

C

 2 1 2 1 0 1 2 3 1 3

Figure 7.6: Post-process memory optimizations: After construction, splits
that did not produce sensible results get collapsed (e.g. nodes G and H), and
the item lists are stored in a compressed form by checking whether the same
node list can already be found in the list array. Different item lists can overlap
the same memory regions without any problems, as the length of the list is
stored in the BSP node anyway. After these collapse operations, the BSP is
reformatted to the memory-compressed form as shown in Figure 7.3.

Finally, it is possible to perform some minor optimizations during the
data rearrangement, such as having similar item lists use the same memory
space. For example, the item lists “12,13,17” and “13,17” can be stored in
the same memory region if the pointer for the second lists points “into” the
first list (see Figure 7.6). Though this can save some memory especially for
deeply subdivided BSPs, the performance impact of these final optimizations
is quite limited.

7.3.3 Results of different BSP Construction Strategies

In its current implementation, the surface area heuristic in typical scenes
is roughly 50–100 percent faster than a typical Kaplan-type BSP (see Ta-
ble 7.4), and is still up to 50 percent faster than the best non-SAH as im-
plemented in RTRT by 2001 (as used in the original 2001 “Coherent Ray
Tracing” paper [Wald01a]).

Though these results are impressive, the surface area heuristic also has
several problems. First of all, it can be quite costly to generate, especially
for complex scenes. Second, the SAH – though being already very good –

26Obviously, this could also be done already during BSP construction.

120 Chapter 7: The RTRT Core – Intersection and Traversal

ERW6 ERW10 Office
(804 triangles) (83,600 triangles) 34,000 triangles)

Theater Conference Soda Hall (inside)
(112,306 triangles) (282,801 triangles) (2,247,879 triangles)

Soda Hall (outside) Cruiser Power Plant (outside)
(2,247,879 triangles) (3,637,101 triangles) (12,748,510 triangles)

Figure 7.7: The scenes used for the RTRT benchmarks in Table 7.6. In-
cluding simple SSE shading, these scenes run at 1.3–5.4 frames per second at
full-screen (1024×1024) resolutions on a single 2.5GHz Pentium-IV notebook
CPU (see Table 7.6).

is still not optimal27. Following a greedy strategy for picking the split plane
can lead to getting stuck in local minima. The same is actually true for the
termination criterion: Very easily, it may happen that no split can be found
with a cost less than the cost of making a leaf – in which case a leaf will
be generated – even though a better configuration might be found if another
level of splits were considered (see e.g. Figure 7.8). This could be fixed by

27Computing the best BSP tree is known to be NP-complete [Havran01].

7.3 High-Quality BSP Construction 121

using a global optimization method, which however would probably be far
too costly to generate. More importantly, the SAH is quite complicated to
implement correctly, and is error-prone both to programming bugs as well as
to numerical inaccuracies.

Figure 7.8: With a greedy method for choosing the split plane, the surface area
heuristic can get stuck in local minima. For example, no single split plane can
be found that subdivides the left voxel in a way that would have a better cost
function than creating a leaf (as each side would have as many triangles as
the node itself). If however a “non-optimal” split were allowed in the center,
the following split would find a configuration that has less cost than the left
one (center image). Right: The same argument can be repeated infinitely,
making automatic termination problematic if such splits are allowed. Note
that this is a very common configuration for practical scenes, as for example
all walls of a room match this setting.

Finally, the SAH requires the ray tracer to work exactly: For example,
working on perfect split positions often leads to the generation of “flat” cells
with zero width: All triangles that are orthogonal to a coordinate axis (such
as walls) will eventually end up in a cell that exactly encloses them, and
which thus will be flat28. This can easily lead to numerical problems during
traversal, as a ray traversing an empty cell actually has a zero-length overlap
with this voxel, which may easily be “over-seen” by the traverser. Though
this is not exactly a problem of the SAH, it may still lead to problems when
using it. Obviously, the RTRT traversal code correctly handles this case.

28This case also has to be handled correctly during BSP construction: For example, when
further subdividing a flat cell, the construction code has to take care when computing the
side-voxel intersections.

122 Chapter 7: The RTRT Core – Intersection and Traversal

CPU / scene #tris absolute performance
(fps@1024x1024, 1CPU)

ray tracing SSE SSE SSE C
shading none SSE C C
ERW6 (static) 804 8.95 5.38 3.80 2.09
ERW6 (dynamic) 804 4.00 3.05 2.57 1.33
Office (static) 34,000 4.68 3.45 2.86 1.39
Office (dynamic) 34,000 2.61 2.17 1.87 0.88
ERW10 83,600 5.82 3.88 3.27 1.65
Theater 112,306 2.68 2.18 1.95 1.05
Conference (dynamic) 282,801 3.17 2.50 1.98 1.01
Conference (static) 282,801 4.40 3.26 2.61 1.44
Soda Hall (in) 2,247,870 3.68 2.85 2.46 1.19
Soda Hall (out) 2,247,870 4.47 3.28 3.19 1.78
Cruiser 3,637510 3.38 2.65 2.31 1.17
Power Plant (in) 12,748,510 1.43 1.27 1.19 0.53
Power Plant (out) 12,748,510 1.59 1.39 1.40 1.17

Table 7.6: RTRT core performance in million rays per second on a single
2.5GHz Pentium-IV notebook CPU at a resolution of 1024× 1024 pixels, in
different shading configurations: SSE/none corresponds to pure ray traversal
and intersection performance without shading at all; SSE/SSE means SSE
packet tracing with a hard-coded simple SSE shading model; SSE/C means
SSE ray tracing with C-code shading (including SoA-to-AoS data re-packing
overhead); and C/C means pure C-code single ray traversal and shading.
Though ray tracing scales nicely with scene complexity, even simple shading
can already cost more than a factor of two given current ray tracing per-
formance! The above numbers directly correspond to the achievable frame
rate on a single 2.5GHz Pentium-IV notebook CPU at full-screen resolution
(1024 × 1024 pixels). The respective benchmarking scenes can be found in
Figure 7.7.

7.4 Current RTRT Performance

As described in the previous section, the RTRT software ray tracing ker-
nel builds the combination of highly optimized traversal and intersection
routines, tracing packets of rays for efficient SIMD support, and a special
emphasis on caching and memory optimizations. Though the newest ver-
sion of the RTRT core still uses the same ideas as discussed in its original
publication [Wald01a], the RTRT kernel since then has been significantly

7.4 Current RTRT Performance 123

improved and completely re-implemented to achieve significantly higher per-
formance [Wald03e]. This increase in performance is due to a combination
of several factors:

Faster CPUs: Obviously, CPUs have become significantly faster since 2001
(from around 800MHz Pentium-III’s to 3GHz Pentium-IV’s today).
While many other applications cannot fully benefit from this increase
in clock rate, the RTRT core has been designed to fully exploit the
available CPU performance (e.g. by minimizing cache misses, pipeline
stalls and branch mis-predictions), and as such benefits linearly from
improved CPU performance. Though the performance increase of mod-
ern CPUs is obviously not an achievement of the RTRT core itself, it is
due to its special design – especially its emphasis on SIMD support and
caching optimizations – that have enabled the RTRT kernel to benefit
linearly from any increase in CPU performance.

Better BSP Trees: The “Coherent Ray Tracing” paper cared mostly about
the fast traversal of an existing BSP tree, and neglected the algorithms
for building these BSPs. The new RTRT core uses an improved “surface
area heuristic” (SAH) cost prediction function for generating optimized
BSP tree (see Section 7.3), which result in up to twice the performance
than with the BSP construction code as used in the original Coherent
Ray Tracing system.

Better Compilers: Modern compilers offer increasingly powerful tools for
writing better and faster code. For example, RTRT achieves roughly
twice the performance when compiling its single-ray code (which is
written in plain “C/C++”) with Intel’s ICC (Version 7.1) compiler as
compared to compiling it with the 2001 version of the GNU gcc compiler
as used in the original system29. Comparing to most up-to-date code
written in ICC intrinsics with the performance of the original 2001 SSE
code written in hand-coded assembler yields similar speedups.

Better Implementations: The RTRT core algorithms cover only a few
hundred lines of code, and are continuously being optimized. Since
its original publication in 2001 [Wald01a], the core code has been re-
implemented several times, having resulted in a significant increase in
performance.

29The new gcc versions 3 and higher are supposed to offer similarly increased perfor-
mance over pre-3.0 gcc’s. Preliminary tests with gcc 3.3.1 have been positive, but a
thorough evaluation has not yet been performed.

124 Chapter 7: The RTRT Core – Intersection and Traversal

Taken together, these methods allow the current core to significantly out-
perform the old system even when running the old code on an up-to-date
CPU. Even when traversing single, incoherent rays (i.e. without using the
SSE instruction set) the new kernel is slightly faster than the originally pub-
lished SSE code tracing packets of rays.

Exploiting the full performance of the newest SIMD code then achieves
an additional performance improvement of 2–3 when shooting coherent rays
(see Table 7.6). It is important to note that the RTRT kernel does not use
any approximations to achieve this speedup. It still performs at least the
operations of a traditional ray tracer. Considering only the pure traversal
and intersection cost – i.e. without shading and without support for dynamic
scenes – the RTRT kernel achieves up to ∼ 9 million rays per second on
simple scenes, and still 1.4–4.4 million rays per second on as complex scenes
as the soda hall and power plant scenes (with 1.5 and 12.5 million triangles,
respectively).

Casting only primary rays with relatively simple shading, this perfor-
mance allows for computing several (1.3–5.4) full screen frames per second
even on a single notebook with a typical 2.5GHz Pentium-IV CPU (see Ta-
ble 7.6 and Figure 7.7). Using a state of the art dual-CPU PC, this level
of ray tracing performance allows generate impressive frame-rates even on a
single desktop machine.

7.5 Future Work

As can be seen by the results mentioned in Table 7.6, it is clear that the
biggest individual bottleneck – and thus the biggest remaining problem to
be solved – is the cost for shading. As the cost for shading has traditionally
been cheap compared to the cost for tracing a ray, this problem so far has
not received much attention. With the current increase in ray tracing perfor-
mance however even simple shading incurs a severe performance impact. As
such, the biggest potential for future performance gains lies in finding ways
for faster shading. However, as already discussed in Section 6.4.5 it is still
unclear how this can be achieved.

Apart from faster shading, we expect that even higher ray tracing per-
formance can be achieved by exploiting even more coherence by using larger
packets. Larger packets should allow for optimizations in which not all in-
dividual rays in a packet have to be considered in each traversal step. For
example, two out of the three traversal cases could be accelerated by only
looking at the “corner rays” of a packet30. Similarly, the efficiency of the

30For primary rays, it is obvious to define the corner rays for a packet. For secondary

7.5 Future Work 125

SSE code could probably be increased by larger packets, as any setup cost
(such as fetching triangle data) could be amortized over more rays. Though
larger packets obviously suffer from decreased coherence, this may be offset
by the continuing trend towards higher image resolutions.

Furthermore, it has to be investigated how the ideas that have proven
so successful in accelerating ray tracing for polygonal scenes could also be
employed for other kind of ray tracing primitives, such as volumetric objects,
isosurfaces, or parameteric patches.

Finally, it has to be investigated how much it is possible to further improve
the quality of the BSP trees. While the average number of triangles hit by a
ray is close to the optimum (see Table 7.5), it may still be possible to further
reduce the number of traversal steps.

rays, the “corner” rays could be defined by the corners of an imaginary shaft bounding
the rays.

126 Chapter 7: The RTRT Core – Intersection and Traversal

Chapter 8

The RTRT Parallelization
Framework

“If it won’t yield to brute force, use a bigger
hammer”
anonymous

Even though the ray tracing performance of the RTRT kernel allows for
some limited amount of interactivity already on a single processor, one CPU
alone still cannot (yet) deliver the performance required for practical applica-
tions that require complex scenes and shading, plus many rays for effects like
shadows or reflections1. Achieving sufficient performance on todays hardware
thus requires to combine the computational resources of multiple CPUs.

As current PC systems are limited, using multiple CPUs currently implies
the use of clusters of single- or dual-processor PCs. Note however that this
does not imply dedicated cluster systems, but can just as well be realized
by loosely coupling several off-the-shelf desktop PC systems. In the medium
term, it is likely that small-scale multiprocessor shared-memory systems will
also be available for the PC market2. Given the ongoing trend towards
even more powerful CPUs, it is even likely that in the longer term realtime
ray tracing will eventually be possible on a single CPU. Until then however
the most cost-effective approach to compute power is to use a distributed

1Note that scene complexity can usually be handled relatively well even on a single PC,
at least as long as that single client can store the complete scene. Thus the main reason
for parallelizing is the number of rays that has to be computed for images of reasonable
(shading) complexity.

2For example, some eight-node shared-memory Opteron [AMD03b] systems have re-
cently become available. These however are still significantly more costly than a respective
4-node dual-Opteron cluster.

128 Chapter 8: The RTRT Parallelization Framework

memory PC cluster. Thus, we are mainly concentration on such commodity
hardware3.

This however does not mean that using shared-memory systems does not
make any sense at all, nor that RTRT/OpenRT will only work on such cluster
systems. As cluster systems tend to be more complicated to use than shared-
memory systems, any software that efficiently runs in parallel on a distributed
memory cluster is likely to run at least as good on a shared-memory system4.

8.1 General System Design

While it is reasonably simple to parallelize an offline ray tracer, achieving
interactive performance and good scalability at realtime frame rates requires
special care when designing and implementing the parallelization framework.
Especially the low bandwith and high latency of our commodity networking
technology become problematic at realtime frame rates, as network round-
trip times are typically much larger than tracing a large number of rays5.

8.1.1 Screen Space Task Subdivision

Effective parallel processing requires breaking the task of ray tracing into a
set of preferably independent subtasks. For predefined animations (e.g. in
the movie industry), the usual way of parallelizing ray tracing is to assign
different frames to different clients in huge render farms. Though this ap-
proach successfully maximizes throughput, it is not applicable to a realtime
setting, in which only a single frame is to be computed at any given time.

For realtime ray tracing, there are basically two approaches: object space
subdivision, and screen space subdivision [Reinhard95, Chalmers02, Simiakakis95].
Object space approaches store the scene database distributed across a num-
ber of machines, usually based on an initial spatial partitioning scheme. Rays
are then forwarded between clients depending on the next spatial partition
pierced by the ray. However, the resulting network bandwidth would be too
large for our commodity environment. At today’s ray tracing performance
individual rays can often be traced much faster than they can be transferred

3Typical configurations include up to 24 dual-Athlon MP 1800+, or 4–8 dual Pentium
IV/Xeon nodes, usually connected with 100Mbit FastEthernet or Gigabit Ethernet.

4Currently, RTRT/OpenRT has also been ported to various other hardware platforms,
such as 64bit AMD Opteron, SGI/Mips, or SUN/Sparc, though not all of these support
the SIMD packet tracing mode.

5At a core performance of 1–10 million rays per second (see Chapter 7), a round-trip
time of 1ms, corresponds to 1,000 to 10,000 rays (even twice as much for a dual-CPU
node).

8.1 General System Design 129

across a network6. Finally, this approach often tends to create hot-spots,
which would require dynamic redistribution of scene data. This in turn in
quite problematic when using commodity networking technology, especially
when targeting interactive response times.

Instead, we will follow the screen-based approach by having the clients
compute disjunct regions of the same image. The main disadvantage of
screen-based parallelization is that it usually requires a local copy of the
whole scene to reside on each client, whereas splitting the model over several
machines allows for rendering models that are larger than the individual
clients’ memories.

Usually, we do not consider this special problem, and rather assume that
all clients can store the whole scene. In a previous publicatoin [Wald01c,
Wald01b], we have shown how this problem can be solved efficiently by
caching parts of the model on the clients and loading data on demand. Using
this approach, models larger than the individual client’s memories could be
rendered, as long as the combined memories of all clients have been large
enough to hold the working set of the entire model7. This respective im-
plementation (see [Wald01c] for more details) showed the feasibility of the
general approach, but was mainly a prototype implementation that left many
opportunities for improvements8.

8.1.2 Load Balancing

In screen space parallelization, one common approach is to have each client
compute every n-th pixel (so-called pixel-interleaving), or every n-th row
or scanline. This usually results in good load balancing, as all clients get
roughly the same amount of work. However, it also leads to a severe loss of
ray coherence, which is a key factor for fast ray tracing. Furthermore, each
client essentially computes a downscaled image of the same view, and as such
touches all the data visible in that view. Similarly, it translates to bad cache
performance resulting from equally reduced memory coherence.

6Assuming 50 bytes to describe a ray, a core performance of 1–10 million rays per
second would require a bandwidth of 50–500 megabytes per second just for being able to
send the rays faster than they can be traced (twice as much for a dual-CPU node). This
communication bottleneck also complicates any efforts of building any PCI boards as ray
tracing ’coprocessors’, except if that PCI board handles all ray tracing operations without
any communication with the CPU (e.g. [Schmittler02].

7The same approach also works well for a hardware implementation in the SaarCOR
architecture, as described in [Schmittler03].

8Note that the current RTRT/OpenRT system does not use this distributed data man-
agement, but currently replicates the entire scene on all clients as described below!

130 Chapter 8: The RTRT Parallelization Framework

An alternative approach – that we have adopted – is to subdivide the
image into rectangular “tiles” and assign those to the clients. Thus, clients
work on neighboring pixels that expose a high degree of coherence. The
drawback is that the cost for computing different tiles can significantly vary
if a highly complex object (such as a complete power plant as shown in
Section 11.3) projects onto only a few tiles, while other tiles are empty. For
static task assignments – where all tiles are distributed among the clients
before any actual computations – this variation in task cost would lead to
bad client utilization and therefore result in low scalability.

Therefore, RTRT combines the tile-based approach with a dynamic load
balancing scheme: Instead of assigning all tiles in advance, the clients follow
a demand-driven strategy and will themselves ask for work: As soon as a
client has finished a tile, it sends its results back to the master, and thereby
automatically requests the next unassigned tile.

8.1.2.1 Optimal Tile Size

Given the ray tracing performance shown in Section 7, efficient load balancing
requires having enough tasks with a high enough cost available (on each node)
in order to offset the high network communication latency. For simple scenes
with simple shading, it becomes a problem to have enough tiles available
to keep all clients busy. However, using more and smaller tiles increases
the network load and decreases the available coherence within each task.
Furthermore, smaller tiles carry less “payload” of pixels to be computed
while still requiring the same communication cost, and as such result in a
significantly reduced ratio of computation to communication cost. For a
given number of clients and compute-to-latency ratio there is a tile size that
optimizes the achievable frame rate. While this optimal tile size depends
on the actual settings, tiles sizes of 8 × 8 pixels (for very costly per-pixel
computations) to 32 × 32 pixels (for extremely simple computations) seem
to be sensible9. If not manually overridden, RTRT uses a default tile size of
16× 16, which usually achieves good results.

8.2 Optimizations

Screen space parallelization and dynamic load balancing are both well-known
and are applied in similar form in many different parallel ray tracing systems

9It should be possible to automatically and dynamically determine the optimal tile size
during runtime. This however has not yet been implemented.

8.2 Optimizations 131

(for an overview, see e.g. [Chalmers02]). However, the need for communi-
cation with the different client machines – together with the high network
latencies of commodity PC hardware – require very careful optimizations
and several additional techniques to achieve realtime performance and good
scalability.

8.2.1 Efficient Communication

Most standardized libraries such as MPI [Foruma] or PVM [Geist94] cannot
provide the required level of flexibility and performance that we are faced
with in an interactive environment. For example, TCP/IP has a built-in
optimization (the so-called “Nagle” algorithm) that combines several small
network packages to larger packets. This optimization can significantly in-
crease network throughput, as EtherNet requires relatively large packet sizes
to achieve its optimal performance [Stevens98]. Unfortunately, this algorithm
can also result in significant latencies, as small packets can be significantly
deferred in order to determine whether there are any following packets with
which it can be combined. This is extremely disturbing for small “control
packets” in which a client is instructed to perform some work. Deferring
such packets can significantly reduce the overall system performance. Us-
ing a manually coded TCP/IP implementation allows for selectively turning
such optimizations on for certain data, and turn it off for other. For example,
sending scene updates to the clients requires maximum bandwidth, and as
such has the Nagle algorithm turned on. For data that is sensitive to de-
lays however (such as command packets) we use a separate socket for which
this optimization is turned off. Such low-level optimization are much more
complicated (though perhaps not impossible) to implement in standardized
libraries such as MPI [Foruma] or PVM [Geist94]10, as these usually do not
allow for as fine a level of control over how exactly the communication is
implemented.

Therefore, all communication in the RTRT/OpenRT engine has been im-
plemented from scratch with standard UNIX TCP/IP calls [Stevens98]. This
ensures a minimum of communication latency, and extracts the maximum
performance out of the network.

10However, switching to PVM/MPI may still be beneficial when considering different
networking hardware such as MyriNet [Forumb] or InfiniBand [Futral01], for which the
relative overhead of the TCP/IP protocol stack is even higher high.

132 Chapter 8: The RTRT Parallelization Framework

8.2.2 Frame Interleaving

Another source of latency is the interval between two successive frames, in
which the application usually changes the scene settings before starting the
next frame. During this time, all clients would run idle. To avoid this
problem, rendering is performed asynchronously to the application: While
the application specifies frame N , the clients are still rendering frame N − 1.
Note, that this is similar to usual double buffering [Schachter83], but with
one additional frame of latency.

8.2.3 Differential Updates

For realistic scene sizes, network bandwidth obviously is not high enough for
sending the entire scene to each client for every frame. Thus, we only send
differential updates from each frame to the next: Only those settings that
have actually changed from the previous frame (e.g. the camera position, or
a transformation of an object) will be sent to the clients. These updates
are sent to the clients asynchronously: The server already streams partial
updates of frame N while the application still has not finished specifying it,
and while the clients are still working on frame N−1. Of course, this requires
careful synchronization via multiple threads on both clients and server.

8.2.4 Task Prefetching

Upon completion of a task, a client sends its results to the server, and – in
dynamic load balancing – has to wait for a new task to arrive. This delay
(the network round-trip time) is usually the worst problem in dynamic load
balancing, as it may result in the clients running idle waiting for work.

To cope with this problem, we have each client “prefetch” several tiles in
advance. Thus, several tiles are ’in flight’ towards each client at any time. As
such, these tiles are being transferred across the network while the client is
still busy with a different tile. Ideally, a new tile is just arriving every time a
previous one is ready to be sent back to the server, as this would completely
remove all tile communication latency while at the same tile maximizing the
pool of yet-unassigned-tiles at the server. In practice, each client is currently
prefetching about 4 tiles11. The optimal number of tiles in flight however
depends on the ratio of tile compute cost to network latency, and might
differ for other configurations.

11The exact number can currently be specified in a config file. Obviously, it should also
be possible to dynamically modify and optimize this value during runtime. This however
has not yet been investigated.

8.3 Results 133

8.2.5 Multithreading

Due to a better cost/performance ratio, we usually use dual-processor ma-
chine. Using multithreading on each client then allows for sharing most data
between these threads. This amortizes the communication cost for scene up-
dates over two CPUs, as each received data item is immediately available to
both CPUs.

In fact, each client uses several threads: As discussed above, all communi-
cation with the server is implemented asynchronously to the actual rendering.
All of this communication is encapsulated in separate threads, which avoids
network buffer overflows and at the same time minimizes response times.

As the RTRT core itself is thread-safe, each client can additionally run a
varying number of ray tracing threads, which is currently either one thread
for a single-CPU system, or two threads for a dual-CPU system12.

8.3 Results

Touch RTRT/OpenRT has been successfully tested on many different hard-
ware configurations, our standard configuration currently consists of a cluster
of up to 24 dual processor AMD AthlonMP 1800+ PCs with 512 MB RAM
each (48 CPUs total). The nodes are interconnected by a fully switched
100 Mbit Ethernet using a single Gigabit uplink to the master display and
application server to handle the large amounts of pixel data generated in
every frame. Note that this hardware setup is no longer state-of-the-art, as
much faster processors and networks are already available13.

The master machine is responsible for communicating with the applica-
tion (see Section 10) and centrally manages the cluster nodes as described
above. As the master machine runs both the application and the paral-
lelization server, it should be a sufficiently powerful dual-CPU machine. To
ensure optimal response times to client request, this machine should not be
heavily loaded by application programs: If the application blocks the server,
the server cannot react fast enough to client requents, resulting in bad load

12As a dual-Xeon system with hyperthreading actually features 4 virtual CPUs (2 virtual
CPUs for each physical one), it might make sense to run four threads on these systems.
So far however we are usually turning Hyperthreading off, as preliminary experiments
have not shown any speedups, and the Linux kernels (version 2.4) currently still perform
sub-optimal scheduling when this technology is turned on.

13The system is also frequently being used on a cluster of 12 dual 2.2GHz Pentium-IV
Xeon PCs, and has also been successfully tested on newer 3GHz dual Pentium-IV PCs
with gigabit interconnection, reaching more than 40 frames per second (at 640x480 pixels)
on this platform.

134 Chapter 8: The RTRT Parallelization Framework

balancing of the clients14. For example, having the server perform costly
tone mapping computations every frame may significantly reduce the overall
system performance. For similar reasons, the application should also avoid
saturating the network with user data.

 0

 5

 10

 15

 20

1 8 16 24 32 40 48

f
r
a
m
e
s

p
e
r

s
e
c
o
n
d

CPUs

Office
Headlight

Power Plant
Sunflowers

Conference Room (Global Illumination)
Shirley 6 (Global Illumination)

Power Plant (Global Illumination)

Figure 8.1: Scalability of the RTRT/OpenRT distributed ray tracing engine
for different scenes and numbers of CPUs (at 640x480 pixels): PP/S: “Power
Plant” scene with simple shading, PP/IGI: power plant with instant global
illumination [Wald02b], SF: Oliver Deussens “Sunflowers”. As can be seen,
scalability is virtually linear up to a maximum framerate of ∼25 frames per
second, at which the network connection to the server is saturated. On a
newer GigaBit network installation, even more than 40 frames per second
have been achieved. For the respective scenes see Figures 9.5, 11.3, and 13.12.

As can be seen in Figure 8.1 load balancing works fairly well for reason-
ably complex scenes and a good computation to latency ratio. Fortunately,
many interesting applications — such as global illumination — require costly
computations per pixel and thus scale well to 48 processors and more (see
Figure 8.1 and Part III).

Though the system in practice scales linearly in the number of clients,

14Obviously the server itself runs multiple threads too. Even so a high server load
negatively affects system performance.

8.4 Potential Improvements 135

this is only true up to an upper limit of roughly 20-25 frames per second at
640×480 pixels15. At this upper limit, the network is saturated by the number
of pixels transferred to the server for display. Adding even more clients then
results in reduced utilization of the clients, as these simply can’t transfer
their pixels fast enough to the server. However, this maximum framerate
only depends on the servers network bandwidth, and on frame resolution.

Even at this maximum frame rate, the system still scales in quality: If
the cost per pixel increases – e.g. by using more complex shading or by
pixel-supersampling – more clients can be kept busy without increasing the
network load. In Figure 8.1, this can for example be seen in the power plant
scene: For simpler shading we start to see load balancing problems at 24
CPUs because at a resolution of 640x480 we no longer have enough jobs to
keep all clients busy. For complex computations like global illumination –
with a much higher cost per pixel – this problem occurs later.

8.4 Potential Improvements

While the system as descibed above already allows for many practical appli-
cations (see [Wald03a, Wald03e] and Section 11), there are still several issues
that can be improved:

8.4.1 Maximum Frame Rate and the Server Bottleneck

Obviously, the biggest bottleck of the RTRT/OpenRT system is the net-
work uplink to the server, which in its current architecture can easily be-
come saturated by the computed pixel data. Obviously, this could be re-
solved by using better networking technology, like MyriNet [Forumb] or In-
finiBand [Futral01], which however are still too costly for our “commodity
hardware” approach. Fortunately, most applications focus on higher qual-
ity than higher frame rate, thus the limited frame rate currently is a minor
problem.

However, even on the current networking technology, many improvements
are still possible: First, higher effective bandwidth for gigabit ethernet can be
achieved with newer GigaBit cards and their respective specially optimized

15On newer hardware (though still GigaBit ethernet) even 40 frames per second have
been measured.

136 Chapter 8: The RTRT Parallelization Framework

drivers16. Furthermore, the server can use trunking17 of two GigaBit cards to
transparently combine the bandwidth of two separate cards. On the software
side, going to higher resolutions should allow for much larger packet sizes –
and correspondingly achieve higher network throughput. Taken together,
these measures should allow for coming much closer to the limit of PCI/33
bus bandwidth (rated at 133 megabytes per second). In theory, this should
allow for frame rates of up to 3018 frames per second over a PCI bus, and even
much higher frame rates over already available busses like 64-bit/66MHz PCI,
PCI-X [PCI-X], or PCI-Express [PCI Express]. At the time of this writing,
the highest bandwidth that can be realized with commodity PC hardware
is 10 gigabits/second. This would correspond to more than 300 frames per
second, and would totally remove the server bandwith bottleneck.

8.4.2 Frame Assembly and Tone Mapping on the GPU

Obviously, the just mentioned frame rates of several dozen frames per second
in full-screen resolutions would create a severe computational load just for
copying the received pixels to their final image location. This is currently
done by first copying the pixels to an intermediate buffer, from where they
are later (once all the pixels of the current frame have been received) again
copied to the frame buffer specified by the application (which may need to
copy these pixels again in order to display them). This multiple buffering is
neccessary due to the highly asynchronous system design and the interleaving
of different frames, which results if tiles from different frames arriving “out
of order”.

For the frame rates mentioned above, this frame assembly load might
easily reduce the servers response times for load balancing, and thus reduce
scalability. This problem could be resolved by displaying the readily com-
puted pixels by exploiting the high pixel-bandwidth of hardware-accelerated
OpenGL. Similarly, bandwidth-intensive algorithms like tone mapping could
be realized on the servers graphics card (also see e.g. [Artusi03, Goodnight03]).

16On our current (somewhat outdated) Gigabit network cards, we usually achieve only
250–400 Mbit/s. Newer Gigabit cards (with optimized drivers) have been measured to
achieve much higher performance.

17Trunking is a process in which to physical network connections from the same network
switch to the same PC (with two network cards, obviously) are virtually combined to one
single network connection, i.e. the PC – though having actually two cards – gets only one
single IP address. This enables to double the switch-PC bandwidth, without having to
change any application programs. Most switches support trunking of at least some of their
outgoing connections.

181280× 1024pixels× 3 bytes
pixel =∼ 4 MB

frame , equalling ∼ 30fps at PCI bandwidth.

8.4 Potential Improvements 137

8.4.3 Server Bandwidth Reduction via Broadcasting

Currently, scene updates are replicated to every client. However, as all com-
munication is performed via TCP/IP (which does not support broadcasting),
no actual “hardware” broadcast is available. As a result, all scene data is
currently sent sequentially to all clients one after another. This means that
the network bottleneck at the server increases linearly with the number of
clients, and – already for moderately costly scene updates – quickly saturates
the server bandwidth as many clients are to be used. This bandwidth problem
could probably be fixed by using network broadcasting (UDP) [Stevens98].
UDP communication however is not reliable, and would thus require a com-
pletely different communication architecture.

Note that the situation might be completely different when completely
abandoning Ethernet technology for the favor or e.g. MyriNet [Forumb] or
Infiniband [Futral01].

8.4.4 Geometry Shaders

The problem of costly network communication for scene updates could also
be alleviated by employing geometry shaders, i.e. small programs that pro-
cedurally generate the updated geometry. This would be similar to OpenGL
vertex shaders, but somewhat more flexible. Running the geometry shaders
directly on the clients would remove the need to communicate these scene
updates over the network. The potential and restrictions of this approach
however have not yet been sufficiently evaluated.

8.4.5 Support for Virtually Unlimited Model Sizes

In its current form, the parallelization framework stores a complete replica
of the whole scene data base on each client. This not only limits the size of
models that can be rendered efficiently, but also unnecessarily increases the
network communication by sending data to clients that might not actually
need this data for its current view.

As has been shown in a prototype implementation [Wald01c], this prob-
lem can be solved by having the clients load model data “on demand” from
a distributed (i.e. decentralized) model storage, which allows for supporting
virtually unlimited model sizes. Though this experiment is already somewhat
outdated19, it seems beneficial to re-introduce several of the ideas outlined

19Due to a higher efficiency of the ray tracing core, the power plant scene as used in
this experiment can now be rendered directly, as it now fits completely into the memory
of a single PC or notebook.

138 Chapter 8: The RTRT Parallelization Framework

therein. This, however, would require severe changes to the current paral-
lelization framework, and would also bear several implications on the API
used to drive the rendering engine.

Most importantly, the original prototype implementation has shown that
reordering of rays can – and has to – be used for hiding the latencies that
result from demand-loading the data (which essentially are nothing but ex-
tremely costly “cache” misses). This requires means of suspending and re-
suming rays which unfortunately is not trivial in a fully general ray tracing
framework: For example, a ray scheduled to be suspended might actually
be somewhere down a complete ray tree20. A framework for suspending and
resuming all kinds of rays will probably require a slightly limited (separable)
lighting model as proposed by Pharr et al. [Pharr97].

Furthermore, the prototype system has shown that a centralized data
storage is likely to become a network bottleneck and thus is problematic
for a scalabile system. This is especially problematic because a centralized
data storage is the most natural for a system in which the actual application
is only running on one single PC, and in which all other machines are but
“dumb” rendering clients.

8.4.6 Automatic Choice of Performance Parameters

In the current system, the optimal frame rate requires the correct choice
of several parameters, like the amount of prefetched tiles, threads per client,
number of clients, and tile size. This currently works only semi-automatically,
and may (in rare cases) even result in less performance when adding more
clients (e.g. if the system is bound by scene update cost). Thus, it would be
highly beneficial if an optimal set of parameters could be deduced automat-
ically during runtime.

8.5 Conclusions

The parallelization framework inside the RTRT/OpenRT engine allows for ef-
ficiently scaling the RTRT kernel performance to several PCs combined with
commodity network technology, thereby achieving interactive performance
even for massively complex models and highly complex lighting situations
that require costly shading and/or many secondary rays per pixel.

20This was not a problem in the prototype implementation, which only supported a
hard-coded lighting model allowing for primary rays and one single shadow and reflection
ray only.

8.5 Conclusions 139

The distribution process is completely transparent to both application
and shaders. The application runs only on the master machine and interacts
with the rendering engine only through the OpenRT API (see Section 10).
The shaders are loaded dynamically on the clients and compute their pixel
values independently of the application. While there is still room for im-
provement, the RTRT/OpenRT parallelization framework is already highly
efficient, and allows for a wide range of applications [Wald03a, Wald03e]. For
a brief overview of these applications, see Chapter 11.

140 Chapter 8: The RTRT Parallelization Framework

Chapter 9

Handling Dynamic Scenes

“The time spent constructing the hierarchy tree
should more than pay for itself in time saved

rendering the image”

Timothy L. Kay, James T. Kajiya “Ray Tracing
Complex Scenes” [Kay86] (in 1986!)

Even though ray tracing is a relatively old and well-understood technique,
its use for interactive applications is still in its infancy. Several issues of
interactive applications are all but fully solved. Especially the handling of
dynamic scenes in an interactive context so far has received few attention
by ray tracing researchers. Ray tracing research so far almost exclusively
concentrated on accelerating the process of creating a single image, which
could take from minutes to hours. Most of these approaches relied on doing
extensive preprocessing by building up complex data structures to accelerate
the process of tracing a ray.

Before realtime ray tracing, the time used for building an index structure
such as kd-trees was insignificant compared to the long rendering times,
as this preprocessing was then amortized over the remainder of a frame.
Thus preprocessing times of several seconds to a few minutes could easily be
tolerated in order to build a high-quality acceleration structure for an offline
renderer. As long as the scene remains static, the same trick also worked
for “interactive” ray tracing systems as described before – the acceleration
structure was built once in an offline preprocessing step, and was then reused
for all the remaining frames1.

1Even though the scene itself has to remain static in this approach, it is still possible
to arbitrarily change camera, material properties, shaders, and light source configurations
in a scene.

142 Chapter 9: Handling Dynamic Scenes

In dynamic scenes, however, this trick no longer works, as each new frame
requires a new acceleration structure. Building this data structure for every
frame then becomes a bottleneck, as this “preprocessing” alone would often
exceed the total time available per frame in an interactive setting.

Even worse, this preprocessing phase cannot easily be parallelized: Though
tracing the rays can be parallelized trivially once each client has access to
scene and acceleration structure, the operations for building the accelera-
tion structure have to be performed on each client, thereby incurring a non-
parallelizable cost factor. As a result, any time spent on dynamic updates
becomes extremely costly especially for parallel (distributed) interactive ray
tracing systems2. This poses a major problem for ray tracing dynamic scenes,
as virtually all of todays interactive ray tracing (e.g. [Wald01c, Parker99b,
DeMarle03, Wald03e]) systems have to rely on massive parallelization to
achieve interactive frame rates.

Therefore, it is not surprising that all of those systems have in common
that they mainly concentrate on the actual ray tracing phase and do not
target dynamic scenes. Without methods for interactively modifying the
scene, however, interactive ray tracing will forever be limited to simple walk-
throughs of static environments, and can therefore hardly be termed truly
interactive, as long as real interaction between the user and the environment
is not impossible. In order to be truly interactive, ray tracing must be able
to efficiently support dynamic environments. As such, efficient handling of
dynamic scenes is probably one of the biggest challenges for realtime ray
tracing.

9.1 Previous Work

Some methods have been proposed for the case where predefined animation
paths are known in advance (e.g. [Glassner88, Gröller91]). These however
are not applicable to our target setting of totally dynamic, unpredictable
changes to the scene in which the motion of objects is not known in advance.
Little research is available for such truly interactive settings. This research
will be reviewed below.

First of all, excellent work on ray tracing in dynamic environments has
recently been performed by Lext et al. with the BART project [Lext00], in
which they provide an excellent analysis and classification of the problems

2As an example, consider a system that spends only 5% of its time on dynamic scene
updates. Parallelizing this system on 19 CPUs (1

5% −1) results in each node spending half
its time on scene updates, and in a speedup of only 10 for 19 CPUs (i.e. a utlization of
only 10

19 ∼ 50%)!

9.1 Previous Work 143

arising in dynamic scenes. Based on this analysis, they proposed a rep-
resentative set of test scenes (see Figure 9.1) that have been designed to
stress the different aspects of ray tracing dynamic scenes. Thus, the BART
benchmark provides an excellent tool for evaluating and analyzing a dy-
namic ray tracing engine. For future research on dynamic ray tracing, the
BART benchmark suite might well play the same role that Eric Haines’ “SPD
Database” [Haines87] played for offline rendering.

Figure 9.1: Some example screen-shots from the BART benchmark: (a)
“robots”, where 10 robots (each consisting of 16 independently moving body
parts) are walking through a city model; (b) “kitchen”, in which a small toy
car is driving through a highly specular kitchen scene; and (c) “museum”,
where a certain amount of reflective triangles is animated incoherently to
form several different shapes. The number of triangles in the museum scene
can be configured from a few hundred to some hundred thousand triangles.

In their analysis, Lext et al. have classified the behavior of dynamic scenes
into two inherently different classes: Hierarchical motion, and unstructured
motion. In hierarchical motion, the animation is described by having the
primitives in a scene organized into several groups that are transformed hi-
erarchically. While different groups may move independently of all other
groups, all primitives in the same group are always subject to the same, usu-
ally affine, transformation3. The other class is unstructured motion, where
each triangle moves without relation to all others. For example, the robots
scene in Figure 9.1a is a good example of hierarchical motion, as there is
no dynamic behavior except for hierarchical translation and rotation of the
different robots’ body parts. In contrast to this, the museum scene (Fig-
ure 9.1c) features many incoherently moving triangles, and as such is a good
example for unstructured motion. For a closer explanation of the different
kinds of motion, see the BART paper [Lext00].

Though the BART paper provides an excellent analysis of dynamic ray

3Affine transformation are not limited to translation and rotation only, but also include
e.g. shearing or scaling.

144 Chapter 9: Handling Dynamic Scenes

tracing, it did not attempt to propose any practical algorithms or solutions
to the problems. So far, few people have worked on this topic. In a first
step, Parker et al. [Parker99b] kept moving primitives out of the acceleration
structure and checked them individually for every ray. This of course is only
feasible for a small number of moving primitives.

Another approach would be to efficiently update the acceleration struc-
ture whenever objects move. Because objects can occupy a large number
of cells in an acceleration structure this may require costly updates to large
parts of the structure for each moving primitive (especially for large primi-
tives, which tend to overlap many cells). To overcome this problem, Reinhard
et al. [Reinhard00] proposed a dynamic acceleration structure based on a hi-
erarchical grid. In order to quickly insert and delete objects independently of
their size, larger objects are kept in coarser levels of the hierarchy. With this
approach, objects always cover approximately a constant number of cells,
thus updating the acceleration structure can be performed in constant time.
However, their method resulted in a rather high overhead, and also required
their data structure to be rebuilt once in a while to avoid degeneration. Fur-
thermore, their method mainly concentrated on unstructured motion, and is
not well suited for hierarchical animation.

Recently, Lext et al. [Lext01] proposed a way for quickly reconstructing
an acceleration structure in a hierarchically animated scene by transforming
the rays to the local object coordinate systems instead of transforming the
objects and rebuilding their acceleration structures. Though their basic idea
is similar to the way that our method handles hierarchical animation, to
our knowledge their method so far has never been applied in an interactive
context.

9.2 A Hierarchical Approach to Handling Dy-
namic Scenes

Essentially, our approach to handling dynamic scenes is motivated by the
same observations as Lext et al. [Lext01] of how dynamic scenes typically
behave: Usually large parts of a scene remain static over long periods of time.
Other parts of the same scene undergo well-structured transformations such
as rigid body motion or affine transformations. Yet other parts are changed
in a totally unstructured way.

All these kinds of motion are fundamentally different. Even worse, many
scenes actually contain a mix of all these different kinds of motion. It is
unlikely that a single method can handle all these kinds of motion equally

9.2 A Hierarchical Approach 145

well. Because of this, we prefer an approach in which the different kinds
of motion are handled with different, specialized algorithms that are then
combined into a common architecture. To do this, geometric primitives are
organized in separate objects according to their dynamic properties. Each of
the three kinds of objects – static, hierarchically animated, and those with
unstructured motion – is thus treated differently: Static objects will be han-
dled as before, hierarchically animated objects are handled by transforming
rays rather than the object, and objects with unstructured motion are han-
dled by specially optimized algorithms for quickly rebuilding the affected
parts of the data structure. Each object has its own acceleration structure
and can be updated independently of the rest of the scene. These indepen-
dent objects are then combined in a hierarchical way by organizing them in
an additional top-level acceleration structure that accelerates ray traversal
between the objects in a scene (see Figure 9.2).

Transform ObjID

Transform ObjID

Transform ObjID

ObjIDTransform

Instance List Object List

BSP

BSP

BSPGeometry

Geometry

Geometry

Top−level

(of Instances)
BSP

Figure 9.2: Two-level hierarchy as used in our approach: A top-level BSP
contains references to instances, which contain a transformation and a refer-
ence to an object. Objects in turn consist of geometry and a local BSP tree.
Multiple instances can refer to the same object with different transformations.

9.2.1 Building the Hierarchy

To enable this scheme, all triangles that are subject to the same set of trans-
formations (e.g. all the triangles forming the head of the animated robot in
Figure 9.3) must be grouped by the application into the same object.

Note that we explicitly do not attempt to perform this grouping auto-
matically. Instead, this grouping has to be performed by the application
that drives the ray tracer. Though this somewhat shifts the problem to the
application, the application itself has the information about the motion of
every part of the scene in its internal scene-graph, and can typically perform
this classification without major effort. In fact, most applications already do

146 Chapter 9: Handling Dynamic Scenes

Figure 9.3: Grouping of triangles into objects for hierarchical animation.
Triangles subject to the same hierarchical transformations are grouped into
the same object. (a) Snapshot from the BART robots scene, (b) Same snap-
shot, with color-coded objects. Triangles with the same color belong to the
same object.

Figure 9.4: Snapshots of an interactive session in which complex parts of the
12.5 million triangle “UNC power plant” model are being moved interactively
with our method: a) the original powerplant, b) moving the powerplant and
the construction side apart, and c) moving part of the internal structure (the
cool and warm water pipes, totalling a few million triangles!) out of the main
structure).

this for OpenGL rendering, as the same grouping of objects is required for
efficiently using OpenGL display lists (also see the discussion of the OpenRT
API in Section 10). However, the actual grouping of objects into objects has
a higher influence on rendering performance than for OpenGL display lists.
As such, it is important to perform this grouping with extreme care in order
to achieve good performance.

In the following, we will shortly describe how these different kinds of ob-
jects are treated, and how the top-level index structure is built and traversed.

9.3 Static and Hierarchical Motion 147

9.3 Static and Hierarchical Motion

For static objects, ray traversal works as before by just traversing the ray
with our usual, fast traversal algorithm.

For hierarchically transformed objects, we do not actually transform the
geometry of the object itself, but rather store this transformation with the
object, and inversely transform the rays that require intersection with this
object4.

For both static objects and for those with hierarchical motion, the local
BSP tree must only be built once directly after object definition. Thus, the
time for building these objects is not an issue, thereby allowing for the use
of sophisticated and slow algorithms for building high-quality acceleration
structures for these objects (see Section 7.3).

Obviously the transformation slightly increases the per-ray cost. How-
ever, this transformation has to be performed only once for each dynamic
object visited by a ray, and is as such tolerable. This increased per-ray
cost then totally removes the reconstruction cost for hierarchically animated
objects, as all that is required for transforming the object is to update its
transformation matrix. This is especially important as this kind of motion is
usually the most common form in practical scenes. Furthermore, not having
to rebuild any BSP trees make the update-cost for hierarchically transformed
objects independent of object size. As such, this way of handling hierarchical
animation can be used very efficiently even in extremely complex scenes. For
example, Figure 9.4 shows how a complex part of the 12.5 million triangle
“UNC power plant” is being moved in an interactive session.

9.3.1 Instantiation

Being able to handle objects that are subject to a transformation, the pre-
sented approach as a side effect also allows for “instantiation”, i.e. using
multiple instances of the same object: Parts of a scene (e.g. one of the sun-
flowers in Figure 9.5) can re-used several times in the same scene by creating
several instances of this object. An instance then consists only of two prop-
erties: a reference to the original model, and a transformation matrix that
the instanced object is subject to. Thus, even highly complex scenes can
be stored with a small memory footprint, which in turn allows for efficiently
rendering even massively complex scenes at interactive rates. As an exam-
ple, Figure 9.5 shows a slight modification of Oliver Deussen’s “Sunflowers”
scene, which consists of several large trees with millions of triangles each,

4Note that this way of handling is similar to the approach of Lext et al. [Lext01].

148 Chapter 9: Handling Dynamic Scenes

plus 28,000 instances of 10 different sunflower models with roughly 36,000
triangles each. While only one kind of tree and 10 kinds of sunflowers have
to actually be stored, in total roughly one billion triangles are potentially
visible. By changing the transformation matrices of the instances, each ob-
ject can be manipulated interactively while the scene renders at about 7 fps
on 24 dual processor PCs at video resolution (see Table 9.4). Note that
this performance can be achieved even tough a large number of rays needs
to be cast in this scene: The leaves of both sunflowers and trees are mod-
eled with transparency textures, which results in many rays for computing
transparency and semi-transparent shadows.

Figure 9.5: Instantiation: The “Sunflowers” scene consists of roughly 28,000
instances of 10 different kinds of sunflowers with 36,000 triangles each to-
gether with several multi-million-triangle trees. The whole scene consists of
roughly one billion triangles. The center image shows a closeup of the highly
detailed shadows cast by the sun onto the leaves. All leaves contain textures
with transparency which increase the number of rays needed for rendering a
frame. The whole scene renders at roughly 7 fps on 24 dual PCs at video
resolution. All objects including the sun can be manipulated interactively.

9.4 Fast Handling of Unstructured Motion

While this simple trick of transforming rays instead of triangles elegantly
avoids any reconstruction cost for hierarchical motion, it does not work for
unstructured motion, as there the acceleration structure potentially has to be
rebuilt for every frame. Even so, if triangles under unstructured motion are
kept in a separate object, the BSP reconstruction cost can be localized to only
those triangles that have actually been transformed. The local acceleration
structures of such objects are discarded and rebuilt from the transformed
triangles whenever necessary. Even though this process is costly, it is only
required for objects with unstructured motion and does not affect any of
the other objects. Obviously, only those objects have to be rebuilt whose

9.4 Fast Handling of Unstructured Motion 149

primitives have actually be modified in the respective frame. Furthermore,
it is possible to perform this reconstruction of dynamic objects lazily on
demand, i.e. only once a ray actually demands intersection with that updated
object. As such, the occlusion-culling feature of ray tracing also applies to
the reconstruction of dynamic objects, as occluded objects do not have to be
rebuilt.

The algorithms for creating highly optimized BSP trees as discussed in
Section 7.3 may require several seconds even for moderately complex objects.
Thus, they are not applicable to unstructured motion, for which the object
BSP has to be rebuilt every frame (and thus in fractions of a second). For
these cases we trade traversal performance for construction speed by using
less expensive, simple heuristics for BSP plane placement, which allows for
a high-performance implementation of the construction process.

9.4.1 Using less costly BSP Construction Parameters

Furthermore, we use less expensive quality parameters for the BSP plane
placement heuristics. For example, a particularly important cost factor for
BSP tree construction is the subdivision criterion of the BSP. As described
in Section 7.3, this criterion typically consist of a maximum tree depth and
a target number of triangles per leaf cell. Subdivision continues on cells with
more than the target number of triangles up to the maximum depth. Typical
criteria specify 2 or 3 triangles per cell and usually result in fast traversal
times – but also in deeper BSPs, which are more costly to create. Particularly
costly are degenerate cases, in which subdivision can not reduce the number
of triangles per cell, for example if too many primitives occupy the same point
in space, e.g. at vertices with a valence higher than the maximum numbers
of triangles.

In order to avoid such excessive subdivisions in degenerate regions, we
modified the subdivision criterion (for unstructured object BSPs): The deeper
the subdivision, the more triangles will be tolerated per cell. We currently
increase the tolerance threshold by a constant factor for each level of sub-
division. Thus, we generally obtain significantly lower BSP trees and larger
leaf cells than for static objects. Though this of course slows down the
traversal of rays hitting such objects, this slowdown is usually more than
made up by the significantly shorter construction time. Furthermore often
only few rays hit such objects with unstructured motion and are affected by
this slowdown, so using a slower BSP tree for those rays is tolerable. With
the described compromises on BSP construction, unstructured motion for
moderate-sized objects can be supported by rebuilding the respective object
BSP every frame.

150 Chapter 9: Handling Dynamic Scenes

9.5 Fast Top-Level BSP Construction

As mentioned before, all kinds of objects – static, hierarchically animated,
and those with with unstructured motion – are hierarchically combined in
an additional top-level acceleration structure. For this top-level structure,
we also use a kd-tree, and as such can use exactly the same algorithms for
traversing this top-level tree than for the object BSPs, except that visiting a
voxel now requires to intersect objects rather than triangles. While traversing
this top-level BSP thus requires only minor changes to the original imple-
mentation, this is not the case for the construction algorithm. A scene can
easily contain hundreds or thousands of instances (see Figures 9.6 and 9.5),
and a straight-forward approach would be too costly for interactive use. On
the other hand, the top-level BSP is traversed by every ray, and thus few
compromises on BSP quality can be made for the top-level BSP.

Fortunately, the task of building the top-level BSP is simpler than for
object BSPs: Object BSPs require costly triangle-in-cell computations, care-
ful placement of the splitting plane, and handling of degenerate cases. The
top-level BSP however only contains instances represented by an axis-aligned
bounding box (AABB) of its transformed object5.

Considering only the AABBs, optimized placement of the splitting plane
becomes much easier, and any degenerate cases can be avoided.

For splitting a cell, we follow several observations:

1. It is usually beneficial to subdivide a cell in the dimension of its maxi-
mum extent, as this usually yields the most well-formed cells [Havran01].

2. Placement of the BSP plane only makes sense at the boundary of ob-
jects contained within the current cell. This is due to the fact that the
cost-function can be maximal only at such boundaries [Havran01].

3. It can been shown that the optimal position for the splitting plane lies
between the cells geometric center and the object median [Havran01]

Following these observations, the BSP tree can be built such that it is both
suited for fast traversal by optimized plane placement, and can still be built
quickly and efficiently: For each subdivision step, we try to find a splitting
plane in the dimension of maximum extent (observation 1). As potential

5While the object itself already has an axis-aligned bounding box, this AABB is not
necessarily axis-aligned any more when subject to a transformation. As such, we conser-
vatively build the AABB of the instance by building a new instance AABB out of the
transformed vertices of the objects AABB. While this somewhat overestimates the actual
instance bounds, it is much less costly than computing the correct AABB by transforming
all vertices.

9.5 Fast Top-Level BSP Construction 151

splitting planes, only the AABB borders will be considered (observation 2).
To find a good splitting plane, we first split the cell in the middle, and decide
which side contains more objects, i.e. which one contains the object median.
From this side, we choose the object boundary closest to the center of the
cell. Thus, the splitting plane lies in-between cell center and object median,
which is generally a good choice (observation 3).

As each subdivision step removes at least one potential splitting plane,
termination of the subdivision can be guaranteed without further termina-
tion criteria. Degenerate cases for overlapping objects cannot happen, as
only AABB boundaries are considered, and not the overlapping space itself.
Choosing the splitting plane in the described way also yields relatively small
and well-balanced BSP trees. Thus, we get a top-level BSP that can be tra-
versed reasonable quickly, while still offering a fast and efficient construction
algorithm.

BuildTree(instances,voxel)

for d = x,y,z in order of maximum extent

P = {i.mind, i.maxd|i ∈ instances}
if (‖P‖ = 0) continue;

c = center of voxel

if (more instances on left side of c than on right)

p = max({p ∈ P |p < c})
else

p = min({p ∈ P |p >= c})
Split Cell (instances,cell) in d at p into

(leftvox,leftinst),(rightvox,rightinst)

l = BuildTree(leftinst,leftvox);

r = BuildTree(rightinst,rightvox);

return InnerNode(d,p,l,r);

end for

no valid splitting plane found

return Leaf(instances)

9.5.1 High-Quality Top-level BSPs

Instead of this simplified BSP construction algorithm, it is also possible to
use a surface area heuristic (see Section 7.3) for the top-level BSP tree. The
main problem with this approach is the question how to best estimate the
cost for intersecting the object. As the respective object BSPs contain only
triangles, the cost for each half voxel created by a split can be safely estimated
to be mostly linear in the number of triangles on each side. For the top-level

152 Chapter 9: Handling Dynamic Scenes

BSP however, each side contains objects of different size, for which the cost
is hard to estimate.

However, the bigger problem with a surface area heuristic for the top-
level BSP tree is its relatively high construction cost. While this may be
neglectable for a few dozen objects, it currently becomes too expensive for
a few hundred instances. As such, using an SAH would only make sense for
a small number of instances as long as no fast implementations of an SAH
tree builder are available. Though RTRT/OpenRT has an implementation of
both SAH and the above mentioned algorithm, by default we use the simple
and fast-to-build version as described above.

9.6 Fast Traversal

Once both the top-level BSP tree and all the object BSPs are built, each ray
first starts traversing this top level structure. As soon as a voxel is found,
the ray is intersected with the objects in the leaf by simply traversing the
respective objects local acceleration structures. Once all BSPs are built,
within both top-level BSP and within each object traversal is identical to
traditional ray tracing in a static environment. Consequently, we use exactly
the same algorithms and data structures for building and traversing that
acceleration structure as we already described previously for the static case
(see Section 7). For the top-level BSP, the only difference is that each leaf cell
of the top-level BSP tree contains a list of instance IDs instead of triangle
IDs. Only minor changes have been required to implement this modified
traversal code.

As with the original implementation, a ray is first clipped to the scene
bounding box and is then traversed iteratively through the top-level BSP
tree. As soon as it encounters a leaf cell, it sequentially intersects the ray
with all instances in this cell: For each instance, the ray is first transformed to
the local coordinate system of the object, then clipped to the correct AABB
of the object, and finally traversed through its acceleration structure.

9.6.1 Mailboxing

Typically, the bounding volumes of different instances will overlap. In or-
der to avoid having to intersect a ray with the same object multiple times,
mailboxing [Amanatides87, Kirk91, Havran01] is very important to use for
the top-level BSP tree. While the benefit of mailboxing for the triangle for
an object BSP is rather small, the high cost of intersecting the same object
several times clearly justifies the use of mailboxing for the top-level BSP.

9.7 Experiments and Results 153

9.6.2 SSE Traversal

As our traversal and intersection algorithms do not require normalized ray di-
rections, transforming a ray is relatively cheap, as no costly re-normalization
of the transformed rays is necessary. The ray-matrix multiplications them-
selves can very efficiently be done using SSE [Intel02b].

Of course, our method also works with our fast SSE packet traversal
code. The only caveat is that this packet traversal code requires that all rays
directions in a packet have the same signs, as was described in Section 7.2.3.
As a rotation can change these signs, an additional check has to be done after
each transformation, and such a packet might sometimes have to be split up
before intersecting an object. However, this special case is trivial and cheap
to detect and work around, and happens rarely6. As such, its cost in practice
is negligible.

9.7 Experiments and Results

The described framework is rather straightforward to implement and use as
long as a shared-memory system (e.g. a dual-CPU PC) is available. However,
the situation of dynamic ray tracing gets much more problematic for non-
shared memory systems, as such systems often contain many non-scalable
cost factors, such as communicating scene updates to the client, or having to
rebuild parts of the hierarchy on every client.

As the described framework has been especially designed for performing
well on loosely coupled (i.e. non-shared memory) clusters of workstations,
it is of major importance to investigate the scalability of our method. To
allow for representative results, we have chosen to use a wide range of ex-
periments and test scenes. Therefore, we have chosen to use the BART
benchmark scenes [Lext00], which represent a wide variety of stress factors
for ray tracing of dynamic scenes. Additionally, we use several of the scenes
that we encountered in practical applications [Wald02b], and a few custom-
made scenes for stress-testing. Snapshots of these test scenes can be found
in Figure 9.6.

All of the following experiments have been performed on a cluster of dual
AMD AthlonMP 1800+ machines with a FastEthernet (100Mbit) network
connection. The network is fully switched with a single GigaBit uplink to a
dual AthlonMP 1700+ server. The application is running on the server and
is totally unaware of the distributed rendering happening inside the render-

6For primary rays, there is only one row and one column of pixels in which that can
happen at all.

154 Chapter 9: Handling Dynamic Scenes

Figure 9.6: Several example frames from some of our dynamic scenes.
a.) “BART robots” contains roughly 100,000 triangles in 161 moving ob-
jects, b.) “BART kitchen”, c.) “BART museum” with unstructured motion
of several thousand triangles. Note how the entire museum reflects in these
triangles. d.) The “terrain” scene uses up to 661 instances of 2 trees, would
contain several million triangles without instantiation, and also calculates
detailed shadows. e.) The “office” scene in a typical ray tracing configura-
tion, demonstrating that the method works fully automatically and completely
transparently to the shader. f.) Office with interactive global illumination.

Figure 9.7: Two snapshots from the BART kitchen. a.) OpenGL-like ray
casting at > 26 fps on 32 CPUs. b.) full-featured ray tracing with shadows
and 3 levels of reflections, at > 7 fps on 32 CPUs.

9.7 Experiments and Results 155

ing engine. It manages the geometry in a scene graph, and transparently
controls rendering via calls to the OpenRT API (see Chapter 10). While the
application itself may internally use a scene-graph with multiple nested hier-
archy levels, the OpenRT library internally “flattens” this multi-level scene
graph to the two-level organization as described above (see Figure 9.2).

In the following experiments, all examples are rendered at video resolution
of 640 × 480 pixels. Ray tracing is performed with costly programmable
shaders featuring shadows, reflections and texturing.

9.7.1 BART Kitchen

The kitchen scene contains hierarchical animation of 110.000 triangles or-
ganized in 5 objects. It requires negligible network bandwidth and BSP
construction overhead. Overlap of bounding boxes may results in a certain
overhead, which is hard to measure exactly but is definitely not a major cost
factor7.

The main cost of this scene is due to the need for tracing many rays
to evaluate shadows from 6 point lights. There is also a high degree of
reflectivity on many objects. Due to fast camera motion and highly curved
objects (see Figure 9.7), these rays are rather incoherent. However, these
aspects are completely independent of the dynamic nature of the scene and
are handled efficiently by our system.

We achieve interactive frame rates even for the large amount of rays to
be shot. A reflection depth of 3 results in a total of 3.867.661 rays/frame.
At a measured rate of 912.000 rays traced per second and CPU in this scene,
this translates to a frame rate of 7.55 fps on 32 CPUs. As can be seen in
Table 9.1, scalability is almost linear – using twice as many CPUs results in
roughly twice the frame rate.

CPUs 2 4 8 16 32
OpenGL-like 3.2 6.4 12.8 25.6 > 26
Ray Tracing 0.47 0.94 1.88 3.77 7.55

Table 9.1: Scalability in the kitchen scene in frames/sec.

9.7.2 BART Robots

The robots scene features a game-like setting with 16 animated robots moving
through a city. The scene consists of 161 objects: 16 robots with 10 animated

7Note that the robot, museum, kitchen, and terrain scenes are only available in a
dynamic version, and can thus not be compared to a static version.

156 Chapter 9: Handling Dynamic Scenes

body parts each, plus one object for the surrounding city. All dynamic motion
is hierarchical with no unstructured motion at all. Therefore, the BSP trees
for all objects have to be built only once, and only the top-level BSP have
to be rebuilt for every frame.

Using the algorithms described above, rebuilding the top-level BSP is
very efficient and takes less than one millisecond. Furthermore, updating the
transformation matrices requires only a small network bandwidth of roughly
20 kb/frame for each client.

CPUs 2 4 8 16 32
OpenGL-like 2.8 5.55 10.8 21 > 26
Ray Tracing 0.54 1.07 2.15 4.3 8.6

Table 9.2: Scalability in the robots scene in frames/sec.

With such a small transmission and reconstruction overhead, we again
achieve almost-linear scalability (see Table 9.2) and high rendering perfor-
mance. Using 32 CPUs, we achieve a frame rate of 8 frames per second.
Again, the high cost of this scene is due to the large number of reflection and
shadow rays. Using a simple OpenGL-like shader (see Figure 9.8) results in
frame rates of more than 26 frames per second.

9.7.3 BART Museum

The museum has been designed mainly for testing unstructured motion and
is the only BART scene featuring non-hierarchical motion. In the center of
the museum, several triangles are animated on predefined animation paths
to form differently shaped objects. The number of triangles undergoing un-
structured motion can be configured to 64, 256, 1k, 4k, 16k, or 64k. Even
though the complete animation paths are specified in the BART scene graph,
we do not make use of this information. User controlled movement of the
triangles – i.e. without knowledge of future positions – would create the same
results.

This scene also requires the computation of shadows from two point lights
as well as large amounts of reflection rays. All of the moving triangles are
reflective and incoherently sample the whole environment (see Figure 9.9).
As the dynamic behavior of a scene is completely transparent to the shaders,
integrating all these effects does not require any additional effort except for
the cost for tracing the rays.

As expected, unstructured motion gets costly for many triangles. Build-
ing the BSP tree for the complex version of 64k triangles already requires

9.7 Experiments and Results 157

Figure 9.8: BART robots: 16 robots consisting of 161 objects rendered inter-
actively. a.) Ray casting at > 26 fps on 32 CPUs. b.) Full ray tracing at
> 8 fps at 32 CPUs.

Figure 9.9: Unstructured motion in the BART museum: Up to 64,000 tri-
angles are moving incoherently through the museum. Note how the triangles
reflect the entire environment.

more than one second (see Table 9.3). Note, however, that our current al-
gorithms for building object BSPs still leave plenty of room for further opti-
mizations.

num tris 64 256 1k 4k 16k 64k
reconst.time 1ms 2ms 8ms 34ms 0.1s > 1s
bandwidth/client 6.4k 25.6k 102k 409k 1.6M 6.5M

Table 9.3: Unstructured motion in different configurations of the museum
scene. Rows specify reconstruction time for the top-level BSP, and data sent
to each client for updating the triangle positions.

158 Chapter 9: Handling Dynamic Scenes

Furthermore, the reconstruction time is strongly affected by the distribu-
tion of triangles in space: In the beginning of the animation, all triangles are
equally and almost-randomly distributed. This is the worst case for BSPs,
which are best at handling uneven distributions, and construction is conse-
quently costly. Furthermore, the randomly distributed triangles form many
singularities when intersecting themselves, which is extremely bad for typical
BSP trees. During the animation, the triangles organize themselves to form
a single surface. At this stage, reconstruction time is much faster. Note that
the numbers given in Table 9.3 are taken at the beginning of the animation,
and are thus worst-case results.

9.7.3.1 Network Bottleneck

Apart from raw reconstruction cost, significant network bandwidth is re-
quired for sending all triangles to every client. Since we use reliable uni-
cast (TCP/IP) for network transport, using 4096 triangles and 16 clients (32
CPUs), requires to transfer roughly 6.5 Mb (16 clients×408kb, see Table 9.3)
– for every frame. Though in theory this does not yet totally saturate the
network, the network load is not equally distributed over time: Network
bandwidth is especially high at the beginning of each frame, when all the
scene updates have to be communicated to the clients. During this time, the
network is already completely saturated when sending 16k triangles to the
clients, implying that the performance of the server is already significantly
affected during this time. Consequently, we can no longer scale linearly any
more when dynamically updating more than a few thousand triangles (see
Table 9.4).

9.7.3.2 “Geometry Shaders”

Note that this problem would be significantly reduced on a shared-memory
platform, or even with the availability of a reliable hardware multicast. On
a cluster configuration, the update problem could probably also be solved
by using “geometry shaders” that can generate the triangles directly on the
clients. Though this can only be used for a limited set of applications, it
would already allow for many important and interesting applications. So far
however this approach has not yet been sufficiently investigated.

Due to the discussed problems – high communication cost for the scene
updates and high reconstruction cost for the dynamic object’s BSP – the
museum scene is the most problematic of all the scenes encountered so far.
Even so, with all these effects – unstructured motion, shadows, and highly
incoherent reflections in the animated triangles – the museum can still be

9.7 Experiments and Results 159

with GL-like shading with full ray tracing
num CPUs 1 2 4 8 16 1 2 4 8 16
robots 2.8 5.55 10.8 21 26? 0.54 1.07 2.15 4.3 8.6
kitchen 3.2 6.4 12.8 25.6 26? 0.47 0.94 1.88 3.77 7.55
terrain 1.3 2.5 4.8 8 15 0.9 1.77 3.39 6.5 12
museum:

w/ 1k 2.7 5.4 10.2 19.5 26? 0.6 1.2 2.4 4.8 9.3
w/ 4k 2.5 4.5 7.5 4.5 2.5 0.55 1.1 2.2 4.2 2.5
w/ 16k 1.6 2.4 1.7 1 0.5 0.45 0.9 1.65 0.98 0.53

Table 9.4: Scalability of our method in the different test scenes (BART robots,
BART kitchen, Outdoor Terrain, and BART museum with 1k, 4k, and 16k
dynamic triangles). “?” means that the servers network connection is com-
pletely saturated in our network configuration, and thus no higher perfor-
mance can be achieved. The numbers in the left half of the table correspond
to pure OpenGL like shading, the right half is for full ray tracing including
shadows and reflections. As can clearly be seen, for scenes with hierarchical
animation scalability is almost linear up to the maximum network bandwidth
for the final pixel data. With an increasing amount of unstructured motion
(museum 1k–16k), the required network bandwidth for sending the changed
triangles to the clients soon becomes a bottleneck. In that case, adding more
CPUs even reduces performance, as data has to be sent to even more clients.
An overview of these scenes can be found in Figure 9.6

rendered interactively: Using 8 clients, we achieve 4.8 fps for 1024 triangles,
and still 4.2 fps for 4096 triangles in video resolution (see Table 9.4). Again,
the frame rate is dominated by the cost for shadows and reflections. Using
an OpenGL-like shader without these effects allows to render the scene at 19
frames per second on 8 clients.

9.7.4 Outdoor Terrain

The terrain scene has been specially designed to stress scalability with a large
number of instances and triangles. It contains 661 instances of 2 different
trees, which correspond to more than 10 million triangles after instantiation.
A point light source creates highly detailed shadows from the leaves (see
Figure 9.6). All trees can be moved around interactively, both in groups or
individually. The large number of instances results in construction times for
the top-level BSP of up to 4 ms per frame. This cost — together with the
transmission cost for updating all 661 instance matrices on all clients — limits
the scalability for a large number of instances and clients (see Table 9.4).

160 Chapter 9: Handling Dynamic Scenes

Figure 9.10: Terrain scene with up to 1000 instances of 2 kinds of com-
plex trees (661 instances in the shown configuration, as some trees have been
interactively moved off the terrain). Without instantiation, the scene would
consist of roughly 10 million triangles. a.) Overview of the whole scene, b.)
Detailed shadows from the sun, cast by the leaves onto both floor and other
leaves.

9.8 Discussion

The above scenes have been chosen to stress different aspects of our dynamic
ray tracing engine. Together with the terrain experiment, our test scenes
contain a strong variation of parameters – from 5 to 661 instances, from
a few thousand to several million triangles, from simple shading to lots of
shadows and reflections, and from hierarchical animation to unstructured
motion of thousands of triangles (for an overview, see Figure 9.6). Taken
together, these experiments allow for a detailed analysis of our method.

9.8.1 Transformation Cost

For mainly hierarchical animation, the core idea of our method was to trade
the cost for rebuilding the acceleration structure for the cost to transform the
rays to the local coordinate system of each object. This implies that every
ray intersecting an object has to be transformed via matrix-vector multi-
plications for both ray origin and direction (for every object encountered),
potentially resulting in several matrix operations per ray. With a ray tracing
performance of up to several million rays per second (see Chapter 7), this
can amount to many million matrix-vector multiplications per frame! For
example, the terrain and robots scenes at 640× 480 pixels require 1.6 and 1
million matrix operations, respectively (see Figure 9.5). Furthermore, more
transformations are often required during shading, e.g. by transforming the

9.8 Discussion 161

shading normal or for calculating procedural noise in the local coordinate
system.

office terrain robots
objects 9 661 161

matrix ops 480k 1.6M 1M

Table 9.5: Number of matrix-vector multiplies for our benchmark scenes (res-
olution 640x480). A matrix operation can be performed in only 23 cycles even
in plain C code, which is negligible compared to traversal cost.

However, the cost for these transformations in practice is quite toler-
able: Even for a straight-forward C-code implementation, a matrix-vector
operation costs only 23 cycles on an AMD AthlonMP CPU, which is rather
small compared to the cost for tracing a ray (which is in the order of several
hundred to a few thousand cycles). Note that the matrix-vector multiplies
are ideally suited for fast SSE implementation. This reduces this cost even
further, and makes the transformation overhead almost negligible.

9.8.2 Unstructured Motion

As could be expected, the museum scene has shown that unstructured motion
remains costly for ray tracing. A moderate number of a few thousand inde-
pendently moving triangles can easily be supported, but larger numbers still
lead to high reconstruction times for the respective objects (see Table 9.3).
As such, our method is still not suitable for scenes with strong unstructured
motion.

To support such scenes, algorithms for faster reconstruction of dynamic
objects have to be developed. Note that our method could also be combined
with Reinhard’s approach [Reinhard00] by using his method only for the
unstructured objects. Even then, lots of unstructured motion would still
create a performance problem due to the need to send all triangle updates
to the clients. This is not a limitation of our specific method, but would be
similar for any algorithm in a distributed environment.

9.8.3 Bounding Volume Overlap

One of the stress cases identified in [Lext00] was Bounding Volume Overlap.
In fact, this does create some overhead, as in the overlap area of two objects,
these two objects have to be intersected sequentially by each ray. As a result,

162 Chapter 9: Handling Dynamic Scenes

a successful intersection found during traversal of the first object may later-
on be invalidated by a closer one in the other object. In fact, this partially
disables “early ray termination” and thus negatively affects the occlusion
culling feature of ray tracing8.

Though it is easy to construct scenarios where bounding volume over-
lap would lead to excessive overhead, it is rarely significant in practice. In
fact, bounding volume overlap does happen in all our test cases, but has
never shown to pose a major performance problem. In fact, overlapping ob-
jects are exactly what happens all the time in bounding volume hierarchies
(BVHs) [Rubin80, Kay86, Haines91a], which have also proven to work rather
well in practice.

9.8.4 Teapot-in-a-Stadium Problem

The teapot-in-a-stadium problem is handled very well by out method: BSPs
automatically adapt to varying object density in a scene [Havran01]. This
is true for both object and top-level BSPs. In fact, our method can even
increase performance for such cases: If the ’teapot’ is contained in a separate
object, the shape of the ’stadium’ BSP is usually much better, as there is no
need any more for several BSP subdivisions to tightly enclose the teapot.

9.8.5 Over-Estimation of Object Bounds

Building the top-level BSP requires an estimate of the bounding box of each
instance in world coordinates. As transforming each individual vertex would
be too costly, we conservatively estimate these bounds based on the trans-
formed bounding box of the original object.

This somewhat over-estimates the correct bounds and thus results in some
overhead: During top-level BSP traversal, a ray may be intersected with an
object that it would not have intersected otherwise. However, this overhead
is restricted to only transforming and clipping the ray: After transformation
to the local coordinate system, such a ray is first clipped against the cor-
rect bounding box, and can thus be immediately discarded without further
traversal.

8Note that for shadow rays, finding intersections in the wrong order is not a problem,
as any valid intersection is sufficient to determine occlusion of a ray. Even so, Bounding
Volume Overlap may still lead to the situation that the object containing an occluder will
be traversed rather late during traversal of the toplevel structure.

9.8 Discussion 163

9.8.6 Scalability with the Number of Instances

Apart from unstructured motion, the main cost of our method results from
the need to recompute the top-level BSP tree. As such, a large number of
instances is expensive, as can be seen in the terrain scene. Thus, the number
of instances should be minimized in order to achieve optimal performance.
Usually, it is better to use a small number of large objects instead of many
small ones. For example, all static triangles in a scene should best be stored in
a single object, instead of using multiple objects. This is completely different
to approaches commonly used in OpenGL, in which many, small display lists
are used. Thus, some amount of manual adjustment and optimization may
be required when porting applications from OpenGL to OpenRT.

Even so, even the thousand complex instances can be rendered interac-
tively, and top-level reconstruction has not yet proven a real limitation in
any practical application. For moderate numbers of objects, top-level recon-
struction is virtually negligible.

On the other hand, supporting instantiation (i.e. using exactly the same
object multiple times in the same frame) is a valuable feature of our method,
as this allows for rendering complex environments very efficiently: With
instantiation, memory is required for storing only one copy of each object to
be instantiated, plus the top-level BSP, allowing to render even many million
triangles with a small memory footprint (see Figures 9.5 and 9.10). For
triangle rasterization, all triangles would still need to be handled individually
by the graphics hardware even when using display lists.

9.8.7 Scalability in a Distributed Environment

As can be seen by the experiments in Section 9.7, we achieve rather good
scalability even for many clients except for scenes that require to update a
lot of information on all clients, i.e. for a high degree of unstructured motion
(where every moving triangle has to be transmitted), and for a large number
of instances.

In the terrain scene, using 16 clients would require to send 676 Kb9 per
frame simply for updating the 661 transformation matrices on the clients.
Though this data can be sent in a compressed form, load balancing and
client/server communication further adds to the network bandwidth. With-
out broadcast/multicast functionality on the network, the server bandwidth
increases linearly with the number of clients. For many clients and lots of
updated data, this creates a bandwidth bottleneck on the server, and severely
limits the scalability (see Table 9.4). In fact, performance could even drop

9661 instances×16 clients×(4× 4) floats

164 Chapter 9: Handling Dynamic Scenes

when adding many more CPUs, as each new client increases the network
load. In principle, the same is true for unstructured motion, where sending
several thousand triangles to each client also creates a bandwidth bottle-
neck. On the other hand, both problems are not specific to our method, but
will apply similarly to any method running on such a distributed hardware
architecture.

9.8.8 Total Overhead

In order to estimate the total overhead of our method, we have compared
several scenes in both a static and dynamic configuration (also see Table 7.6
in Section 7). As there are no static equivalents for the BART benchmarks,
we have taken several of our static test scenes, and have modified them
in a way that they can be rendered in both a static configuration with all
triangles in a single, static BSP tree, as well as in a dynamic configuration,
where triangles are grouped into different objects that can then be moved
dynamically.

For simple scenes, the total overhead is relatively high10, compared to
the small cost of rendering a static version of these scenes, and even reaches
up to a factor of two in total rendering time (also see Chapter 7). For more
realistic scene sizes, however, the relative overhead is significantly less, and in
practice is often in the range of 20 to 30 percent, sometimes even less. This
is very fortunate, as the overhead is worst for simple scenes in which absolute
performance is highest anyway, and is relatively small for more costly scenes
in which a high overhead would hurt most. Furthermore, most practical
applications use rather complex scenes, and thus have a small overhead. As
such, we believe this overhead to be a reasonable price for the added flexibility
gained through supporting dynamic scenes.

9.9 Conclusions

The presented method is a simple and practical approach to handling dy-
namic scenes in an interactive distributed ray tracing engine. It can handle
a large variety of dynamic scenes, including all the BART benchmark scenes
(see Figure 9.6). It imposes no limitations on the kind of rays to be shot, and
as such allows for all the usual ray-tracing features like shadows, reflections,
and even global illumination (see Section 11 and Part III).

10Note that total overhead includes all the previously mentioned sources of overhead,
e.g. including toplevel reconstruction, bounding volume overlap, traversal cost, multiple
traversal setup cost, etc.

9.10 Future Work 165

For unstructured motion, the proposed method still incurs a high recon-
struction cost per frame, that makes it infeasible for a large number of inco-
herently moving triangles. For a moderate amount of unstructured motion
however (in the order of a few thousand incoherently moving triangles), it is
well applicable and results in frame rates of several frames per second at video
resolution. For mostly hierarchical animation our method is highly efficient
and achieves interactive performance even for highly complex models with
hundreds of instances, and with millions of triangles per object [Wald02a].
This is especially furtunate since many of todays scene graph libraries (espe-
cially in VR/AR and other industrial applications) mostly use only this kind
of animation.

The proposed technique forms a core part of the RTRT/OpenRT core,
and has been used exclusively in all of the published applications of this
system (also see the applications in Section 11 and Part III that all use this
technique). Though it is certainly possible to construct cases in which the
proposed method breaks down, so far is has been successfully able to handle
all the dynamic scenes that have been encountered in practical applications
of RTRT/OpenRT.

In conclusion, the proposed method of handling dynamic scenes is still
limited but nonetheless already good enough for a large class of applications.
Furthermore, the support for dynamic scenes in ray tracing is likely to im-
prove significantly in the near future as more researchers start looking at this
problem. Still, there remains a vast potential for future research in this area.

9.10 Future Work

At the moment, the main remaining scalability bottleneck lies in commu-
nicating all scene updates to all clients, making the total bandwidth linear
in the number of clients. Thus, future work will investigate to use network
broadcast/multicast to communicate the scene updates. As almost all of the
updated data is the same for every client, this should effectively remove the
server bottleneck. Furthermore, the above-mentioned concept of “geometry
shaders” seems to be an interesting option for reducing the scene update
bandwidth.

On the clients, the main bottleneck is the cost for reconstructing objects
under unstructured motion. This could be improved by designing specialized
algorithms for cases where motion is spatially limited in some form, such as
for skinning, predefined animations, or for key-frame interpolation.

For the top-level BSP, it could be highly beneficial to investigate the
use of cost functions. This especially includes finding ways of building such

166 Chapter 9: Handling Dynamic Scenes

high-quality BSPs in a fast and efficient manner.
Apart from these technical issues, it is also important to investigate how

existing applications can be mapped to our method, e.g. by evaluating how a
scene graph library such as OpenInventor [Wernecke94], OpenSG [OpenSG01],
OpenSceneGraph [OSG] or VRML [Carey97] can be efficiently implemented
on top of our system. Preliminary results seem promising [Dietrich04].

Finally, it is an obvious next step to integrate this techniques into a hard-
ware ray tracing architecture such as the SaarCOR architecture [Schmittler02]
(Section 5.3). As such an architecture avoids most of the distribution prob-
lems we have in our PC cluster, such a mapping should be highly successful.
First results are encouraging.

Chapter 10

The OpenRT Application
Programming Interface

In the preceding chapters, all the basic constituents of a complete realtime
ray tracing engine have been described: A highly efficient ray tracing kernel
for modern CPUs (Section 7), its efficient parallelization (Section 8), and a
simple yet efficient framework for handling dynamic scenes (Section 9).

Once these “building blocks” have successfully been merged, essentially
all the technical requirements for realtime ray tracing are fulfilled. However,
a key issue for reaching the scenario of realtime ray tracing on everybody’s
desktop is widespread application support, which requires a standardized and
commonly accepted API. Roughly speaking, having a powerful new technol-
ogy is one thing, having a good means of making the power of this technology
available to the “average end user” is a totally different story. For hardware
rasterization, this role of a powerful and widely accepted API has been taken
by OpenGL [Neider93]1, which today is used by almost any graphics appli-
cation, and which is well-known to virtually any graphics developer. Ideally,
one could simply adopt OpenGL for ray tracing, in which case any existing
OpenGL application could transparently render its images using ray trac-
ing. Thus, one could (in theory) write an OpenGL “wrapper library” in the
spirit of WireGL/Chromium [Humphreys02], that would perform the state
tracking, would extract a ray-tracing suitable scene description from that,
and would then call the ray tracer. The extended capabilities of ray trac-
ing – namely shaders and global effects – could then be made available to
the graphics programmer via the use of the well-known OpenGL extension
mechanism (i.e. by offering a “GL ARB RAYTRACE” extension).

Unfortunately, this is but a mere theoretical option. as OpenGL and

1And, more recently, also by DirectX and Direct3D [DirectX].

168 Chapter 10: The OpenRT API

similar graphics APIs are too closely related to the rasterization pipeline.
These APIs clearly reflect the stream of graphics commands that is fed to
the rasterization pipeline, and as such also closely reflect the capabilities and
limitations of the rasterization approach. In contrast to OpenGL, Render-
Man [Pixar89, Apodaca90, Hanrahan90, Upstill90, Apodaka00] offers a more
suitable high-level API that also supports ray tracing. However, these APIs
offer almost no support for interactive applications, and are thus not well
suited for driving interactive applications.

Another option would be the use of an existing high-level scene graph li-
brary such as Performer, OpenInventor, OpenSG, OpenSceneGraph, or oth-
ers [Rohlf94, Wernecke94, OpenSG01, OSG] for driving the ray tracer. This
would already enable many new applications and would already reach a large
number of potential users. However, the level of abstraction of such high-
level scene graphs is too high for a generic ray tracing API, often is too
application specific, and is unnecessarily restrictive. Being a low-level API,
OpenGL allowed for all the “non-intended” uses (e.g. multipass rendering)
while still allowing for layering higher-level APIs on top of it. In order not
to unneccessarily restrict the potential uses of the API, it seems appropriate
to follow this approach and design the API to be as low-level and flexible as
possible. This allows for performing all the tasks that it is mainly thought
for today, while still being flexible enough to adapt to potentially changing
demands in the future.

As discussed above, none of the commonly available graphics APIs could
be easily adopted for our ray tracing engine without unnecessary restrictions
of its functionality. As such, we have decided to design a new API explic-
itly for realtime ray tracing. Ideally, such an API for realtime ray tracing
should not only be an API specific to a certain implementation (i.e. the
RTRT kernel), but should be both general and powerful enough to support
the upcoming trend towards more widespread use of realtime ray tracing in
general. Thus, we have designed our API with the following guidelines in
mind:

• The API should be as low-level as possible in order to be able to layer
higher-level scene graph APIs on top of it.

• It should be syntactically and semantically as similar to an existing,
widely used graphics API as possible, in order to facilitate porting of
existing applications and for leveraging programmers’ experiences. Be-
ing the most commonly adopted graphics API, we have chosen OpenGL
as a “parent API” to our new API, and have thus called it “OpenRT”.

• It should be as powerful and flexible as RenderMan for writing shaders

10.1 General Design of OpenRT 169

in order not to restrict the kinds of shading functionality that can be
realized through this API.

The OpenRT API [Wald02a, Wald03e, Dietrich03] has been designed ex-
plicitly with these key observations in mind. While OpenRT so far has been
implemented only on top of the previously mentioned RTRT kernel, it is
not specific to this system. For example, the entire cluster infrastructure of
the RTRT system has been completely abstracted from, and is not reflected
in the API. Already today, two different implementations of this API are
available, a distributed cluster version and a “stand-alone” shared-memory
version (although both actually build on the same RTRT core). In the near
future, it is planned to also use this OpenRT API for driving the SaarCOR
architecture (Section 5.3).

10.1 General Design of OpenRT

As briefly mentioned above, one problem in designing OpenRT was choosing
the right “parent” API to inherit ideas from: While it is generally a good
idea to stay close to popular APIs – allowing to draw from a wide range
of experienced people – there is the open question what API exactly to
inherit from. On one side, OpenGL is the favorite API for writing interactive
applications – it is very powerful, many people are experienced in OpenGL,
and there is a huge amount of documentation and practical applications using
OpenGL. On the other hand, OpenGL does not really fit a ray tracing engine:
For example, it is mostly an immediate-mode API, and does not have any
support for specifying shaders or for handling secondary effects (reflections,
refraction) in a sensible manner.

In contrast to OpenGL, there are many APIs (like RenderMan2, POV-
Ray, etc.) that allow for taking advantage of all the benefits of ray tracing,
but which are usually not applicable to interactive settings.

On the other hand, writing shaders and writing applications are usually
two fundamentally different (though inter-playing) parts that can be realized
with different APIs. As such, it is possible to take the best of both worlds,
by using a RenderMan like API for writing shaders, and an OpenGL like
API for writing the application. With this in mind, OpenRT has not been
designed as one single graphics API, but actually consists of two mostly
independent parts: One part is concerned with application programming,

2RenderMan was originally not designed to be a “ray tracing” API, but mainly to drive
the REYES [Cook87] architecture. However, its flexibility and powerful shading language
allow for also using it for ray tracing and global illumination, see e.g. [Gritz96, Slusallek95].

170 Chapter 10: The OpenRT API

i.e. specifying geometric primitives, handling transformations and user in-
put, handling textures, loading and communicating with shaders (but not
writing them!), etc. This part of the API has been designed to be as close
to OpenGL as possible. The second part of OpenRT describes how shaders
are written – essentially describing a shading language – which has inherited
much functionality from the RenderMan language, though it is not yet as
flexible as “full” RenderMan.

10.1.1 Shader API – Application API Communication

All that is required to use this concept of having two separate parts of the
same API is a minimal interface between these two subsystems. In OpenRT,
this interface is realized via shader parameters (see below): Shaders are writ-
ten independently from the application, and are stored in shared library files.
Each shader “exports” a description of its shader parameters which control its
shading calculations (e.g. the surface material properties to be implemented
by this shader) but otherwise performs all its computations independently
from the application. The application API then offers calls for loading these
shaders, for binding them to geometry, for acquiring “handles” to their pa-
rameters, and for writing data to their parameters. For a closer description
of this process, see below.

Having a clear abstraction layer between application interface and shad-
ing language it is also possible to exchange any of these two parts without
affecting the other. For example, it would be possible to use different shad-
ing languages like e.g. Cg [Mark03, Fernando03], OpenGL 2.0 Shading lan-
guage [Kessenich02], or RenderMan [Upstill90, Apodaca90, Apodaka00] for
writing the shaders, while still using the same application interface.

Instead of adopting another API as a parent API, it would also have been
possible to create a completely new, independent API from scratch. Such
approaches however tend to reinvent the wheel, and often have problems
getting widely accepted (and used) by the users.

10.2 Application Programming Interface

As just described the application programming part of OpenRT has been
designed to be as close to OpenGL as possible. As a rule of thumb, OpenRT
offers the same calls as OpenGL wherever possible (albeit using “rt” as a
prefix instead of “gl”), and only uses different calls where a concept of ray
tracing has no meaningful match in OpenGL (or vice versa). In particular
any calls for specifying geometry (i.e. vertices or primitives), transformations,

10.2 Application Programming Interface 171

and textures have identical syntax and semantics as OpenGL. This simplifies
porting of applications where large parts of the OpenGL code can be reused
without changes.

10.2.1 Semantical Differences

Note however that OpenRT is not compatible with OpenGL. In fact, the
general rule often has been to use the same syntax where possible but not
supporting all semantical details that do not easily fit a ray tracer. In practice
that means that there are several concepts in which OpenRT can be used
just as a “typical” user would use OpenGL, even though the actual semantics
slightly differ. For example, the viewpoint in OpenGL is usually specified
via calls to gluLookAt and gluPerspective. While OpenRT offers exactly
the same functions with the same parameters (consequently called rtLookAt

and rtPerspective) that also specify the camera position, OpenRT does
not exactly follow the OpenGL semantics of having these functions change
a “perspective transform” which in OpenGL could also be used for other
applications, e.g. projective textures. Supporting these semantical details
in OpenRT does not make much sense, as a ray tracer uses the much more
general and flexible concept of a camera shader instead of a perspective
transformation.

Though there are actually several of such low-level semantical differences,
most are actually not very important for practical applications, as they usu-
ally appear only for concepts in which the ray tracer offers a more general
concept (such as a freely programmable camera shader) anyway. In fact,
many users of OpenRT take quite a while to discover the first of these dif-
ferences at all. While these semantical differences obviously make porting
more complicated, the two main goals of making OpenRT similar to OpenGL
are not successfully realized with this approach: First, to the average user,
OpenRT appears quite similar to OpenGL, and thus is easy to learn, under-
stand, and accept as a new API. Second, none of the flexibility, features and
functionality of ray tracing have to be sacrificed in order to be comply to
OpenGL features that simply don’t match.

10.2.2 Geometry, Objects and Instances

The main issue with using OpenGL for ray tracing is the fact that no informa-
tion is available about the changes between successive frames. In OpenGL,
even unchanged display lists can be rendered differently in successive frames

172 Chapter 10: The OpenRT API

due to global state changes in-between the frames3. This however does not
map to a ray tracing engine, which needs information on which parts of a
scene did or did not change since the last frame in order to achieve interac-
tive performance (see Section 9). Therefore, instead of display lists OpenRT
offers objects (see Figure 10.1). Objects encapsulate geometry together with
references to shaders and their attributes. In contrast to display lists, ob-
jects may not have any side effects and as such changing the definition of
one object can never affect the shape or appearance of any other object. On
the other hand, global side effects are still possible (and usually beneficial)
for the appearance of an object: As the primitives only store references to
shaders, changing a shader at any later time will immediately change the
appearance of all the primitives that this shader is bound to4.

Objects are defined using an rtNewObject(id)/rtEndObject() pair. Each
object is assigned a unique ID that is used to instantiate it later by a call to
rtInstantiateObject(ID). Note how this is (intentionally) very similar to
OpenGL’s way of handling display lists (i.e. glNewList(id),glEndList()
and glCallList(id)).

Essentially, an instance consists of a reference to an object, together with
a transformation matrix that this object is subject to (see Figure 10.1).
Therefore, re-instantiating an object with a different transformation will
change the position of the object in the scene (also see the part on han-
dling dynamic scenes in RTRT, Section 9).

In order to support unstructured motion, each object can be redefined at
any time by calling rtNewObject with the same object ID. Note that here
too, global side effects can take place once an object is changed: Redefining
an object automatically changes all the instances that have instantiated the
redefined object. Note that this API functionality perfectly matches the
requirements of the previously proposed method to handle dynamic scenes
as outlined in Section 9.

Here again, the detailed semantics of OpenGL display lists and OpenRT
objects/instances are slightly different. For example, certain “special fea-
tures” (such as the above-mentioned global state changes) are not supported
by OpenRT objects. However, the way that the “average user” uses a display

3Actually, this “feature” of changing the effects of a display list by global state changes
often even happens in the same frame.

4In OpenRT, the shape of the object (i.e. its triangles and vertices) is captured in the
kd-tree, and will not be affected by any global state changes lateron. The appearance of
the object if described by its references to the respective shaders (and, of course, by the
global light sources shaders), and thus can change lateron by changing these respective
shaders (see Figure 10.1. Even though this allows for side effects, it is conceptually slightly
different from side effects through global state changes in OpenGL.

10.2 Application Programming Interface 173

Transorm ObjID

InstanceList[Ninst]

name file params

Shader List[Nshaders]

acc0

acc1

...

accN−1

TriAccel[Ntri]

vtxA vtxB vtxC shader

TriDesc[Ntri] VtxPos[Nvtx]

Px, Py, Pz

VtxNor[Nvtx]

Nx, Ny, Nz

TxtCoord[Nvtx]

Tx, Ty, Tz

BSP triAccel triDesc vtxPos vtxNor txtCoord

Object List [Nobj]

O
bj

ec
t 0

O
bj

ec
t 1

Figure 10.1: In the RTRT/OpenRT system, all geometry is encapsulated in
objects. Each object (the grey block) contains the vertices, triangle descrip-
tion records, as well as their local acceleration structure. Each triangle con-
tains references to its three vertices, as well as to its globally defined shader.
In fact, each of these objects corresponds exactly to the RTRT Kernel data
structures as described previously in Section 7. In order to take effect, objects
are instantiated, where each instance consists of an object ID and a trans-
formation that this object is subject to (which corresponds to our method for
handling dynamic scenes, as described in Section 9 and Figure 9.2). The en-
tire scene then consists of the list of objects, the list of shaders, and the list of
instances. Objects, shaders, and instances reference themselves by ID only,
thereby allowing for dynamic and fully automatic side effects when changing
any of these records.

list (i.e. for encapsulating a certain part of a scene graph for faster rendering)
corresponds exactly to what an OpenRT object is being used for. As such,
most users will hardly see the difference at all.

10.2.3 Shading, Shaders and Lighting

In order not to be limited by the fixed reflectance model of standard OpenGL,
OpenRT does not offer or emulate the OpenGL shading model at all, but
rather supports programmable shaders similar to RenderMan [Pixar89]. Shaders
provide a flexible “plug-in” mechanism that allows for modifying almost any

174 Chapter 10: The OpenRT API

functionality in a ray tracer, e.g. the appearance of objects, the behavior of
light sources, the way that primary rays are generated, how radiance val-
ues are mapped to pixel values, or what the environment looks like. In its
current version, OpenRT supports all these kinds of programmability by of-
fering support for “surface”, “light”, “camera”, “pixel”, and “environment”
shaders, respectively.

In terms of the API, shaders are named objects that receive parameters
and can then be referenced lateron by name or ID, e.g. in order to attach
(“bind”) a surface shader to geometry. The syntax and functionality are es-
sentially the same as the functionality to specify texture objects in OpenGL:
A set of shader IDs is allocated by rtGenShaders(), and a shader with a
certain ID is then loaded by rtNewShader(ID). lateron, a previously defined
shader can be activated at any time by rtBindShader(ID), e.g. in order
to assign to some geometric primitives. Binding shaders to geometry works
similarly to how materials properties are “assigned” in OpenGL: The appli-
cation just binds a certain shader, at which stage all primitives issues after
this call get this respective shader assigned to them.

Once the primitive is issues, the ID of the shader bound to the respec-
tive triangle is stored with the respective triangle. As changing individual
triangles is only possible by redefining the respective object containing that
triangle, this shader-primitive binding can not be changed any more without
redefining the object and re-issueing the primitives with a differently bound
shader. Note however that the triangles actually store only references to
their respective shader (in fact, the ID of the shader). As such, changing the
shader associated to these triangles itself (i.e. loading a new shader with the
same ID as the original one) thus allows for changing the appearance of the
respective triangle or object without having to touch any triangle or object
at all.

10.2.3.1 Parameter Binding

For communicating with the applications, shaders export “parameters”, each
parameter having a symbolic name (e.g. “diffuse”). The application can then
register a handle to a specific shader parameter (rtParameterHandle()), and
can write to that parameter with a generic rtParameter() call. Note that
the syntax and semantics for defining and accessing shader parameters is al-
most exactly the same as proposed in the Stanford shader API [Proudfoot01,
Mark01]. A shader can specify its parameters to reside in different “scopes”,
i.e. a shader can be specified to be stored per vertex, per triangle, per ob-
ject, or per scene. For example, a Phong shader would most likely want to
have its material parameters stored per shader, whereas a radiosity viewer

10.2 Application Programming Interface 175

might want to store certain radiosity values in the vertices5. These differ-
ent ways to specify parameters allow for optimizing shaders and minimize
storage requirements.

Using a parameter binding by name allows for a very flexible way of having
an application communicate with many different kinds of shaders. For exam-
ple, if a VRML viewer [Dietrich04]) follows the convention to always assign
the diffuse component of its VRML material to the “diffuse” parameter of a
shader, all that different shaders have to do to get access to the applications
material model is to implement and export the respective shaders. In this
example, the same diffuse parameter value can be used for both a simple flat
shader as well as for a shader implementing interactive global illumination.
Neither application nor shader have to know anything else about each other
except that they follow this convention6. Overhead due to binding by name
is not an issue: Once the “handle” to the parameter has been acquired by
the application, the assignment itself does not have to consider any symbolic
names any more.

10.2.3.2 Lighting

The same argument given for materials is actually true for lighting: The
OpenGL lighting model simply is too limited for a ray tracer to be useful.
As such, all lighting calculations are implemented via programmable light
source shaders (see below).

For convenience and compatibility, the OpenRT library comes equipped
with default implementations for all the typical OpenGL (or VRML) light
source types like point lights, spot lights, directional lights, or ambient lights.
Even so, loading these shaders is different from specifying a light source
in OpenGL (via glLight()), and requires special handling when porting
applications.

10.2.4 A Simple Example

Obviously, this thesis can not give a complete description of the full OpenRT
API with all its details. However, for readers being familiar with both

5Obviously, it could do this also by storing them in the triangles vertex colors
6If the application tries to assign a value to a parameter that a shader never actually

exported, this “invalid” assignment will be detected and ignored. This can be very useful
for many applications: For example, a typical VRML application [Dietrich04] might simply
assign the typical VRML material properties to each shader (writing to parameters named
“diffuseColor”, “specularColor”, etc.). If the shader writer wants to have access to the
VRML materials “diffuseColor”, it simply has to export a parameter with that name.

176 Chapter 10: The OpenRT API

OpenGL and with the concepts of a ray tracer, the following simple example
should give a good overview of how OpenRT is used in practical applica-
tions 7.

// EightCubes.c:

// Simple OpenRT example showing

// eight rotating color cubes

#include <rtut/rtut.h> // include GLUT-replacement

#include <openrt/rt.h> // include OpenRT header files

RTint createColorCubeObject()

{

// Create an object for our

// vertex-colored cube

// Step1: Define the *class* of a vertex color shader

int cid = rtGenShaderClasses(1);

//allocate one slot for a shader class

rtNewShaderClass(cid,’’VertexColor’’,’’libVertexColor.so’’);

// load shader class ‘‘VertexColor’’ from a shared library

// Step2: Create one instance of that shader class

int sid = rtGenShaders(1);

// allocate one slot for a shader instance

rtNewShader(sid); // creates an instance of the

// currently bound shader class

...

// Step3: Define the object

RTint objId = rtGenObjects(1);

rtNewObject(objId, RT_COMPILE);

// Step3a: Bind the shader

rtBindShader(sid);

// Step3b: Specify transforms

rtMatrixMode(RT_MODELVIEW);

rtPushMatrix();

rtLoadIdentity();

// scale the cube to [-1,1]^3

7The example given below uses a slightly outdated version of the OpenRT API (pre-
1.0). In the most up-to-date version (currently 1.0R2), the example would look slightly
different.

10.2 Application Programming Interface 177

rtTranslatef(-1, -1, -1);

rtScalef(2, 2, 2);

// first cube side

// Step3c: Issue geometry

rtBegin(RT_POLYGON);

rtColor3f(0, 0, 0);

rtVertex3f(0, 0, 0);

rtColor3f(0, 1, 0);

rtVertex3f(0, 1, 0);

rtColor3f(1, 1, 0);

rtVertex3f(1, 1, 0);

rtColor3f(1, 0, 0);

rtVertex3f(1, 0, 0);

rtEnd();

// other cube sides

...

rtPopMatrix();

rtEndObject(); // finish building the object

return objId; // return object’s ID to the caller

}

int main(int argc, char *argv[]) {

// Init, open window, etc.

// virtually exactly the same as any GLUT program

rtutInit(&argc, argv);

rtutInitWindowSize(640, 480);

rtutCreateWindow("Simple OpenRT Example");

// set Camera

rtPerspective(65, 1, 1, 100000);

rtLookAt(2,4,3, 0,0,0, 0,0,1);

// generate object *once*

objId = createColorCubeObject();

for (int rot = 0; ; rot++) {

// instantiate object eight times,

// re-instantitate object for every frame

// with different transformation

rtDeleteAllInstances();

for (int i=0; i<8; i++) {

int dx = (i&1)?-1:1;

178 Chapter 10: The OpenRT API

int dy = (i&2)?-1:1;

int dz = (i&4)?-1:1;

// position individual objects

rtLoadIdentity();

rtTranslatef(dx,dy,dz);

rtRotatef(4*rot*dx,dz,dy,dx);

rtScalef(.5,.5,.5);

rtInstantiateObject(objId);

}

// start rendering and display the image

// frame buffer automatically handled by RTUT

rtutSwapBuffers();

}

return 0;

}

After opening a window, the “main” function first generates a vertex-
colored RGB cube with a shader that just displays the interpolated vertex
color. The cube is generated by first loading the “VertexColor” shader class
from its shared library file, creating a single instance of it, and defining
an object containing the geometry for the sides of the triangle. After the
object has been completed, the “for”-loop creates eight rotating instances
of this cube by re-instantiating each of the eight instances with a different
transformation in subsequent frames. In fact, this simple example already
features most of the important features of OpenRT: Specifying objects and
instantiating them, issuing geometry, loading shaders, animating the objects,
specifying the camera, and opening and using a window8.

Being similar to OpenGL, this example should be easy to understand –
and extend – by any slightly experienced OpenGL programmer. Of course,
this is but a very simple example, and real programs will be considerably more
complex. For example, a real program also has to load textures, specify light
shaders, assign shader parameters, aso. Still, using advanced ray tracing
effects in OpenRT is significantly simpler than generating the same effect
in an OpenGL program: For example, rendering a scene once with global
illumination effects and once without only requires to load a different shader
– e.g. changing the shader name in “rtNewShaderClass” from “VertexColor”

8Though the example uses RTUT (a GLUT) replacement, it is not required to use this
interface. It is also possible to directly get access to the ray tracers frame buffer, and to
display this e.g. via OpenGL

10.2 Application Programming Interface 179

to “InstantGlobalIllumination” (see Part III) – without having to touch any
other code in the program.

10.2.5 Semantical Differences to OpenGL

As already mentioned before, there are several issues on which OpenRT se-
mantically differs from OpenGL.

10.2.5.1 Retained Mode and Late Binding

For example, OpenRT differs from the semantics of OpenGL when binding
references. OpenGL stores parameters on its state stack and binds references
immediately when geometry is specified. This is natural for immediate-mode
rendering, but does not easily fit a ray tracer. OpenRT instead extends the
notion of identifiable objects embedding state, similar to OpenGL texture
objects. However, this binding is performed only during rendering once the
frame is fully defined. This approach significantly simplifies the reuse of
unchanged geometric objects across frames, thus getting rid of the need to
redefine such unchanged objects every frame. On the other hand this means
that any changes to an objects or shader defined in a previous frame might
also affect the appearance of geometry defined earlier. For example, changing
a shader parameter will automatically change the appearance of all triangles
that this shader is bound to, even if those triangles have been specified in
an earlier frame. Similarly, redefining a geometric object will automatically
and instantly change the shape of all instances of that object, even if those
have been defined in a previous frame. Though this sounds obvious, it can
lead to somewhat unexpected results for people being used to OpenGL. For
example, the code sequence

rtGenNewShaderClass(‘‘Diffuse’’,’’libDiffuse.so’’);

RTint diffuse = rtParameterHandle(‘‘diffuse’’);

rtParameter3f(diffuse, 1.f,0.f,0.f);

<triangle A>

rtParameter3f(diffuse, 0.f,1.f,0.f);

<triangle B>

rtSwapBuffers(); // render frame

will actually result in two triangle that are both green9, which is not what an
OpenGL-experienced programmer would expect.

9Both triangles share the same shader. Until the two triangles are actually rendered
during rtSwapBuffers, that shaders diffuse parameter has been set to green. Whether or
not that parameter has had a different value when specifying triangle A does not make a
difference.

180 Chapter 10: The OpenRT API

Thus, these semantics are natural for a ray tracer but require careful
attention during porting of existing OpenGL applications. More research is
still required to better resolve the contradicting requirements of rasterization
and ray tracing in this area.

10.2.5.2 Unsupported GL Functionality

Finally, some OpenGL functions are meaningless in a 3D ray tracing context
and consequently are not supported in OpenRT. For instance, point and line
drawing operations are not (currently) supported, and effects like “stipple
bits” and “fill modes”, as well as 2D frame buffer operations make little sense
for a ray tracing engine either. Similarly, fragment operations, fragment tests,
and blending modes are no longer useful and can be better implemented using
surface and pixel shaders if necessary. Traditionally ray tracing writes only a
single “fragment” to each pixel in the frame buffer after a complete ray tree
has been evaluated. Thus the usual ordering semantics of OpenGL and its
blending operations that are based on the submission order of primitives are
no longer meaningful, either.

However the lack of this functionality so far has not been a problem
for any of the applications already written on top of OpenRT: While these
unsupported operations are very important for triangle rasterization, their
main use is for multi-pass rendering. With the powerful shader concept
offered by OpenRT, multipass-rendering is not neccessary any more, so this
functionality so far has not been missed yet.

10.2.5.3 Frame Buffer Handling

Instead of writing the pixels to a hardware frame-buffer OpenRT renders into
an application-supplied memory region as a frame buffer. This, however, is
only due to the current hardware setup which uses a software implementa-
tion. For more dedicated ray tracing hardware, this is likely to change. For
example, an OpenRT application on top of the SaarCOR architecture (Sec-
tion 5.3) would most likely have the option to use a hardware frame buffer
with direct VGA output instead of always transferring the rendered pixel
values back to the application for display.

The above described “late binding”10 also results in up to one frame of
additional latency compared to OpenGL. The rasterization hardware can
already start rendering as soon as the first geometric primitive is received by
the renderer, and renders each primitive directly once it is specified (except

10Sometimes also called “frame semantics” to stress its difference from “immediate mode
semantics”

10.3 OpenRTS Shader Programming Interface 181

for some buffering in the driver). Once all primitives have been sent to the
graphics card, the resulting image as such is already finished. In contrast to
this, the ray tracer has to wait for the full scene to be completely finished
before it can actually start tracing any rays.

10.3 OpenRTS Shader Programming Interface

As motivated in the introduction of this chapter, the shader API in OpenRT
(called “OpenRTS”) has intentionally been designed to be mostly indepen-
dent of the core API for writing applications. In order to allow for all the
typical ray tracing effects that users are already used to, this API is as sim-
ilar to RenderMan as possible, and closely reflects the “shader concept” as
described in Section 2.2.4.1.

10.3.1 Shader Structure Overview

The base class of all shaders in OpenRT is the “OpenRT Plug-in”, i.e. an en-
tity that can be loaded dynamically from a file, and which offers functionality
for registering itself and exporting its parameters11. Once a parameter has
been exported, the application can lateron bind a ’handle’ to this parameter,
and can assign values to it (see the above OpenRT example). Apart from
registration and parameter export, all RTPlugins are equipped with an Init

and NewFrame method that can be overwritten by its subclasses.

All other shader types – i.e. surface, light, camera and pixel shaders, and
the rendering object (see below) – are derived from this base class, and as
such can all be parameterized by the application.

10.3.1.1 Surface Shaders

The most common shader types in OpenRT obviously are surface shaders.
Surface shaders have a virtual “Shade” function that is expected to return the
color of the ray it got passed. For the shading operations, the surface shader
has access to an extensive API for accessing scene data (e.g. vertex positions,
normals, or texture coordinates) and for querying data concerning the ray
and hit point (such as the shading normal, the ray origin and direction, the
transformation that the hit object is subject to, etc). To differentiate these

11For convenience, we only speak about C++ classes for specifying shaders. Though
OpenRT in principle also allows for writing pure C-code shaders, C++ classes are actually
more natural for implementing a shader concept and as such are usually preferred.

182 Chapter 10: The OpenRT API

shader API functions from those of the core OpenRT API, all these functions
(except class methods) start with the prefix “rts”.

10.3.1.2 Accessing Light Sources

In order to access light sources, a surface shader can query a list of light
shaders over which it can iterate. The surface shader can then call back to
each light shader (via rtsIlluminate(...)) to ask it for an “illumination
sample”, or “light sample”. A “light sample” consists of all 3 values required
for doing the lighting calculations in the surface shader: The direction to-
wards the light, its distance (possibly infinite), and the intensity with which
it influences the hit position.

Once a light shader has returned its light sample, this sample forms a com-
plete shadow ray description with origin, direction, and maximum distance.
This shadow ray description can then (but does not have to) be used by
the surface shader to compute shadows by calling rtsOccluded(...) with
this light sample, which in turn uses the ray tracing core to cast a shadow
ray. If semi-transparent occluders are used, the surface shader can also use
rtsTransparentShadows() instead of rtsOccluded, which will iterate over
all the potential occluders along the shadow ray to compute the attenuated
contribution of the light source.

10.3.1.3 Casting Secondary Rays

Except for casting shadow rays via rtsOccluded() (or via rtsTransparent-

Shadows() for computing transparent shadows), further secondary rays can
also be shot via rtsTrace. This rtsTrace shoots an arbitrarily specified ray,
determines the hit point, calls the respective shader at that hit point, and
returns the color computed by that shader. In case the ray did not hit any
objects, rtsTrace automatically calls the environment shader for computing
the color of that ray.

While rtsTrace already allows for all kinds of rays to be generated and
shot, OpenRT offers several “convenience functions” for the most often used
kinds of secondary rays, like e.g. rtsReflectionRay(), rtsRefractionRay(),
rtsTransparencyRay(), etc.

10.3.1.4 Light Shaders

Similarly to the “Shade” function of the surface shaders, light shaders have
a virtual Illuminate method that can be overridden to write new kinds of
light shaders. As described above, OpenRT already comes equipped with the
most common light source shaders like point, spot, and directional lights. For

10.3 OpenRTS Shader Programming Interface 183

global illumination purposes, OpenRT also contains a few area light source
shaders. As the surface shader expects illuminate to return a single light
sample, these area light shaders take a list of pseudo-random numbers that
they got passed from the surface shader to create a light sample. If a surface
sample needs multiple samples from the same light source, it has to call
rtsIlluminate several times with different random numbers.

10.3.1.5 Camera Shader

Camera shaders work in a similar way as surface and light shaders: Each
camera shader has a single virtual function for initializing and returning a
primary ray through the pixel, which will then be cast into the scene via
rtsTrace().

10.3.1.6 Environment Shader

Environment shaders are automatically called for all rays traced via rtsTrace
that did not hit an object. In fact, an environment shader is a shader like
any other (i.e. with a Shade() function), except that it does not make any
sense to query any hit point information within the shading code.

10.3.1.7 The Rendering Object Concept

Whereas all the surface, light, camera, and environment shaders are typical
shader types in any programmable shader concept, OpenRT additionally of-
fers the concept of a “rendering object”. A rendering object is responsible for
actually computing pixel values, and as such enables the user to completely
change the way that the ray tracer works. Typically, a rendering object will
call a camera shader to generate a primary ray through each pixel, will call
rtsTrace, and will let the respective surface shaders do the rest.

For special applications however, the rendering object can skip this flex-
ible though costly shader concept, and can perform the rendering in a more
“hard-coded” way, e.g. by directly using the fast RTRT packet tracing code
with a hard-coded shading model. Similarly, many global illumination algo-
rithms do not easily fit the above surface shader concept12, but can be quite
efficiently implemented as a rendering object. As such, rendering objects
greatly extend the range of applications that can be realized with OpenRT.

12For example, the above shader concept expects a shader to compute the color of a ray,
whereas many global illumination algorithms require evaluation of a BRDF with given
incoming and outgoing directions (such as bidirectional path tracing), or sampling of a
BRDF (e.g. for photon shooting or generation of light- and eye-paths).

184 Chapter 10: The OpenRT API

However, rendering objects are an advanced concept of OpenRT, and should
be used with extreme care.

10.3.2 A Simple Shader Example

Obviously, the above explanation is but a very brief sketch of the OpenRT
shader concept. The complete description of the shader API is beyond the
scope of this thesis. More information on OpenRT and OpenRT shading
can also be found in the respective OpenRT manuals and tutorials (see
e.g. [Wald]).

As for the previously described application part of the OpenRT API, how
the OpenRT Shader API is actually used in practice can best be described
with a simple example. As such, the following example implements some
simple (though typical) OpenRT shaders, one light shader and one surface
shader. The surface shader implements a simple diffuse shader, parameter-
ized by a diffuse color and an ambient term). The light shader implements
a typical point light source consisting of position and intensity, and with a
hard-coded quadratic intensity falloff.

10.3.2.1 Simple Diffuse Shader

class SimpleDiffuse : public RTShader {

RTVec3f diffuse;

RTVec3f ambient;

RTvoid Register() {

// register parameters

rtDeclareParameter("diffuse", PER_SHADER,

offsetof(diffuse),sizeof(diffuse));

rtDeclareParameter("ambient", PER_SHADER,

offsetof(ambient),sizeof(ambient));

}

RTvoid Shade(RTState *state)

{

RTVec3f color = ambient; // init with ambient color

RTVec3f P; // surface hit position

RTVec3f N; // normal

rtsGetHitPosition(state,P);

rtsFindShadingNormal(state,N);// interpolate normal, make

// sure it faces toward the viewer

10.3 OpenRTS Shader Programming Interface 185

RTState shadow = *state; // init shadow ray state

RTenum *light; RTint lights;

lights = rtsGlobalLights(&light);

for (int i=0;i<lights;i++)

{ // iterate over all light sources

rtsIlluminate(light[i],P,&shadow,NULL);

if (rtsOccluded(&shadow))

continue; // test for shadows

Vec3f L; // light direction

Vec3f I; // light intensity

rtsGetRayDirection(&shadow,L);

rtsGetRayColor(&shadow,I);

RTfloat cosine = N * L; // dot product

I *= diffuse; // component-wise mult.

color += (cosine * I);

}

rtsReturnColor(state,color);

}

};

rtsDeclareShader(SimpleDiffuse, SimpleDiffuse);

10.3.2.2 Simple PointLight Shader

class SimplePointLight : public RTLight {

RTVec3f position;

RTVec3f intensity;

RTvoid Register() {

rtDeclareParameter("position",

offsetof(position),sizeof(position));

rtDeclareParameter("intensity",

offsetof(intensity),sizeof(intensity));

}

RTvoid Illuminate(RTState *state) {

RTVec3f P; // surface hit point

rtsGetRayOrigin(state,P);

RTVec3f L = position - P; // direction towards light

RTfloat distance = Lenght(L);

186 Chapter 10: The OpenRT API

Normalize(L);

RTVecf3 I = intensity * 1./(distance * distance);

// quadratic distance attenuation

rtsSetRayDirection(state,L);

rtsSetRayMaxDistance(state,length - Epsilon);

rtsReturnColor(state,I);

}

};

rtsDeclareShader(SimplePointLight, SimplePointLight);

10.4 Taking it all together

Having now described all the different parts of the API, it is important to
briefly summarize how these different parts actually play together. To do
this, we will briefly go – step by step – through the process of rendering a
frame:

1. First, the application specifies the scene itself, i.e. it loads and param-
eterizes shaders, specifies objects and instances, issues geometry, sets
the frame buffer, etc. All the time, the OpenRT implementation makes
sure that all these calls get executed on all rendering clients, be it the
local CPU, remote cluster clients, or a hardware architecture.

2. Once the scene is specified, the application calls rtSwapBuffers to tell
the ray tracer that any scene updates are finished and that it should
render a frame.

3. Upon rtSwapBuffers the OpenRT library calls the user-programmable
rendering object to actually perform the rendering computations. In a
single-CPU or shared-memory version, the rendering object will simply
render a complete frame. In the distributed cluster version, the ray
tracer will automatically perform the load distribution, load balancing,
and communication between the clients and the server. As such, it
will automatically request each client’s respective rendering object to
render one or more tiles.

4. The rendering object iterates over all the pixels in its frame (respec-
tively tile), and calls the user-programmable camera shader to generate
a primary ray through that tile.

10.4 Taking it all together 187

5. Once a valid primary ray has been generated, the rendering object tells
OpenRT to trace this ray and compute its color. To do this, OpenRT
uses the RTRT kernel to trace the ray and find a hit point.

6. If no valid hit could be found, OpenRT automatically calls the (user-
programmable) environment shader to shade the ray. If a hit was found,
OpenRT determines the respective surface shader and calls its Shade

method.

7. The (user-programmable) surface shader uses the shader API to call
back to the library while performing its shading computations, e.g. by
asking OpenRT for the list of active lights, or for the shading normal
of the hit point. This also includes asking OpenRT for a light sample
from a given light shader. OpenRT will then look up that light shader,
and call its respectiveIlluminate function.

8. The light shader generates this light sample (probably with some ad-
ditional calls into the shader API), and returns this – via OpenRT –
to the surface shader.

9. Having processed all light samples, the surface shader may tell OpenRT
to shoot some additional secondary rays, for which stages 5–9 are re-
cursively repeated13.

10. Once the entire shading tree has been processed, the rendering object
has the color of the hit point as determined by the surface shader. It
may now do some final operations on this ray (in the spirit of a “pixel
shader”), e.g. for performing tone mapping. Once this is done, it writes
the pixel to the frame buffer. Again, in the distributed version all these
pixels that have been computed on different machines get automatically
communicated back to the server (where they can be again manipulated
by a user-programmable routine).

11. Once all pixels have been computed, the OpenRT library returns the
frame buffer to the application, and returns from the rtSwapBuffers

call.

12. The application can now display the frame buffer, and can start over
by starting to specify the next frame.

13Obviously, the secondary rays can be shot at any time, not only at the end of the
shader routine.

188 Chapter 10: The OpenRT API

Though this is in fact exactly the same ray tracing pipeline that any
decent ray tracer uses as well, two things are important to note: first, the
modularity and programmability of this framework, and second, the hard-
ware abstraction model used in OpenRT.

10.4.1 Modularity and Programmability

First of all, taking a closer look at the above topics makes clear that OpenRT
is a highly flexible API in which almost all parts are user programmable and
can be arbitrarily replaced. Surface, light, environment and camera shaders,
the rendering mode, and to a certain degree even the parallelization can be
changed by the user.

The OpenRT library in fact provides only the basic infrastructure – such
as abstracting from the distributed architecture, automatic handling of all
parallelization and communication, scene management etc – and nicely glues
the different user-programmable parts together. Last but not least, the
OpenRT library also drives the ray tracing kernel and makes it available
to all the respective subsystems.

Of course, for all these user-programmable parts (such as generating the
tiles in the rendering object, generating primary rays, or assembling the pixels
to the final image) there are optimized default routines. Most users will
never make contact with any of these advanced issues, and will concentrate
on writing surface and/or light source shaders.

10.4.2 Hardware Abstraction Model

The second important issue to mention is how this design carefully abstracts
from the underlying hardware. For example, the shader-application com-
munication works entirely over the shader parameter concept, and never as-
sumes any direct communication between shaders and application. As such,
the shaders can either be located on the same machine as the application, or
could run on another, remote machine that does not even know about the
application. It would just as well possible that the shaders themselves are
not software C++ classes at all, but might reside directly on a ray tracing
hardware architecture such as SaarCOR.

Similarly, the shader API (i.e. the API used by the shader programmer)
is strictly kept apart from the main OpenRT application API. As such, the
same application program could be used even if the shader API changes. For
example, the SaarCOR architecture (see Section 5.3) obviously will not use

10.5 Conclusions and Future Work 189

the same C/C++ shader API that is currently used on the CPU14.

10.5 Conclusions and Future Work

In summary, OpenRT is a simple yet highly flexible API for realtime ray
tracing. It is simple to use and flexible enough to support all typical ray
tracing effects though a RenderMan like shading API and a highly modular
user-programmable plug-in concept.

While the application API is not actually semantically 100% compati-
ble to OpenGL, the syntax and semantics for typical programs are still very
similar. Thus, novice OpenRT users with (some) previous OpenGL experi-
ence so far found OpenRT easy to learn and use. In fact, many concepts
(e.g. shaders) appeared easier and more natural to these users. Because of
this, OpenRT so far has shown to be well accepted by current users. How-
ever, highly experienced OpenGL users (which tend to know – and use – all
the subtle details of OpenGL) sometimes found it hard to understand that
certain concepts are different (e.g. that a rtLookAt call does not have any
side effects on the matrix stack that could then be exploited for projective
textures). Though some open questions remain, OpenRT has already been
used for several practical projects, and so far has been very successful for
those projects. For example, it has been used exclusively for all examples
and applications throughout this thesis (especially see Chapter 11).

For really widespread use, however, still some more work has to be in-
vested: First, it would be desirable if more different implementations of
the OpenRT API would be available, e.g. on the SaarCOR architecture,
on a GPU-based implementation (e.g. [Purcell02]), or on an open source ray
tracer.

Furthermore, it has to be evaluated whether – and how – the remaining
differences between OpenGL and OpenRT could be bridged. Eventually,
it would be a highly interesting option to somehow combine OpenGL and
OpenRT, e.g. by making OpenRT to be an OpenGL extension. Due to
fundamentally different semantics as discussed above, it yet unclear if this is
possible at all, let alone in which way.

An even more important issue to work on is an efficient shading API
that supports coherent packets of rays. As described in Section 7, the full
performance of the RTRT core can only be unleashed if SIMD packet traversal

14Though it is still imaginable to use the same “shading language” for both the software
and the hardware implementation, e.g. by using different shading language compilers (with
the same syntax) for the different platforms.

190 Chapter 10: The OpenRT API

with efficient SIMD shading can be used. In its current form, however, the
OpenRT shader API actually supports only the shading and tracing of single
rays. For those having the actual RTRT sources, it is still possible to use
both packet traversal code and OpenRT API at the same (e.g. by performing
the packet traversal code inside a rendering object), but a clean external API
does not exist. As it is not yet even clear how such packet shading could
be efficiently performed at all (see the discussion in Section 7), it seemed
premature to already discuss its API issues.

Finally, probably the biggest challenge for the success of OpenRT is to
create new, powerful interactive applications. This also implies making it
available to a much wider range of users to actually build these applications.
Though all our experiences with OpenRT so far have been highly encourag-
ing, only once many different kinds of users will actually use if for solving
their everyday practical rendering problems will it be possible to objectively
evaluate the real potential – and the limitations – of this API.

As most applications in fact operate on a much higher level of abstraction
– usually working on scene graphs rather than directly on the API level –
making OpenRT available to a wider range of users also implies to investi-
gate how scene graphs can be efficiently mapped to the new API. Preliminary
work has already investigated how a VRML-based scene graph (the XRML
engine [Bekaert01]) can be mapped to OpenRT [Wagner02, Dietrich04]. How-
ever, an even deeper investigation of this problem has yet to be performed.

Chapter 11

Applications and Case Studies

“To infinity - and beyoooonnnndddd....”

Buzz Lightyear, Toy Story, Pixar

.
In the previous chapters, all the basic building blocks for a complete ren-

dering engine have been outlined: A fast ray tracing core that achieves high
rendering performance and which supports freely programmable shaders,
even higher performance using parallelization that is transparent to the user,
support for hugely complex scene, the ability to handle dynamic scenes, and
finally a powerful API to make all this functionality available to the user.

The availability such a rendering engine now enables a whole list of new
applications that cannot as easily be realized using a different technology.
This chapter will briefly summarize some of these applications that have
already been realized with the RTRT/OpenRT engine. Though many of
these examples are also described in more detail elsewhere in this thesis, this
summary provides a good overview of the capabilities and potential of the
RTRT/OpenRT realtime ray tracing engine.

On todays technology, most applications are still limited in frame rate
and resolution. If not noted otherwise, all examples are running at 640×480
pixels. Furthermore they currently lack sufficient performance on a single
desktop PC 1, but require the combined performance of multiple PCs. Given
the current trend of improvements in both ray tracing performance and hard-
ware technology, it is likely that these applications will be available on a single
desktop PC in only a few years from now.

1Note that pure ray casting, e.g. for simply visualizing complex models with a simple
shading model, can already reach sufficient performance on a single state-of-the-art dual-
CPU desktop machine!

192 Chapter 11: Applications and Case Studies

11.1 Classical Ray Tracing

Clearly, the most obvious application of interactive ray tracing is to interac-
tively compute classical ray tracing – i.e. “whitted-style” [Whitted80] recur-
sive ray tracing with programmable shaders, perfect specular reflections and
shadows from point light sources. For this application, the big advantage
of ray tracing is its ability to support plug-and-play shading: Shaders for
certain specialized effects can be written independently of all other shaders,
and can still automatically and seamlessly work together with the rest of
the scene. For example, Figure 11.1 shows a typical office scene with sev-
eral advanced shaders, like procedural wood and marble shaders, proce-
durally bump-mapped reflections on the mirror, reflections on the metal
ball, and even shaders performing lightfield [Levoy96] and volume render-
ing [Parker99a].

Note how all of these effects work seemslessly and automatically together:
For example, the volume data set (the skull) casts a transparent shadow
onto the procedural wood shader on the table, the reflection of which can
be seen in the metal ball. Similarly, the volume object can be seen in the
bump-mapped mirrow on the wall, and the lightfield object looks different
depending on which direction the rays are coming from2. All this happens
automatically, without any shader knowing about any of the other shaders.
Furthermore, everything is fully recomputed from scratch every frame. For
example, moving the volume object will automatically update all reflections
or shadows cast by this object. As such, even when interactively changing
the scene, all primary and secondary effects are automatically recomputed
in a correct way in each individual frame; this happens fully automatically
and without any further intervention by user or application program.

This automaticity and ease of combining several individual effects is of
huge importance for applications like games, in which the combination of
different effects - especially indirect effects like shadows or reflectios - cur-
rently require manual tuning of both code and scene to generate a desired
effect. With ray tracing, many of these tasks could be simulated both more
correctly and more easily, while, if neccessary, still allowing for “manual”
intervention through the use of specially designed textures.

Using graphics hardware, each of these effects can often trivially be re-
alized at realtime frame rates, but combining several such effects usually is
highly non-trivial. Even if this is possible at all on graphics hardware, perfor-
mance typically degrades rapidly with each added effect, as each additional

2Note how from the camera position one sees the back of the dragon’s head, whereas
the reflection in the mirror shows the dragon’s mouth. Though being natural, tihs effect
would not take place if the dragon were a simple texture.

11.2 Physically Correct Reflections & Refractions 193

Figure 11.1: An office environment with different shader configurations (from
left to right): (a) A typical Phong shader computing reflections and shadows
from three lights, (b) enhanced with additional procedural shaders for wood,
and (c) with additional volume and lightfield objects and procedural bump
mapping on the mirror. All the different shaders were written independently
but can be easily combined in a plug and play manner. Note that all optical
effects work as expected: For example, the volume casts transparent shadows,
the lightfield is visible through the bump-mapped reflections on the mirror,
etc. All objects can be manipulated and moved interactively.

effect usually requires several additional rendering passes for computing this
effect 3. Furthermore, indirect effects like shadows and reflections have to rely
on coarse approximations, and often require manual tuning to reach convinc-
ing results and performance. In ray tracing, combining the different effects
is trivially and automatically handled by the ray tracer, and performance
usually degrades only linearly with the number of rays traced.

11.2 Physically Correct Simulation of Reflec-
tion and Refraction

As seen in the previous application, it is quite easy to use ray tracing for
generating high-quality images. However, ray tracing can not only be used
for generating “good-looking” images – the ability to automatically and cor-
rectly combine different shaders can also be used to visualize objects in a
physically correct way. In contrast to classical rendering – whose task usu-
ally is to quickly generate nicely looking images – many applications require
to compute quantifyable and verifyable results.

For example, industrial design or virtual prototyping applications need to
use rendered images to decide whether a virtual prototype is to be physically
built or not, and thus have to trust the renderer to generate a “correct” image.

3Plus several rendering passes for merging that effect ’into’ the previously computed
image

194 Chapter 11: Applications and Case Studies

Thus, these application domains usually use offline photorealistic rendering
packages, which in turn usually build on ray tracing. Today, however, most
of these applications are limited to offline visualization, which poses quite
some limitation for the designers.

With the advent of realtime ray tracing, physically correct lighting sim-
ulation at interactive rates now becomes a possibility. In a proof-of-concept
application [Benthin02], interactive ray tracing has been used for physically
correct simulation of the reflection and refraction behaviour in a car headlight
produced by a German headlight manufacturer (see Figure 11.2). Using the
RTRT/OpenRT engine together with appropriately written shaders allowed
to simulate up to 25 levels of reflection and refraction even in an 800,000
triangle model at interactive rates.

Figure 11.2: Interactive, physically correct visualization of the reflection and
refraction behaviour inside the complex glass body of a car headlight. The car
headlight is rendered with lighting from a sourrounding high-dynamic range
environemnt map, and is displayed with interactive tone mapping. The simu-
lation includes complex glass effects, and is performed with up to 25 recursive
levels of reflection and refraction. a.) An example screenshot of the whole
lamp. b.) Another view zooming in on the actual lamp. c.) False-color vi-
sualization of the number of reflection levels per pixel in image b. (black: 0,
red: 25+).

11.3 Visualizing Massively Complex Models

Apart from high-quality rendering as shown in the previous examples, one of
the most obvious applications of ray tracing is visualizing massively complex
models. In practice, the computational complexity of ray tracing is loga-
rithmic in scene size (i.e. in the number of triangles), making it an efficient
tools for rendering scenes with millions of individual triangles. For example,
this allows for rendering complex objects such as the 12.5 million triangle

11.3 Visualizing Massively Complex Models 195

Figure 11.3: Three UNC power plants consisting of 12.5 million individual
triangles each. A total of 37.5 million triangles is rendered at roughly 10 fps
on 4 clients. Frame rates remain interactive no matter whether we zoom in
on specific details or view the model as a whole (left to right).

Figure 11.4: Instantiation: The “Sunflowers” scene consists of about 28,000
instances of 10 different kinds of sunflowers with roughly 36,000 triangles
each together with several multi-million-triangle trees. The whole scene con-
sists of roughly one billion triangles. The center image shows a closeup of
the highly detailed shadows cast by the sun onto the leaves. All leaves con-
tain textures with transparency which increase the number of rays needed for
rendering a frame. The whole scene renders at roughly 7 fps on 24 dual
PCs at video resolution. All objects including the sun can be manipulated
interactively.

UNC “PowerPlant” scene, a model of a coal power plant with 48 stories
of complex geometry. Other, non-ray-tracing approaches to rendering such
models [Aliaga99, Baxter III02] have to rely on extensive simplifications and
approximations, which may result in artifacts like missing detail, or popping.
Furthermore, the extensive precomputations required for computing the sim-
plified version of the model ususally restrict these approaches to static scenes.
Adding indirect effects (like shadows) to these approaches is possible, but re-
quires sophisticated algorithms even for shadows from a single point light
source [Govindaraju03].

In contrast to this, with ray tracing the whole model can be interactively
renderered directly, i.e. without the need for any geometric simplifications

196 Chapter 11: Applications and Case Studies

(see Figure 11.3). Grouping the geometry into different objects and using
the techniques proposed in Section 9, it is even possible to interact with
the power plant, e.g. by moving or transforming different parts of the scene.
Finally, using ray tracing it would be quite simple to add secondary effects like
shadows or reflections. In fact, even global illumination can be interactively
computed in the power plant [Benthin03] (see Section III).

As the cost for ray tracing correlates much more with the shading com-
plexity than with the model complexity, even such complex scenes are rather
cheap when rendered with simple shading. For example, the power plant
scene with simple OpenGL like ray casting can be rendered at 20+ frames
per second on only 3 to 4 up-to-date PCs (see Section 8 and Figure 13.12).

While ray tracing already supports model sizes of several million indi-
vidual triangles, instantiation allows for even further increasing the scene
complexity. For example, the “Sunflowers” scene (see Figure 11.4) contains
28,000 instances of several kinds of sunflowers, plus several highly detailed
trees, totalling one billion triangles. Note that this complexity is not only
due to instantiation – even a single tree in this scene contains more than a
million individual triangles.

Of course, the geometric complexity does not limit the kinds of effects
that can be computed. For example, the sunflowers scene is rendered includ-
ing shadows and transparency from semi-transparent leaves. Of course, all
objects as well as the sun can be moved around interactively.

11.4 Interactive Ray Tracing for Virtual and Aug-
mented Reality Applications

As shown in the previous examples, ray tracing offers many advantages in
classical rendering. However, ray tracing may also have an impact on different
kinds of applications that have not yet been widely thought of. For example,
in a recently published prototype implementation, Pomi et al. [Pomi03] have
shown that ray tracing can also be successfully employed for mixed and
augmented reality applications. Such applications usually aim at mixing
virtual and real objects by combining virtual 3D objects with images and
(live) videos from the real world. This has been shown to generate compelling
results in offline rendering [Debevec97, Debevec98], but could usually not be
realized at interactive rates.

Using the RTRT/OpenRT realtime ray tracing engine, Pomi et al. have
shown that it is indeed possible to compute such applications interactively,
e.g. by rendering a virtual car into a real environment (see Figure 11.5), or

11.4 Interactive Ray Tracing in Virtual and Augmented Reality 197

Figure 11.5: Augmented Reality Applications. Left: Video billboards with ray
traced shadows and reflections. The chair is a synthetic object, but the two
persons are real persons on video billboards, with compositing computed in
the billboard shader. Note the automatically correct shadows and reflections,
also from the video billboards. Center: An HDR image of a real scene, with
a captured HDR environment map from a fisheye lens. Right: A synthetic
car ray traced into this HDR environment.

Figure 11.6: Lighting from live Video Textures. Left: A scene with a video
texture on the TV set, without illumination. Center: With illumination from
the TV set. Right: With four different frames of the video texture on the
TV. Note how the illumination in the room automatically changes with a
change of the frame displayed on the TV set, thereby producing the familiar
“flickering” effect of a TV set at night.

by lighting a virtual scene by a real-world video (Figure 11.6). Using ray
tracing for this task, all the advantages of ray tracing are now also available
for these applications. For example, video billboards are a classical technique
in VR/AR applications, but can now also be rendered with shadows, reflec-
tions, and refractions (see Figure 11.5). Similarly, the car in Figure 11.5 did
not have to be simplified for this task, and can be rendered with the real
environment being reflected in the car paint.

Finally, Figure 11.6 shows a video texture on the TV set: On the left
image, the video texture simply appears on the TV set as it would appear
in a typical VR application computing only direct effects. In the center and
right images, the realtime ray tracer is used to compute global effects as well:

198 Chapter 11: Applications and Case Studies

The TV set correctly reflects off the partially specular table, and the TV set
– once used as a light source – casts smooth shadows into the scene. Once the
“texture” on the TV set changes, the color and intensity of the illumination
is correctly and automatically updated, producing the familiar “flickering”
effect of a real TV set at night (see the right four images in Figure 11.6).

To realize these applications, the most complicated task was to seamlessly
integrate a live video stream into the distributed ray tracer in a way that is
both efficient and synchronized [Pomi03]. Once this has been accomplished,
most of the actual applications have been straightforward to implement using
programmable shaders. Currently, the main limitations seem to be network-
ing issues (i.e. missing bandwidth, insufficient reliability, and high latency)
in correctly and efficiently distributing the video stream to all the distributed
rendering clients (for more details, please see [Pomi03]). Though these de-
mand further attention before making that system useful for practical ap-
plications, most of these issues would simply disappear on a shared memory
architecture, as currently becoming available even for the PC market.

Note that the presented applications are rather simple proof-of-concept
applications. It has yet to be evaluated how far that concept can be pushed,
for example by using much more complex scenarios, or by computing phys-
ically correct global illumination from a real-world environment. However,
even these simple applications demonstrate how much realtime ray tracing
can add to the toolbox of techniques for eventually “real-looking” virtual and
augmented reality applications.

11.5 Interactive Lighting Simulation using
Instant Global Illumination

Perhaps the most imporant application that becomes possible with realtime
ray tracing is the interactive simulation of global illumination. In contrast to
classical ray tracing – which is often limited to simple point light sources and
direct diffuse illumination – global illumination computes the illumination
in a scene in a physically correct way, by also including effects like smooth
shadows from area light sources, indirect diffuse illumination, or color bleed-
ing.

Virtually all global illumination algorithms make heavy use of ray trac-
ing, and have traditionally spent a large fraction of their time in ray trac-
ing computations. With the advent of realtime ray tracing, the cost for
ray tracing drops dramatically, and opens the potential for global illumi-
nation at interactive frame rates. However, not all global illumination al-

11.5 Interactive Global Lighting Simulation 199

gorithms can equally benefit from realtime ray tracing, as the respective
algorithms have to meet several constraints imposed by the design of a dis-
tributed realtime ray tracing engine. In fact, most of todays algorithms
– like radiosity [Hanrahan91, Cohen93, Smits94, Bekaert99], (bidirectional)
path tracing [Kajiya86, Lafortune96, Lafortune93, Veach97], or photon map-
ping [Jensen96, Jensen95, Jensen97, Jensen01] do not fit at all into such an
environment.

Recently, Wald et al.[Wald02b] and Benthin et al. [Benthin03] (in co-
operation with Thomas Kollig and Alexander Keller from Kaiserslautern
University) have shown that it is indeed possible to interactively compute
global illumination with a distributed interactive ray tracing engine using a
specially designed global illumination algorithm. This algorithm builds on
Kellers “Instant Radiosity” [Keller97], and has therefore lateron been dubbed
“Instant Global Illumination”.

Figure 11.7: An interactive global illumination application in three differ-
ent environments. From left to right: (a) an office environment with re-
flections, caustics, and other lighting and shading effects, (b) the extended
Shirley 6 scene, with global illumination and complex procedural shaders, and
(c) global illumination in a scene featuring three power plants with a total of
37.5 million triangles. All scenes render at several frames per second. For
more examples of this technique, also see Figures 13.6, 13.7, 13.8, 13.12, and
14.8.

While the “Instant Global Illumination” method will be described in more
detail lateron in this thesis (see Part III), Figure 11.7 already shows some
example snapshots of scenes rendered with Instant Global Illumination on to
of the RTRT/OpenRT engine: Instant Global Illumination captures the most
important effects like smooth shadows from area lights, diffuse interreflection,
reflections, refractions, and color bleeding. Even complex lighting effects like
caustics can be simulated to a certain extent. Additionally, instant global il-
lumination supports programmable shaders, efficient anti-aliasing, and allows
to efficiently scale in both model complexity (of up to millions of triangles)
and numbers of CPUs. Finally, instant global illumination does not have to

200 Chapter 11: Applications and Case Studies

rely on any precomputed values, but recomputes the entire solution every
frame, thus allowing for arbitrary changes to geometry, material properties,
or camera settings every frame.

The availability of global illumination at interactive rates – much more
than classical ray tracing itself – bears a huge potential for practical appli-
cations in the design, architecture, simulation, and VR/AR industry, and is
likely to enable a new set of graphical applications that cannot be realized
with contemporary (i.e. other than realtime ray tracing) technology.

Part III

Instant Global Illumination

.

Chapter 12

Interactive Global Illumination

Even though classical ray tracing considers only direct lighting effects it al-
ready allows for highly realistic images that make ray tracing the preferred
rendering choice for many animation packages. An even higher degree of
realism can be achieved by including indirect lighting effects computed by
global illumination.

Global illumination algorithms account for the often subtle but important
effects of indirect illumination in a physically-correct way [Cohen93, Dutre01]
by simulating the global light transport between all mutually visible surfaces
in the environment. Due to the need for highly flexible visibility queries,
virtually all algorithms today use ray tracing for this task.

As traditional ray tracing has historically been too slow even for inter-
actively ray tracing images with simple shading, the full recomputation of
a global illumination solution has been practically impossible. Now, with
the advent of realtime ray tracing, it should become possible to also com-
pute full global illumination solutions at interactive rates. However, most
of todays global illumination algorithms do not fit into the parallel and dis-
tributed framework of a realtime ray tracing engine, and consequently can-
not fully benefit from the available of a realtime ray tracing engine1. To
solve this problem, we (together with Thomas Kollig and Alexander Keller
from Kaiserslautern University) have developed the “Instant Global Illumina-
tion” method [Wald02b, Benthin03]. This Instant Global Illumination (IGI)
method describes a global illumination algorithm that has been especially

1Note that this “parallel and distributed” argument is not restricted to our software
implementation running on distributed-memory PC clusters. Instead it is likely that future
hardware architectures for desktop systems will also be highly parallel, and will also not
allow for shared-memory communication between different shaders and the application. In
fact, many issues will be even more problematic for such architectures than for a software
based system.

204 Chapter 12: Interactive Global Illumination

designed to fit the demands and restrictions of a realtime ray tracing engine,
which therefore allows to compute the most important global illumination
effects at realtime rates.

Before discussing this method, however, it is important to review re-
lated approaches. As realtime ray tracing has become available but recently,
earlier research could not yet build on this technology, and had to rely on
fundamentally different approaches.

12.1 Alternative Approaches

Roughly speaking, there are two fundamentally different approaches to global
illumination: Sample-based techniques (i.e. ray- or path-based techniques)
on one side [Kajiya86, Lafortune96, Lafortune93, Veach97, Jensen01], and
finite-element based techniques on the other side [Hanrahan91, Cohen93,
Smits94, Sillion94, Bekaert99, Stamminger99]. Because they do not depend
on discretization, Ray- and path-based techniques generally allow for more
flexibility and usually achieve superior image quality. However, before the
advent of interactive ray tracing, these ray-based techniques have simply not
been an option for interactive global illumination, as it was not even possi-
ble to interactively ray trace the geometric models themselves even without
having to perform costly global illumination computations.

12.1.1 Radiosity Based Approaches

Thus, the first approaches to interactive global illumination have been based
on finite-element techniques: Once the finite element solution hase been ac-
quired, the readily lighted polygonal patches can easily be displayed inter-
actively using rasterization graphics hardware. In its most trivial form, this
approach consisted of a simple interactive display of a precomputed radiosity
solution of the scene2 However, relying on precomputed radiosity values only
allows for simple walkthroughs, as any interactive change to the environment
would require recomputing the radiosity solution. Except for trivial scenes,
recomputing the whole solution from scratch every frame is not feasible at
interactive rates.

2Obviously, the same approach is possible with interactive ray tracing. Additionally,
using ray tracing for this task allows for adding reflections and refractions in a second
pass (in the same spirit as [Chen91]). Furthermore, the ability to efficiently render highly
complex scenes with ray tracing allows for using extremely fine tesselations.

12.1 Alternative Approaches 205

12.1.1.1 Interactive Radiosity using Line Space Hierarchies

In order to avoid this full recomputation, Drettakis and Sillion [Drettakis97]
have proposed to incrementally update a radiosity solution using a line space
hierarchy. This hierarchy is generated by augmenting the hierarchical ra-
diosity links with “shafts”, each of which represents all the lines that pass
through the two connected hierarchy elements. Traversing this data struc-
ture then allows for easily identifying the links that are affected by a dynamic
change to the scene, and thus allows for quickly updating the radiosity so-
lution. Additionally, it simultaneously allows for cleaning up subdivisions in
the hierarchical radiosity solution that are not required any more after an
update to the scene (e.g. for representing a shadow border that is no longer
present after the occluder has been moved away).

However, the algorithms are quite complex. Additionally, like all radiosity
systems the proposed system is limited to diffuse light transport, suffers from
tesselation artifacts, and does not easily scale to complex geometries.

12.1.1.2 Instant Radiosity

In 1997, Keller presented a totally different approach to interactive radiosity.
In “Instant Radiosity” [Keller97], a small set of virtual point lights (VPLs)
is computed using a quasi random walk from the light sources. These VPLs
are then used to illuminate the scene using a shadow algorithm. In instant
radiosity, most computations (including the shadow generation) can be per-
formed on the graphics card. For moderately complex scenes, this makes it
possible to recompute fully lighted images at interactive rates without having
to rely on complicated algorithms and data structures.

Additionally, instant radiosity avoids many of the typical tesselation ar-
tifacts: Instead of discretizing the geometry, instant radiosity performs dis-
cretization by using only a small number of discrete virtual point light po-
sitions. As such, the tesselation only becomes visible after one additional
light transport step (i.e. the connection from the surface to the VPL): In
the worst case, this may lead to a visible discretization artifacts (blocky
shadows or hard shadow borders) in what should be smooth shadows. This
is usually much less disturbing than directly seeing the discretization in
the polygonal patches. Furthermore, performing the discretization only in
the VPL positions completely avoids having to adapt the tesselation to
match the lighting features (e.g. discontinuity meshing or visibility skele-
ton [Heckbert92, Lischinski92, Lischinski93, Durand97, Durand99]) which in
practice is often problematic.

With these properties, instant radiosity has significant advantages over

206 Chapter 12: Interactive Global Illumination

traditional radiosity. However, relying on rasterization graphics hardware in-
stant radiosity is limited to purely diffuse scenes, and also suffers from lacking
performance in realistically complex scenes. Finally, it is not clear how to
use instant radiosity in a hierarchical scheme such as hierarchical radios-
ity [Hanrahan91, Cohen93, Sillion94] and clustering [Smits94, Bekaert99].

12.1.2 Subsampling-based Techniques

Though radiosity-based systems already allow for interactively rendering dy-
namic scenes with indirect lighting, they all suffer from similar problems:
First, they are rather slow and often do not scale to reasonable scene com-
plexities. Additionally, radiosity based systems are inherently limited to
purely diffuse light transport, which often gives them a rather ’flat’ and un-
realistic appearance.

To avoid these limitations, most offline global illumination systems use
ray- and path-based techniques. These, however, usually demand tracing
hundreds of rays for each pixel, and many millions of rays for the whole
frame, which obviously is not affordable at interactive rates. Even if it is
not possible to recompute every pixel every frame, interactivity can still
be achieved by using approximative or subsampling-based techniques. The
basic idea behind these techniques is to subsample the full solution (e.g. by
computing only a fraction of all pixels) and using a separate display thread
for interactively reconstructing an image from the subsampled information.
As the display process usually runs much faster than the sampling process
(usually 10 – 100 times as fast), the display thread has to cope with heavy
subsampling of the image, which often results in artifacts.

12.1.2.1 Render Cache

One of the first systems to use this approach was Walter et al.’s “Render
Cache” [Walter99, Walter02]. The render cache stores a cache of previously
computed illumination samples – roughly twice as many as pixels in the
image. For each new frame, these are reprojected to the new camera position,
and stored in the frame buffer. As this can result in artifacts (e.g. holes in
the image or disocclusion) several heuristics have to be applied to reduce
such artifacts.

The rendering thread runs asynchronously and decoupled from the display
and reconstruction thread, and simply generates new illumination samples
as fast as possible. Such generated samples are then inserted into the ren-
der cache (thereby replacing some old samples) and can be used for future
frames. The main limitation of the render cache is the speed with which it

12.1 Alternative Approaches 207

can reproject the old samples and reconstruct the new frame. The high cost
for these operations – which is usually linear in both framerate and num-
ber of pixels – has limited the original system to only moderate resolutions.
Though recently proposed optimizations [Walter02] allowed for significant
speedups, generating full-screen images is still too costly for realtime frame
rates.

The render cache becomes beneficial for rendering algorithms where the
cost for computing a new sample is very high. For a fast ray tracer with a
simple illumination model it is often cheaper to simply trace a new ray than
reprojecting and filtering old samples. Similar techniques have also been
proposed in the form of Ward’s Holodeck [Larson98, Ward99], and Simmons’
et al.’s Tapestry [Simmons00] system.

12.1.2.2 Shading Cache

A similar approach has recently been proposed by Tole et al. [Tole02]. In-
stead of using an image-based technique for reconstructing the image from
previously computed samples, they use an object-based technique that uses
triangles for representing the illumination samples. Image reconstruction and
interpolation between shading samples can then be performed using graph-
ics hardware, which allows for producing realtime frame rates at full-screen
resolutions.

However, their approach suffers from similar problems as the render cache:
Depending on old (and thus potentially outdated) samples results in disturb-
ing delays until an interaction takes effect: While some geometric object can
be moved at realtime frame rates, the global effects caused by this object –
e.g. its shadow – will be computed much slower, and will “follow” the object
with noticeable latency of up to several seconds, and with visible artifacts
during the transition phase.

This makes it hard to use the shading cache in totally dynamic scenes with
constantly changing illumination from dynamic lights, scenes, and materials.
Finally, the shading cache requires as least one sample per visible polygon,
and thus is not suitable for highly complex geometries.

12.1.2.3 Edge-and-Point Images (EPIs)

The newest variant of this idea of interactively generating high-quality im-
ages based on using sparse samples has recently been proposed by Bala et
al. [Bala03]. The “edge and point image” (EPI) essentially is an extension
of the render cache (Section 12.1.2.1) that uses – and preserves – analytic
discontinuities during reconstruction of the image.

208 Chapter 12: Interactive Global Illumination

The EPI analytically finds the most important shading discontinuities –
in its current form these are object silhouettes and shadow boundaries – using
efficient algorithms and data structures, and then respects these discontinuity
edges during reconstruction. This allows for high-quality reconstruction even
including anti-aliasing at interactive rates.

12.1.3 Hybrid Ray-/Patch-based Techniques

In order to avoid the qualitative limitations of pure radiosity approaches, sev-
eral approaches have been undertaken to augment radiosity solutions with
specular effects such as reflections and refractions, for example by using cor-
rective textures [Stamminger00] or corrective splatting [Haber01]. These
techniques are similar to the above-mentioned subsampling-approaches, and
have already been covered in greater detail in the 2001 Eurographics State
of the art report (STAR) on interactive ray tracing, see [Wald01b].

12.1.3.1 Fast Global Illumination including Specular Effects

Another interesting way of combining radiosity with specular effects has been
proposed by Granier et al. [Granier01]. They augment a radiosity solu-
tion with specular effects – like e.g. caustics – using particle tracing. In
its core, their system uses hierarchical radiosity [Hanrahan91] with cluster-
ing [Smits94] for quickly and efficiently computing the diffuse light trans-
port. Non-diffuse effects are computed by integrating particle tracing into
the gather step of hierarchical radiosity. Particle tracing is performed only
where necessary, by shooting particles only over links that connect to specular
surfaces.

In simple scenes, their system allowed for interactive viewing of up to 2
frames per second for global diffuse illumination and caustic effects. How-
ever, interactive viewing required using graphics hardware, thereby limiting
the system to diffuse plus caustics only. Reflection and refraction could not be
supported in interactive mode, resuling in some “dull” appearance [Granier01].
Though combining their technique with the render cache [Walter99] (cf. Sec-
tion 12.1.2.1) allowed to push framerate and add reflections and refractions,
the render cache itself introduced other artifacts.

12.1.3.2 Selected Photon Tracing

A different way of interactively computing global illumination solutions has
recently been proposed by Dmitriev et al [Dmitriev02]: In “selective photon
tracing”, radiosities of triangular patches are computed by shooting photons

12.1 Alternative Approaches 209

from the light sources into the scene and depositing their energy in the ver-
tices of the triangular mesh (see Figure 12.1). The lighted triangles can then
be displayed interactively with graphics hardware. To hide some of the tesse-
lation artifacts, direct illumination from point lights is computed separately
on the graphics hardware using hardware shadow algorithms [Crow77].

Figure 12.1: Selected photon tracing. Left: Once some pilot photons have
detected a change in the scene geometry, similar photons (blue) are selectively
re-traced. Right: An example frame while interactively changing the scene.

Due to the limited speed of the photon tracer, only a certain amount of
photons can be retraced every frame. Therefore, selected photon tracing uses
a clever way of determining which photon paths have probably been affected
by a scene update: A small subset of photon paths (called “pilot photons”)
is shot into the scene to determine which parts of a scene have been updated.
If a pilot photon hits an object that it did not hit in the previous frame
(or vice versa), selected photon tracing selectively re-traces similar photons
by generating only photon paths that are similar to the original path (see
Figure 12.1). Similar photons are generated by exploiting similarities in the
quasi random number generator used for determining the photon paths.

Being a hybrid of both radiosity and subsampling based techniques com-
bines many of the advantages of both techniques, and allows for interactively
displaying scenes with global illumination while allowing for interactive ma-
nipulations to the scene.

However, selected photon tracing also inherits some of the inherent prob-
lems of radiosity and subsampling: First, the speed decreases linearly in
the number of patches, allowing only a rather coarse tesselation that does
not capture high-frequency details such as caustics or indirect shadow bor-
ders. Second, as only a subset of all photons is re-traced every frame, drastic
changes in the illumination caused by user interaction can take several sec-
onds to take effect.

210 Chapter 12: Interactive Global Illumination

12.2 Realtime Ray Tracing for Interactive Global
Illumination – Issues and Constraints

All the approaches discussed above had to be undertaken because compute
power and ray tracing performance did not suffice to compute full ray trac-
ing based global illumination solutions at interactive rates. With the recent
availability of realtime ray tracing, however, it should eventually become
possible to compute such images interactively: In theory, most global illu-
mination algorithms spend most of their time tracing rays, thus combining
such an algorithm with a realtime ray tracer should “automatically” result
in interactive global illumination performance.

In practive however, global illumination algorithms are inherently more
complex than classical ray tracing and thus not all algorithms will auto-
matically benefit from a much faster ray tracing engine. In order to take
maximum profit from the availability of fast ray tracing, appropriate global
illumination algorithms have to be designed to meet several constraints:

Parallelism: Future realtime ray tracing engines will probably (have to)
make heavy use of the inherent parallelism of ray tracing. For classi-
cal ray tracing, parallelism can be exploited easily by computing pixels
separately and independently. Many global illumination algorithms,
however, require reading or even updating global information, such as
the radiosity of a patch [Cohen93], entries in a photon map [Jensen01],
or irradiance cache entries [Ward92]. This requires costly communica-
tion and synchronization overhead between different ray tracing ’units’,
which quickly limits the achievable performance.

Efficiency at small sample rates: Even the abitiliy to shoot millions of
rays per second leaves a budget of only a few rays per pixel in order
to stay interactive at non-trivial frame resolutions. Thus, an algorithm
must achieve sufficiently good images with a minimum of samples per
pixel. Given the performance of current realtime ray tracing engines,
only an average of about 50 rays per pixel is affordable. Thus, the
information computed by each ray has to be put to the best possible
use.
Note that this number of affordable rays per pixel is likely not to change
significantly in the near future: Though future ray tracing systems (es-
pecially ray tracing hardware) will offer even higher ray tracing per-
formance, it is likely that for practical applications this performance
increase will first be spent of higher resolutions and frame rates.

12.2 Realtime RT for Global Illumination – Issues & Constraints 211

Realtime capabilities: For real interactivity – i.e. arbitrary and unpre-
dictable changes to the scene made by a user (including geometry, ma-
terials and light sources) – algorithms can no longer use extensive pre-
processing. Preprocessing must be limited to at most a few milliseconds
per frame and cannot be amortized or accumulated over more than a
few frames as the increased latency of lighting updates would become
noticeable.

Focus on Ray Tracing: The availability of a realtime ray tracing engine
can only save time previously spent on tracing rays. Thus, performance
must not be limited by other computations, such as nearest-neighbor
queries, costly BRDF evaluations, network communication, or even
random number generation.

Independence From Geometry: In order to fully exploit the ability of
ray tracing to scale to complex geometries (see Chapter 7), the global
illumination algorithm itself must be independent from geometry, and
may not store information on individual patches or triangles.

Within the above constraints most of todays global illumination algo-
rithms cannot be implemented interactively on a realtime ray tracing engine:
All radiosity style algorithms [Cohen93, Hanrahan91, Smits94, Drettakis97,
Granier01] require significant preprocessing of global data structures which
seems impossible to implement under these constraints. In principle, it
should be possible to use the ray tracer for augmenting one of the above
interactive radiosity systems with specular effects and accurate shadows in
the spirit of [Wallace87]. This, however, would not easily fit into the dis-
tributed framework that the ray tracer is running on, and would still suffer
from tesselation artifacts.

Pure light-tracing or path-tracing [Kajiya86] based approaches benefit
mostly from fast ray tracing, but usually suffer from random noise. For decent
image quality, they would require far too many rays per pixel at least for non-
trivial lighting conditions. Finally, photon mapping [Jensen96, Jensen95,
Jensen97, Jensen01] requires costly preprocessing for photon shooting and
creation of the kd-trees as well as expensive nearest neighbor queries during
rendering. It also uses irradiance caching, which imposes similar problems.

212 Chapter 12: Interactive Global Illumination

Chapter 13

Instant Global Illumination

The discussion in the preceding chapter shows that a new, appropriately
designed algorithm is required to take advantage of a fast ray tracing engine
for interactive global illumination.

13.1 The Instant Global Illumination Method

Because of this, we (together with Thomas Kollig and Alexander Keller from
Kaiserslautern University) have developed a new global illumination frame-
work – called “Instant Global Illumination” (or, shorter: IGI) – that has
explicitly been designed to run efficiently on a realtime ray tracing engine.
In essence, Instant Global Illumination is a combination of 6 different tech-
niques that have been combined that very well fits the constraints outlined
in the previous chapter (also see Figure 13.1):

• Instant Radiosity (IR) for approximating the diffuse illumination in
a scene using virtual point lights (VPLs),

• Realtime Ray Tracing for quickly and accurately performing the IR
shadow computations and for adding reflections and refractions,

• Hashed Caustic Photon Mapping for optionally adding simple
caustics,

• Interleaved Sampling for breaking up the discretization artifacts of
instant radiosity and trading them for structured noise,

• Discontinuity Buffering for removing this structured noise by an
image-based filtering technique,

214 Chapter 13: Instant Global Illumination

• Quasi Monte Carlo for generating optimally distributed VPL sets.

In the following, we will briefly describe each of these basic ingredients.

a.) Plain Instant Radiosity (IR) b.) IR+Interleaved Sampling (ILS)
ILS = none, DB = none ILS = 5× 5, DB = none

c.) IR+ILS+Discontinuity Buffer d.) IR+ILS+Discontinuity Buffer
ILS = 5× 5, DB = 3× 3 ILS = 5× 5, DB = 5× 5

Figure 13.1: Interleaved sampling and the discontinuity buffer: All close-
ups have been rendered with the same number of shadow rays for each pixel.
a) Plain instant radiosity with only one set of point light sources and caustic
photons (computed with ray tracing and photon mapping to add reflections,
refractions and caustics). b) 5 × 5 = 25 independent such sets (each of the
same size as a) have been interleaved. c.) and d.) Discontinuity buffering
to remove the ILS artifacts. Choosing the filter size appropriate to the in-
terleaving factor completely removes the structured noise artifacts: b.) no
filtering at all, c.) smaller filter than interleaving size, d.) matching filter
and interleaving size.

13.1 The Instant Global Illumination Method 215

13.1.1 Instant Radiosity

As just mentioned, Instant Global Illumination builds on Kellers Instant
Radiosity [Keller97] as a core technique: Using instant radiosity (IR), the
illumination in a scene is approximated by a small set of “virtual point lights”
(VPLs) that are generated in a preprocessing step by performing a random
walk from the light sources. During rendering then, the irradiance at a surface
point is computed by casting shadow rays to all VPLs and adding their
contribution. For a graphical explanation of this procedure, see Figure 13.2.

a.) b.) c.)

d.) e.) f.)

Figure 13.2: Instant Radiosity: In order to compute instant radiosity in
a scene (a), a small number of particles is started from the light sources,
and traced into the scene (b). At each particle hitpoint, a “virtual point
light” (VPL) is generated, which acts as a point-light source with a cosine-
weighted directional power distribution (c). In the main rendering step, rays
are cast from the camera into the scene (d) (probably including reflection and
refraction rays, but without diffuse bounces). At each eye ray’s hitpoint, the
irradiance can be calculated by summing up the contribution from all (visible)
VPLs, which requires shooting shadow rays from each hit point to all VPLs
(e.g. e and f).

Similarly to other radiosity-style techniques, instant radiosity (IR) gen-
erates smooth images: Being in principle an unbiased algorithm [Keller97],
IR will eventually converge to a smooth image after taking enough samples.
Before reaching that smooth solution however any intermediate result suffers
from a residual error. For typical Monte Carlo-based rendering algorithms
this random error changes from pixel to pixel, and thus is usually quite visible

216 Chapter 13: Instant Global Illumination

as random pixel noise. In contrast to this, radiosity-style techniques usually
trade this random noise for discretization error.

With traditional radiosity-style algorithms, this discretization error is
usually clearly visible in the discretized, polygonal patch representation of
the radiosity solution. With instant radiosity, however, the discretization is
not performed on the surfaces themselves, but rather by using a discrete set
of VPLs. As each of these VPLs contributes to the full image, this discretiza-
tion error is smoothly distributed over the entire image plane, and as such
often not (as) visible to the plain eye. Unfortunately some discretization
error is still visible in shadow boundaries: Each individual VPL is a point
light and as such casts a hard shadow border. If enough VPLs are used, the
overlapping hard shadows again appear as a smooth shadow. When using
too few VPLs, however, these hard shadow borders are clearly visible, as can
be seen in Figure 13.1a.

In general however, instant radiosity inherits the smoothness from radios-
ity algorithms, while mainly avoiding its surface discretization problems.

13.1.2 Realtime Ray Tracing

Apart from these “technical” advantages, Instant Radiosity as a core algo-
rithm perfectly fits the demands of a realtime ray tracer: It performs most of
its time evaluating visibility from point light sources, which generates highly
coherent rays and thus allows the ray tracer to use the fast packet traver-
sal code (see Section 7). Mostly shooting shadow rays also implies that the
usually high cost for shading can be amortized over many shadow rays, and
that the system perfectly benefits from any increase in ray tracing speed. As
shadow rays – especially coherent ones – are usually less costly than ’stan-
dard’ rays, the ray tracer can perform at its best.

The preprocessing cost for Instant Radiosity is minimal (requiring but
the generation of only a few dozen VPLs) and thus lends itself easily to
parallelization. Finally, IR does not need access to global data (except for
the VPLs which can easily be generated on each client), is totally independent
of geometry, and parallelizes trivially per pixel.

Being implemented on top of a realtime ray tracing system also allows
Instant Global Illumination to easily and cheaply integrate important spec-
ular effects like reflections and refractions, which have traditionally been a
problem in fast global illumination. Finally, the combination with interleaved
sampling and discontinuity buffering (see below) also only becomes possible
through the use of a ray tracer, which can selectively use different VPLs for
different pixels.

13.1 The Instant Global Illumination Method 217

13.1.3 Fast Caustic Photon Mapping using Hashed Pho-
ton Mapping

In order to be able to support at least simple caustics, instant global illumina-
tion can also be combined with caustic photon mapping. To reduce the high
cost for photon mapping (which can be several times as expensive as shooting
a ray), we have proposed a method that approximates photon mapping by
storing the photons in a grid instead of a kd-tree [Wald02b]. If we fix the pho-
ton query radius in advance (instead of determining it implicitly by finding
a fixed number of photons as usually done in photon mapping [Jensen01]),
one can select the grid radius such that exactly 8 voxels have to be accessed
to find all photons in the search radius.

grid cells in hash tablescene with virtual photon grid
H

as
h

fc
t:

h(
ix

,iy
,iz

) −
>

ha
sh

ID

Figure 13.3: Hashed photon mapping: All photons are stored in a hashed grid
data structure. Each grid cell (ix, iy, iy) has a unique hash ID h(ix, iy, iz)
with which it is stored in a hash table. Only those cells that actually receive
any photons (light gray) get stored in the hash table, which allows for a very
fine grid structure with small memory consumption. Some amount of hashing
collisions can be tolerated, but should be minimized by making the hash table
sufficiently large (roughly as large as the number of grid cells occupied by
photons). If the grid resolution can be guaranteed to be bigger or equal to the
maximum query ball diameter (light blue ball), at most 8 hash-lookups are
required (obviously only four lookups in this two-dimensional example).

Storing a complete 3D grid of the required density is obviously not possi-
ble due to limited memory space. As such, we store the photons in a “hashed”
grid, in which each voxel gets a unique ID with which it can be looked up in
a hash table. Voxels are stored in the hash table only if they actually contain
valid photons. As there are typically rather few such voxels1, even reasonably

1Voxels can receive photons only if they overlap surface geometry.

218 Chapter 13: Instant Global Illumination

high grid resolutions can be used with a very small memory consumption.
Storing photons in this hashed grid can be performed quite quickly (the

photon only has to be added to the respective hashed voxel cell), which allows
for completely rebuilding the data structure every frame. As such, we can
also interactively change the photon query radius from frame to frame.

Using this simplified form of photon mapping, at least simple caustics can
be supported. However even this quite simplified form of photon mapping
is quite costly due to the need for shooting thousands of rays for generating
the photons. This higher preprocessing cost usually leads to scalability and
performance problems, and thus is only useful for extremely simple scenes.
Efficient support for complex caustics – especially in the context of interactive
frame rates and in a highly parallel setup – still requires further investigation.

13.1.4 Interleaved Sampling

Even ignoring any preprocessing cost for generating VPLs or caustics, only
a small number of shadow rays to VPLs is affordable in each pixel in order
to remain interactive. As discussed above, this small sampling rate leads
to visible discretization error in the form of hard shadow boundaries (see
Figure 13.1a).

These hard shadow boundaries can be “broken up” by using Interleaved
Sampling [Keller01]: Instead of using the same set of n VPLs for every pixel,
the algorithm generates NILS × NILS (usually 3 × 3) such sets (of NV PL

VPLs each). These different VPL sets are then interleaved between pixels:
Neighbouring pixels use different sets, and the same set is repeated every
NV PL’th pixel (see Figure 13.4). The only additional cost for this scheme is
that instead of only one VPL set we now have to generate NV PL ×NV PL of
these sets; the main cost factor during rendering – i.e. the number of shadow
rays per pixel – does not change.

Even though the rendering cost does not increase, the image quality
is greatly enhanced: As neighbouring pixels use different VPL sets, sharp
shadow boundaries are broken up. Roughly speaking, using 3 × 3 different
sets of VPLs effectively increases the number of VPLs used for computing
an image by a factor of 9. In a certain sense, this provides “free mileage”,
as the visual appearance of the image is improved (compare Figures 13.1a
and 13.1b) without increasing the cost per pixel.

However, interleaved sampling can not actually remove any discretization
error, but instead only trades it for structured noise. Though this is usually
better than not performing interleaved sampling at all, the structured noise
is still clearly visible, especially in otherwise smooth image regions, see Fig-
ure 13.1b.

13.1 The Instant Global Illumination Method 219

IR with interleaves samplinginstant radiosity

surface hits

pixel plane

rays
shadow

VPLs

Figure 13.4: Interleaved Sampling: a.) In instant radiosity, each pixel uses
the same set of VPLs (two in this example). b.) With interleaved sampling,
neighbouring pixels use different VPL sets (which are repeated every NILS

pixels, and cast shadow rays only to their respective VPL set (NILS = 3 sets
of two VPLs each in this example). This essentially increases the number
of VPLs by a factor of NILS (NILS × NILS in 2D), removes the correlation
between neighbouring pixels, and thus breaks up hard shadow borders.

a b c d e f g h

virtual point lights (VPLs)

shadow rays

surface hits

pixel plane

Figure 13.5: Discontinuity Buffering: After interleaved sampling, the image
suffer from structured noise artifacts, as the irradiances of neighbouring pixels
are computed with different VPLs. In continuous image regions (pixels a.–c.
and f.–h.), the discontinuity buffer removes this structured noise by filtering
the neighouring pixel irradiances. No filtering is performed in discontinuous
regions, e.g. where the distances to the hit points vary too much (d.–e.).

220 Chapter 13: Instant Global Illumination

13.1.5 Discontinuity Buffering

The structured noise resulting from interleaved sampling can then be removed
by “discontinuity buffering”, a technique that removes structured noise by
filtering the image, but which uses several heuristics in order not to filter
across image discontinuities (see Figure 13.5). In continuous image regions
(pixels a.–c. and f.–h. in Figure 13.5), the discontinuity buffer filters the
neighouring pixel irradiances. If the filter size is chosen to exactly match the
size of the interleaving pattern the structured noise can be entirely removed
(see Figure 13.1b–d), as then each pixel is once again influenced by all VPLs
(even though it does not have to compute shadow rays to each VPL).

In order to avoid excessive blurring across discontinuities, the discontinu-
ity buffer uses several heuristics to detect discontinuities in the image plane
(e.g. the distance to the hit point), and does not filter across these (pixels
d. and e.). As such, discontinuous regions have slightly less image quality,
as they still show the structured noise from interleaved sampling. At these
discontinuities, however, this structured noise is usually less visible than it
would be on smooth, continuous surfaces. Even though, discontinuity buffer-
ing obviously can only help in continuous image regions, and is problematic
for scenes that do not feature any smooth areas. Fortunately this is rarely
the case for practical scenes. However, some structured noise can remain
in areas where the heuristics do not permit filtering, e.g. on highly curved
sufaces.

Note that even in regions where the filtering is actually performed, it is
only the irradiances that are filtered, not the actual pixel values themselves.
As such, the discontinuity buffer does not blur across material boundaries,
nor does it blur textures, as the diffuse component is only multiplied to the
irradiance after the irradiances have been filtered.

In smooth image regions, the combination of interleaved sampling and
discontinuity buffering improves the performance by roughly an order of mag-
nitude (in fact, a factor of 3 × 3 = 9). This allows for achieving reasonably
high image quality even when using only rather few VPLs – and thus shadow
rays – per pattern.

In the current implementation, we only support a filter size of 3 × 3
pixels. Instead going to 5 × 5 might give another factor of 5×5

3×3
≈ 2.8 in

image quality, but is also more likely to generate visible artifacts due to the
increased blurring. However, more blurring may still be tolerable for larger
resolutions. As such, larger filter sizes of 5 × 5 or 7 × 7 may be beneficial
when eventually using instant global illumination at fullscreen resolutions.

13.1 The Instant Global Illumination Method 221

13.1.6 Quasi Monte Carlo for Generating the VPL Sets

For generating our VPL sets, we use the quasi-monte carlo techniques as de-
scibed in [Keller98, Keller03, Kollig02]. While – for the correct functioning
of the method – it does not actually matter wheter the VPL sets are gen-
erated with pseudo-random numbers or with quasi-monte carlo techniques,
low-discrepancy point sets (see e.g. [Keller98, Keller03, Kollig02]) are usu-
ally preferrable. For example, pseudo-random numbers usually suffer from
“sample clustering”. In the context of instant radiosity sample clustering
results in several VPLs being placed unnecessarily close to each other, which
in turn requires to shoot several costly shadow rays to compute almost the
same effect. In contrast to this, low-discrepancy point typically result in a
much “better” distribution of the VPLs, which usually results in faster con-
vergence, or – in other words – in better image quality when using the same
number of VPLs. For our approach, this is especially interesting because of
the small number of samples that are affordable at interactive rates.

Apart from faster convergence, low-discrepancy point sets can often be
computed faster then the typical “drand48()” random number generator.
Furthermore, quasi-random numbers lend well to parallelization, as the same
quasi-random sequence can be easily reproduced by different machines with-
out the need for any communication at all.

Last but not least, quasi monte carlo techniques allow for generating
the different VPLs sets in an optimal way: In order to use the combina-
tion of instant radiosity, interleaved sampling and discontinuity buffering as
described above it usually does not matter how exactly the VPL sets have
been generated. For example, one can either generate N × N independent
sets of M randomly generated VPLs each, or can instead generate one large
set of N × N × M VPLs that are then randomly distributed into N × N
sets. With quasi random techniques (to be more specific, with TMS se-
quences [Keller03]) however it is possible to generate the VPL sets such that
– while each VPL set on its own already uses a low-discrepancy set – all
VPL sets combine nicely to a higher dimensional pattern. As this optimal
combination of multiple sets so far is only possible for 2-dimensional point
sets [Keller03], we follow Kollig et al.’s approach [Keller03, Kollig02] of using
padded replication sampling to “extend” this technique to higher dimensions.
In essence, we use exactly the same techniques as described by Keller and
Kollig in [Keller03, Kollig02].

222 Chapter 13: Instant Global Illumination

13.2 Implementation Issues & Design Decisions

In most aspects, implementing Instant Global Illumination on top of a dis-
tributed ray tracing system is rather simple. All global illumination com-
putations are implemented as “shaders” applied to the surfaces and to the
pixels of the image (see Chapter 10). From the application point of view, the
global illumination system is a shader like any other.

Being realized as a shader, the global illumination code can also abstract
from the distributed framework and from issues such as dynamic scenes,
which are handled transparently by the underlying ray tracing engine (see
Section 9). As such, dynamic scenes or interactive user modifications to the
scene are automatically supported (as long as the global illumination code
can generate a new image from scratch every frame), and does not require
any special handling.

13.2.1 Filtering on the Server vs. Filtering on the Clients

Most computations are spent on shooting highly coherent shadow rays, which
perfectly fits the underlying ray tracing engine, and which can be easily
implemented as a programmable shader. The most critical design decision for
a distributed implementation is to decide where the discontinuity buffering
is to be performed.

If this final filtering pass is to be performed on the final image (i.e. on the
server), it is possible to assign only pixels with the same interleaving pattern
to each client. Thus, each client only has to generate the VPLs and photons
for its respective interleaving set. If this preprocessing phase is quite costly –
e.g. if several thousand rays have to be shot for producing convincing caustics
– this efficiently avoids replicating the preprocessing cost on all clients, and
significantly improves scalability. Essentially, each client only has to compute
one nineth of all VPLs and photons that are eventually used for computing
the final image. However, this strategy implies that clients do not have
access to neighbouring pixel values – as these would have to be computed by
different interleaving sets – and that therefore filtering has to be performed
on the server. This however can create a scalability bottleneck, as the server
can only receive and filter a quite limited number of pixels per second.

The alternative strategy is to perform the filtering on the clients. This
effectively avoids the server bottleneck, but requires clients to have access to
neighbouring pixels. First of all, this incurs some overhead at tile boundaries
where clients have to compute pixels across their tile boundaries. Even worse,
this requires each client to generate all VPLs and photons for all interleaving
patterns. While generation of the VPLs is cheap enough to be replicated on

13.2 Implementation Issues & Design Decisions 223

each client, generating a sufficient number of caustic photons is no longer
affordable in this strategy.

13.2.2 The Original Instant Global Illumination System

Therefore – in order to be able to compute caustics – the original IGI sys-
tem was performing filtering on the server (see Figures 13.6 and 13.7). Due
to interactivity constraints, the number of caustic photons that was afford-
able to be retraced per frame was limited to only several hundred to a few
thousand2. Fortunately, the combination of interleaved sampling and discon-
tinuity buffering also increased the quality of the caustics, and as such allows
for reasonably good caustics even with such few photons.

13.2.2.1 Caustic quality

Even though simple caustics can thus be supported, highly detailed caus-
tics – such as a peaked cusp resulting from a cup, glass, or metal ring
(see [Jensen01]) – can not be generated with as few photons as are affordable
during interactive update rates3.

13.2.2.2 Overall image quality

Apart from its limitations in caustic quality, the original IGI system already
supported all of the most important kinds of light transport. For example,
Figure 13.7 shows an animation sequence in the office scene. In this animation
sequence, a glass ball rolling over the table and casts a caustic while doing
so. Furthermore, a book is being moved towards the light source, casting
a shadow that automatically changes from sharp to smooth while moving
away from the desk. Most imporantly, all indirect illumination is correcty
accounted for: As the book moves closer to the light source, its bright surface
automatically starts to act as an indirect light source, thereby illuminating
the cupboard from below and casting shadows and illumination patterns on
the right wall (see Figure 13.7c).

2Theoretically it is possible to exploit temporal coherence by only re-tracing a fraction
of the photons in each frame, and thus also using “old” photons in each frame. Though this
has already been shown to work reasonably well for animations (see e.g. [Myszkowski01,
Dmitriev02, Damez03], this in practice is hard to implement in our system, due to its
parallel and distributed nature.

3Of course, such high-resolution caustics can still be added incrementally during times
at which the scene does not change, as has also been proposed in [Purcell03].

224 Chapter 13: Instant Global Illumination

Figure 13.6: Caustics in the original Instant Global Illumination system.
While really complex caustics (such as the sharp cusp from a metal ring) can
not be sufficiently be represented with as few caustic photons as affordable
during interactive frame rates, simple caustics can be well represented.

Figure 13.7: Instant Global Illumination in an animated office scene. In this
animation sequence, the glass ball is rolling over the table, and the book is
moved towards the light source. Especially note how the caustic is correctly
moving, how the shadow from the book is changing from sharp to smooth,
how the indirect illumination from the book casts an indirect shadow on the
wall, and how all these effects are correctly reflected in the window.

During the entire animation, all these effects are automatically reflected
in the window4, or in the other reflective parts of the scene (e.g. in the legs
of the rolling chair).

13.2.2.3 Scalability problems

As expected by the discussion in Section 13.2.1, filtering on the server created
a bottleneck that in practice limited performance to roughly 5 frames per
second at 640 × 480 pixels [Wald02b]. However, the original system was
limited only in the maximum frame rate, not in the number of clients used
for reaching this frame rate. As such, the system still scaled very well in

4The window has been modelled with an artifically high reflectivity coefficient to best
show the effect

13.3 Scalable Instant Global Illumination 225

image quality: Roughly speaking, using twice as many CPUs, allowed for
using twice the number of VPLs while still achieving the same frame rate.
At the same frame rate, this means that adding more PCs still pays off
through higher rendering quality.

13.2.2.4 Performance limitations

Though the original IGI system already achieved interactive performance, it
was mainly designed as a proof-of-concept system, and did not exploit the full
performance of the ray tracer. For example, though it was explicitly designed
to generate coherent rays to point light sources, the original implementation
did not yet use the fast SSE packet traversal code for tracing these rays.
Thus, the performance of the original system was severely limited, thereby
allowing only a rather small number of VPLs at interactive rates. As this
resulted in visible artifacts in the image, the IGI system additionally allowed
for progressively refining the quality of an image as soon as user interaction
stopped: In that case, the refinement process automatically updated the
seeds for the quasi random number generators, and progressively increased
the number of VPLs, caustic photons, number of diffuse interreflections, and
samples per pixel. This eventually resulted in high-quality, artifact-free, and
antialiased images after only a few seconds of convergence.

13.3 A Scalable Implementation

However, due to the limited performance of the original system, this image
quality could not be maintained during user interaction. In order to remove
these limitations, Benthin et al. [Benthin03, Wald03e] have recently proposed
several important improvements that now allow for improved image quality,
significantly higher performance, and added features.

13.3.1 Improved Performance

One of the most obvious improvements of this “IGI2” system is its signifi-
cantly increased rendering performance than originally published in 2001 [Wald02b].
First of all, the ray tracer has been significantly improved since that publica-
tion [Wald03e] (also cf. Section 7). By design, the IGI algorithm spends most
of its time in tracing rays. As such, these speed improvements have directly
translated to higher global illumination performance. Apart from this “free
mileage”, the IGI subsystem itself has also been completely rewritten from
scratch to remove the bottlenecks and speed deficiencies of the original im-

226 Chapter 13: Instant Global Illumination

plementation (see previous section), and to even better exploit the possibly
achievable performance of the underlying ray tracing system.

As already outlined in Chapter 7, optimal ray tracing performance can
only be achieved if the fast SSE packet tracing code is being used, and if the
cost for shading is kept as small as possible. As all the rays shot in IGI consist
of highly coherent shadow rays to point light sources, packets of coherent rays
can be easily maintained most of the time, thereby allowing to trace these
rays with the fast SIMD code. Furthermore (in contrast to a typical recursive
ray tracer), all rays undergo exactly the same shading computations, and as
such can also be computed with fast SSE code, without the need and overhead
for breaking the SSE packets up into individual rays. As a result, almost all
computations in the new IGI system work in a streaming manner, operate on
packets of rays, and are implemented with fast SSE code. Though shading
is still costly even in SSE (cf. Table 7.6 in Section 7), the overall impact of
shading is rather small, as the shading operations have to be performed only
once for each primary ray, and can then be amortized over all shadow rays.

At peak performance, the new system achieves rates of up to 8 million
rays per second on each AthlonMP 1800+ CPU5.

These speed improvements – together with the recent improvements in ray
tracing performance mentioned in Chapter 7.4 – now allow the new system
to significantly outperform the old system, thereby achieving much higher
image quality and higher frame rates. For example, the animation shown in
Figure 13.8 can be rendered with up to 25 frames per second.

13.3.2 Removing the Server Bottleneck by Filtering on
the Clients

With the much higher performance of the clients the scalability bottleneck on
the server could no longer be tolerated. Therefore, the filtering computations
have also been moved to the clients, where they are also computed with fast
SIMD code. As discussed in Section 13.2.1, this implies that the new system
is no longer able to support caustics. Obviously, the same caustic photon
mapping technique could still be used as before. However, as each client now
has to compute all the caustic photon sets, even less photons are affordable
during each frame. As the caustic quality was already problematic in the

5Note that 8 million rays per second on an AthlonMP 1800+ CPU (running at 1.5GHz)
is significantly more than the performance data given in Section 7, where this performance
could only be achieved on a significantly faster Pentium-IV 2.5GHz CPU. This discrepancy
is due to the fast that the IGI system shoots mainly shadow rays, which can be traced
much faster than the primary rays measured in Section 7.

13.3 Scalable Instant Global Illumination 227

Figure 13.8: An IGI2 animation sequence in the ERW6 scene. Note how the
most important effects – sharp as well as smooth shadows, indirect diffuse
illumination, color bleeding, and procedural shading – are correctly computed
in each frame. As the ray tracer itself supports dynamic scenes (see Chap-
ter 9), the scene can be dynamically reconfigured, e.g. by moving the light,
or by putting the chair on the table. The depicted animation sequence can
be rendered at this quality with up to 10 frames per second, and – at slightly
reduced quality – with up to 40 frames per second

 0

 5

 10

 15

 20

 5 10 15 20

fr
am
es
 p
er
 s
ec
on
d

number of clients

ERW6
Office

Conference
PowerPlant
Maple Trees

Figure 13.9: Scalability of the new IGI system with the number of render-
ing clients: Performance is essentially linear up to 24 PCs/48 CPUs. This
applies to scenes ranging from several hundred triangles (ERW6) up to the
power plant with 50 million triangles (four instances). Also note how the
new system scales in frame rate well beyond the original system, which was
limited to at most 5 frames per second.

228 Chapter 13: Instant Global Illumination

original version, this does not appear to be a reasonable option. It would still
be possible to add caustics incrementally during times of no user interaction.

As a compensation for no longer being able to support caustics, filtering
on the clients completely removes any computational load from the server.
This in turn removes the server bottleneck, allows to server to concentrate
on load balancing, and lets the system scale easily to more than 48 CPUs,
and even to frame rates beyond 20 frames per second (see Figure 13.9).
Currently, the systems performance is mainly limited by the bandwidth of
GigaBit Ethernet, which in our somewhat outdated hardware configuration
cannot transfer more than roughly 25–30 frames per second at 640 × 480
pixels (see Chapter 8).

13.3.3 Programmable Shading

Apart from the significantly higher performance and scalablity, the new IGI2
system now supports complex procedural shaders (like the “wood”, “marble”,
and “brickbump” shaders that can be seen in Figure 13.10) also in the global
illumination computation.

Figure 13.10: Freely programmable procedural shading in a globally illumi-
nated scene. The standard “ERW6” test scene (left) and after applying sev-
eral procedural shaders (marble, wood, and brickbump). Even with shaders
that make extensive use of procedural noise the performance only drops to 3.7
fps compared to 4.5 fps with a purely diffuse BRDF.

In order to support programmable shading, the new system splits the
shading part into a material shader and a BRDF evaluation. The material
shader is freely programmable by the user, and is expected to return a BRDF
description (e.g. a phong model) for each primary ray, in which the BRDF

13.3 Scalable Instant Global Illumination 229

parameters can vary from ray to ray6. When computing the contribution
from the VPLs, this BRDF is then evaluated for each shadow ray. During
evaluation of the BRDF, all shadow rays undergo the same computations
(except for different parameters). Thus, the BRDF evaluations can easily
and efficiently be implemented for packets of rays using SSE (see Section 7).
Following the same pattern as described above, four BRDFs are evaluated in
parallel, achieving high SSE utilization and very efficient BRDF evaluations.

For convenience, the user-programmable material shaders operate on sin-
gle rays, which consequently requires costly data-reorganization, and does not
allow for SSE implementation. As a result, calling the user-programmable
material shader can be quite costly. In fact, it can be several times as costly
as shooting the primary ray itself (see Section 7).

However, as already discussed in the previous section, this expensive ma-
terial shader is called only once for each primary, reflection, or refraction
ray. The BRDF returned from this material shader then can be evaluated
very efficiently for all shadow rays. Using this framework, the cost for pro-
grammable shading can efficiently be amortized over all shadow rays, and
has only a minor impact for a reasonable amount of VPLs (see Table 13.1).

Num VPLs 0 1 2 4 8 16 32
Diffuse 1 0.59 0.50 0.38 0.26 0.16 0.09
Wood 0.27 0.24 0.22 0.20 0.16 0.11 0.07

Overhead 270% 146% 127% 90% 63% 45% 29%

Table 13.1: Impact of programmable shading on IGI2 performance in the
ERW6 scene as shown in Figure 13.10 scene). Procedural shading (“Wood” in
this example) can be quite costly, and in this example costs almost 4 times as
much as a diffuse shader if no shadow rays are cast at all. Using the proposed
“material shader” model, this cost can be amortized over many shadow rays,
and even drops below 30% for 32 VPLs. Note that for more complex scenes,
the overall overhead would be significantly less due to a better ratio of ray
tracing cost to shader overhead.

13.3.4 Fast Anti-Aliasing by Interleaved Supersampling

The original system provided high-quality anti-aliasing using progressive
over-sampling in static situations but suffered from artifacts during inter-
action. This was caused by the low image resolution and the fact that only

6In a “Wood” material, for example, the diffuse reflectivity of the phong model would
be procedurally determined per ray

230 Chapter 13: Instant Global Illumination

a single primary ray was used per pixel.
Efficient anti-aliasing is still an unsolved problem in ray tracing as the ren-

dering time increases linearly with the number of rays traced. Anti-aliasing
by brute-force super-sampling in each pixel is thus quite costly, in particular
for an interactive context. On the other hand, methods like adaptive super-
sampling are problematic due to possible artifacts and the increased latency
of refinement queries in a distributed setup.

Figure 13.11: Efficient anti-aliasing. Left: A single primary ray per pixel, ex-
hibiting strong aliasing artifacts. Right: 4 primary rays per pixel, resulting in
an aliasing-reduced image. Using interleaved anti-aliasing, the performance
of the right image with four-fold supersampling is only slightly lower than
the left image, running at 3.2fps compared to 4.0 fps. As both images use
the same total number of shadow rays per pixel, the quality of the lighting
simulation is virtually indistinguishable.

The IGI2 system [Benthin03, Wald03e] can also perform supersampling
with little performance impact using a similar interleaving approach as for
sampling the VPLs. Instead of connecting each primary ray to all M VPLs in
the current set, the VPLs are grouped into N different subsets with roughly
M/N VPLs each. We then use N primary rays per pixel for anti-aliasing,
each ray computing illumination only with its own subset of VPLs.

For typical parameters (i.e. M >= 16 and N = 4 or N = 8), the overhead
of the N − 1 additional rays is usually in the order of 20% to 30%, which is
well justified by the increase in image quality that is due to the 4- to 8-fold
supersampling (see Figure 13.11).

13.3.5 Summary and Conclusions

In summary, the Instant Global Illumination Method is an efficient frame-
work that combines several base ingredients – instant radiosity, fast ray trac-

13.3 Scalable Instant Global Illumination 231

Figure 13.12: Screenshots from the new IGI2 system: a.) The ERW6 scene
with programmable shaders (here with a spot light source to demonstrate
that IGI is not limited to diffuse area light sources), b.) and c.) IGI2 in
an animated VRML scene, in which color bleeding lets the entire scene get
blueish once the light source approaches the blue globe, d.) Conference scene
with 280,000 triangles and 220 light sources , e.) IGI in some multi-million-
triangle maple trees with detailed shadows from the branches and leaves, and
f.) Global Illumination in the 12.5 million triangle “power plant” scene. All
scenes run interactively at several frames per second at 640x480, with – de-
pending on the actual quality settings – up to 25 fps in the simpler scenes
(see Figure 13.9). On a different hardware configuration, even more than 40
fps could be achieved.

ing, interleaved sampling, and discontinuity buffering – in order to interac-
tively compute global illumination. While not all illumination effects are
accounted for (most importantly: no caustics) the most important features
of global illumination are correctly simulated: Direct lighting, soft as well as
hard shadows, indirect illumination effects, color bleeding, reflections, and
refractions (see Figure 13.12).

Due to a better implementation, a complete restructuring into a stream-
ing framework, thorough use of SSE code, and a more scalable parallelization,
the newest implementation of this method achieves significantly higher per-
formance than the Instant Global Illumination system as originally proposed
in 2001/2002 [Wald02b]. Apart from a very high performance on each in-
dividual CPU, the new system scales easily to more than 48 CPUs, and up
to frame rates of 25 frames per second at video resolution. Note that this

232 Chapter 13: Instant Global Illumination

upper limit of 25 frames per second is only due to our (somewhat outdated)
network infrastructure. On a newer network infrastructure (still GigaBit eth-
ernet, but newer switch and network cards) the system has already reached
frame rates beyong 40 frames per second.

Finally, the new system also features higher rendering quality: Apart
from being able to use more samples at the same frame rate, the new sys-
tem also supports programmable material shaders and an efficient means of
supersampling.

Interestingly enough, efficient supersampling, a thorough streaming de-
sign with complete SSE implementation, as well an efficient means of shading
packets of rays (using the proposed material shader model) allow the IGI2
system to typically achieve both higher image quality and higher performance
with global illumination, than most scenes usually achieve with “standard”
shaders computing only local illumination. This once again stresses the need
for finding efficient means for shading packets of rays also for non-global
illumination rendering modes.

Chapter 14

Efficient Instant Global
Illumination in Highly Occluded

Scenes using “Light Source
Tracking”

As described in the previous chapter, the Instant Global Illumination method
– running on the RTRT/OpenRT realtime ray tracing system – now allows for
computing global illumination solutions at interactive rates. This availability
of interactive global illumination now provides a new and important tool for
many practical applications, e.g. in product design, virtual prototyping, and
architecture, in which the accurate simulation of indirect effects can have a
decisive influence on the evaluation process.

However, the just mentioned disciplines often require the realistic visu-
alization of entire planes, ships, complete buildings, or construction sites.
Such scenes often consist of many individual rooms and contain millions of
triangles and hundreds to thousands of light sources (see Figure 14.1), that
cannot easily be handled by todays algorithms.

Due to a high degree of occlusion, most of the different rooms in such
scenes are typically influenced by only a small fraction of all light sources.
For example, a room on the 7th floor of the building in Figure 14.1 will
hardly be illuminated by a light bulb in the basement. The combination
of high occlusions with large numbers of light sources are a challenge for
most off-line and interactive algorithms because many samples are computed
without a significant contribution to the final image. If the few important
light sources could be identified efficiently, rendering would be performed
much more efficiently. While it has been common to optimize the rendering

234 Chapter 14: IGI in Complex and Highly Occluded Scenes

a.) b.)

c.) d.)

Figure 14.1: “Soda Hall”, a 7 storey fully furnished building containing 2.2
million triangles and 23,256 light sources. a.) The entire building, simply
shaded, b.) Overview of a single floor c.) and d.) Inside, with full global
illumination. Note that almost all of the rooms inside this building are mod-
eled in high detail. With our proposed technique, the right images run at 2-3
frames per second on 22 CPUs allowing to interactively explore the entire
building with full global illumination.

process by manually disabling irrelevant light sources for off-line processing,
this is not an option for interactive applications where the set of relevant
light sources can change from frame to frame.

While it is clear that we are mostly interested in solving that problem
for our interactive global illumination technique, this problem is actually not
limited to online applications. In this chapter, we present a method that is
applicable in both an offline and in an online context. This method exploits
the special characteristics of such scenes by automatically determining the
relevant light sources. We estimate the visual importance of each light source
for the final image and use this estimate for efficiently sampling only the
relevant and visible light sources. While we do not want to compromise on
quality for the offline rendering setting, we tolerate a reasonable amount of
artifacts in the interactive setting as long as the general impression remains

14.1 Global Illumination in Realistically Complex Scenes 235

correct.

We start with a detailed analysis of the problems that arise when calculat-
ing global illumination in complex and highly occluded scenes in Section 14.1,
together with a short discussion of previous work in Section 14.2. In Sec-
tion 14.3 we present the basic idea of our method before discussing how it
can be applied to instant global illumination in Section 14.4. Finally, we
conclude and discuss future work in Section 14.6.

14.1 Global Illumination in Realistically Com-
plex Scenes

Realistic scenes such as those listed above share a number of characteristics:
Massive geometric complexity of up to millions of triangles, hundreds to
thousands of light sources, and high occlusion between different parts of the
scene.

14.1.1 Geometric Complexity

Realistically complex scenes often consist of millions of triangles in order
to accurately model the geometric detail (e.g. detailed pencils in the “Soda
Hall” scene). Such geometric complexity has always been problematic for
radiosity-style algorithms that have to store illumination information with
the geometry of the scene. While clustering [Smits94] and the use of view
importance [Aupperle93] do help in such scenes, these algorithms must still
sample and process the entire scene geometry.

For all ray-based rendering algorithms – e.g. (bidirectional) path trac-
ing [Kajiya86, Veach94, Lafortune93], instant radiosity [Wald02b, Keller97],
or photon mapping [Jensen96, Jensen01] – the pure number of triangles is
theoretically less of an issue, as such algorithms are sublinear in the num-
ber of triangles [Wald01a, Parker99b, Havran01]. This weak dependence on
scene complexity allows for efficiently rendering even scenes with millions of
triangles [Wald01c, Pharr97] (see Figure 14.2b) and at least in theory makes
ray- and path-based algorithms mostly independent of geometric complex-
ity. In practice, however, this holds true only if a high coherence of the rays
can be maintained: As soon as the rays start to randomly sample the entire
scene – as done by virtually all of todays global illumination algorithms –
even moderately complex scenes won’t fit into processor caches, resulting in
a dramatic drop of performance. Really complex scenes may not even fit into
main memory, leading to disk thrashing if sampled incoherently.

236 Chapter 14: IGI in Complex and Highly Occluded Scenes

Figure 14.2: Neither geometric complexity, nor a moderate number of light
sources is a problem for e.g. the instant global illumination method. Left: The
“conference” model with 202 light sources, interactively illuminated at 5-10
fps. Right: instant global illumination in the 12.5 million triangle “Power-
plant” at 2-3 fps. Though both problems individually can be handled very
well, the combination of many triangles, many lights, and high occlusion is
currently infeasible with such systems. Note that the power plant contains
only a single, manually placed light source, and thus shows little occlusion
and high coherence.

14.1.2 Many Light Sources

The second important cost factor is the large number of light sources. In
reality, any room in a building usually contains several different light sources,
resulting in hundreds to thousands of light sources for a complete building.
Many algorithms require to consider and sample all light sources, (e.g. by
starting paths or particles from each of them), thus requiring a prohibitively
large number of rays to be shot for a single image. If these lights all contribute
roughly equally to each point, subsampling the light sources works nicely (see
Figure 14.2a), even if the degree of undersampling is quite severe. However,
subsampling no longer works in our setting of highly occluded models, as the
variation of the different samples then is too high.

Even worse, however, is the fact that the light sources are usually scat-
tered all over the model such that it becomes hard to avoid sampling the
entire geometry (see Figure 14.3). This is especially true for those kinds of
algorithms that have to start rays, paths, or particles from the light sources.
Unfortunately, this applies to almost all of today’s global illumination algo-
rithms.

14.2 Previous Work 237

14.1.3 High Occlusion

Finally, the above mentioned scenes are usually highly occluded, and only
few light sources will actually contribute to each given point. For many
algorithms, this results in wasted computations. For example, algorithms
that work by tracing particles from the light sources will waste most of their
time tracing particles into distant parts of the scene where they will not at
all contribute to the current image.

Similarly, all algorithms that require to find valid connections between
a surface point and a light (e.g. path tracing, bidirectional path tracing, or
any algorithm computing direct illumination separately) have to generate
lots of costly samples just in order to find the few unoccluded connection.
Generating enough unoccluded paths to light sources to achieve a sufficient
image quality requires to shoot far too many rays for reasonable rendering
performance.

Conclusions

While each of the problematic characteristics – high geometric complexity,
large number of light sources, and high occlusion – can be handled relatively
well by at least one of the available techniques, their combination is hard
to handle for any of these algorithms. An algorithm that would be able
to handle scenes with the afore-mentioned properties would have to fulfill
several requirements: First, it should be based on ray tracing to efficiently
handle the geometric complexity. Second, it must generate coherent rays
that touch only the relevant parts of the model. Especially, it must not start
rays from light sources or at least limit these rays to actually visible lights
in order to reduce the working set of the algorithms for very complex scenes.
Finally, it should concentrate its computations to only those light sources
that actually contribute to the image.

14.2 Previous Work

Each of the afore-mentioned problems – geometric complexity, many light
sources, and occlusion – has received significant previous research, so that
we can only review the most important contributions. For handling com-
plex models all different kinds of ray tracing have proven to be very ef-
fective [Parker99b, Wald01a, Wald01c], as long as coherence of the rays is
high and the working set of the rendering algorithm remains relatively small.
Pharr [Pharr97] demonstrated an out-of-core system that can handle millions
of triangles even for simulating global illumination. However, this system is

238 Chapter 14: IGI in Complex and Highly Occluded Scenes

not easily applicable to an interactive setting and did not specifically target
highly occluded scenes.

For radiosity-style algorithms, hierarchical radiosity [Hanrahan91] and
clustering [Smits94] have been introduced to improve the performance of
radiosity methods for complex scenes. View importance [Aupperle93] has
been used to concentrate computations to parts of the scene relevant to the
image. However, this approach still iterates through the entire model in order
to check for the propagation of importance. All these algorithms are at least
linear in scene complexity and so far have shown to be difficult to adapt to
interactive use.

For ray-based systems, Shirley et al. [Shirley96] have proposed several
importance sampling technique for the efficient handling of many luminaires.
Though these techniques are a basic requirement for any high-quality and
high-performance global illumination algorithm, they do not account for vis-
ibility. Thus they cannot solve our problems with highly occluded scenes
where the importance of each light source is much more determined by its
visibility than by its extent and orientation.

Ward et al.[Ward91] introduced an algorithm to select the most relevant
light sources during rendering of a single frame while the contribution of
other light sources was estimated without additional visibility tests. Our
approach uses the same idea but extends it to deal with complex scenes with
high occlusion in an interactive context.

To account for occlusion, both Jensen et al. [Jensen95] and Keller et
al. [Keller00] have proposed to use a preprocessing step for approximating
the direct illumination using a kind of photon map. During rendering, this
information could be used to estimate the importance of a light source. This
allows for efficient importance sampling by concentrating samples to the ac-
tually contributing light sources. However, their methods require to store a
photon map, and is therefore not easily applicable to an interactive setting1.
Furthermore, the preprocessing step requires to first emit photons from all
scene lights, which is not affordable for highly complex environments.

14.3 Efficient Importance Sampling in Complex
and Highly Occluded Environments

Our approach is mainly targeted towards realistically complex scenes that
combine high geometric complexity, many lights, and high occlusion. Sev-

1Also see Chapter 12.1 for a discussion about the suitability of photon mapping for an
interactive distributed setting.

14.3 Efficient Importance Sampling 239

eral examples of such scenes – the same scenes we will use in our experiments
later – can be seen in Figures 14.5 and 14.8: Both “ERW10” and “Ellipse”
have only moderate complexity, but already contain many lights and high oc-
clusion. Additionally, “Soda Hall” is a more realistical model of an existing
building at Berkeley University, featuring 2.2 million triangles with highly
detailed geometry, and 23,256 light sources scattered over seven storeys con-
taining dozens of fully furnished rooms each.

As discussed above, high geometric complexity can be handled well by
ray tracing systems, as long as the costly processing of mostly occluded
lights, and random sampling of the whole model is avoided2. Achieving high
rendering performance in such scenes requires us to efficiently determine the
non-contributing lights without sampling the entire scene.

As a solution, we have chosen to use a two-pass approach: In a first step,
we use a crude estimation step to roughly determine the importance of the
different light sources for the image, and thus to identify the important light
sources. For this step we use a modified path tracer as motivated below (also
see Figure 14.3).

In the second step, this information is used for improving the rendering
quality with importance sampling of the light sources. This not only con-
centrates samples on most likely unoccluded lights, but also avoids sampling
those parts of the scene that are occluded.

Step 1: Crude Path Tracing to Estimate Respective Light
Source Contributions

For the estimation step, we have chosen to use an eye path tracer with
relatively low sampling rate. Though a path tracer may at first seem unsuited
for this task (being well known for its noisy images), there are several good
reasons for our choice: First, a path tracer is trivially parallelizable, which
is an important feature to be applied in an interactive setting. It also easily
enables to trade quality for speed by just changing the number of paths used
per pixel.

Second, a path tracer only builds on ray tracing, and does not need any
additional data structures. Thus, geometric complexity is not a problem as
long as the rays remain mostly coherent. This coherence is, however, not
a problem either. While path tracers are known for their lack of coherence
(because the randomly chosen paths sample space incoherently), this is no

2Also see Table 7.6, which compares two of the test scenes used in the following ex-
periments: Though Soda Hall is more than an order of magnitude more complex than
ERW10, it is less than half as slow.

240 Chapter 14: IGI in Complex and Highly Occluded Scenes

Figure 14.3: Estimating light importances with path tracing. This inten-
tionally simplified example assumes a scene consisting of six simple, non-
connected rooms. Left: If rays (or particles) would be started from all light
sources (e.g. for bidirectional path tracing or photon mapping), the entire
scene geometry would eventually be sampled. Right: Though a path tracer also
evntually samples all light sources, it only samples visible geomtry. Shadow
rays to occluded light sources (dashed blue) get blocked at the first (still visi-
ble) occluder (blue lines). After we have determined the visible light sources,
we can also start particles from these light sources, e.g. for generating the
VPLs needed for Instant Global Illumination.

longer true on a coarser scale: As a path tracer is purely view-importance
driven, it will only sample geometry that will likely contribute to the image,
and never even touches unimportant regions at all.

Of course, the path tracer eventually has to sample all lights with shadow
rays, as it can not know which lights are unimportant. However, these shadow
rays, if shot from the path towards the light source, will either reach the light
source (in which case the light source is important) or are blocked in the vi-
sually important part of the scene in which it was started (see Figure 14.3).
Thus, the actual footprint of data touched by the path tracer directly corre-
sponds to those parts of the model that are actually important.

One potential problem with using a path tracer is that pure path tracing
usually generates very noisy results, and requires lots of samples for reliable
results. Even though this is undoubtedly true for the whole image, we are
not interested in the actual pixel values, but only in the absolute importance

14.3 Efficient Importance Sampling 241

of light sources for the entire image3. Then, even when shooting only a single
path per pixel, rather high sample rates and reliable results can be produced:
For example, if we render the ERW10 scene which contains 100 light sources
at a resolution of 640× 480 with only one sample per pixel, then more than
3,000 samples will be used per light source. Thus, even if a path-traced image
with as few samples may be hardly recognizable at all, reasonably reliable
estimates can still be expected (see Figure 14.4).

Figure 14.4: Quality of the estimate in the ERW10 scene. Left: Estimate as
results from a path tracer using a single sample per pixel. Right: The same
image rendered with 1024 samples per pixel. Though the estimate image is
hardly recognizable, the contributions of the light sources – over the whole
image – are estimated correctly up to a few percent.

Of course, some noise remains in the form of variance in the estimate.
This, however is not a problem as the estimated importance will never be
visualized directly but will only be used for importance sampling. A strongly
varying estimate may, however, become problematic if used in an interactive
context with low sampling rates for light sources, where it may lead to tem-
poral artifacts like flickering. This problem will be addressed in more detail
in Section 14.4.

Step 2: Constructing an Importance Sampling PDF

The method used for constructing the PDF from the information gathered
during path tracing can greatly influence the rendering process. To obtain
an unbiased estimate the PDF used for importance sampling should never be

3For instant global illumination, each light source always contributes to the whole
image. For other algorithms, it might make sense to also estimate the change of importance
with respect to different regions in the image.

242 Chapter 14: IGI in Complex and Highly Occluded Scenes

zero for any actually contributing light. Though this could be easily guaran-
teed by just assigning a certain minimum probability for each light source,
this would result in many light sources being sampled and their surrounding
geometry being touched. At the expense of being slightly biased, this can be
avoided by thresholding the importance of light sources. This will effectively
’turn off’ light sources with a very small contribution. Even though being
biased, this thresholding in practice is hardly noticeable if the threshold is
chosen small enough.

Step 3: Importance Sampling during Rendering

After computing the PDF we can use it during rendering quite easily. For
most algorithms, the only modification to the rendering phase is to simply
replace the existing PDF used for sampling the light source.

While we want to eventually use our technique for interactive applications,
it also works in an offline context: As a proof of concept we have first applied
it to a simple bidirectional path tracer [Veach94, Lafortune93]. Integrating
our method into the original bidirectional path tracer (BDPT) was trivial,
as only the PDF for sampling the start point for the light ray had to be
modified. For the estimation step, we usually use only a single path per
pixel. As this is rather small compared to the 16 – 64 bidirectional paths
during rendering, the cost of the estimate does not play a major role for the
offline rendering application. Of course, all comparisons between new and
original version do include the estimation overhead.

Using our method allows for efficiently concentrating samples to impor-
tant light sources. For ERW10, this translates to having to use only 8 instead
of 100 lights after turning off lights with very small contributions. For Soda
Hall the benefit is even bigger, reducing the number of lights in some views
from 23,256 to only 66. Using the same number of paths, this results in
significantly better quality, as can be seen in Figure 14.5. This can also
be measured in terms of RMS error to a master image, where – after the
same rendering time – the new method produces significantly less error (see
Figure 14.6).

Note that the path tracer used for these simple proof-of-concept exper-
iments was certainly not a highly sophisticated, production-style renderer.
Such renderers would usually employ several different techniques to improve
both rendering performance and image quality (such as e.g. clever sampling
strategies, deterministic sampling, or others). However, any benefits from
such techniques should apply equally well for both the original and the mod-
ified implementation. As such, we are confident that our method should also
translate to more sophisticated renderers.

14.3 Efficient Importance Sampling 243

Figure 14.5: Quality comparison (rendered with a bidirectional path tracer)
at same number of computed paths in the ERW10, Ellipse, and Soda Hall
Scenes. Top: Original method. Bottom: Using the estimated importance.
This example clearly shows the impact of our method on the overall image
quality. The impact of our method increases with the degree of occlusion in
the scene.

 1

 10

 100

 50 100 150 200 250 300 350 400 450 500

R
M
S

E
r
r
o
r

(
l
o
g
a
r
i
t
h
m
i
c

s
c
a
l
e
)

samples/pixel

ERW10 (old)
ERW10 (new)

Ellipse (old)
Ellipse (new)

SodaHall (old)
SodaHall (new)

Figure 14.6: Convergence Speed: RMS error to a master image, over ren-
dering time, for different scenes. As can be seen, the new method clearly
outperforms the old method.

244 Chapter 14: IGI in Complex and Highly Occluded Scenes

14.4 Application to Instant Global Illumination

As just seen in Figures 14.5 and 14.6, importance sampling using our es-
timation step can efficiently concentrate the samples to non-occluded light
sources, and can thereby increase overall image quality also for offline algo-
rithms. Obviously however our main interest lies in applying this algorithm
to Instant Global Illumination, which currently cannot handle such scenes.

As already described in Chapter 13, Instant Global Illumination [Wald02b]
(IGI) in its core builds on a variant of instant radiosity [Keller97], in combi-
nation with interleaved sampling [Keller01], and a filtering step: The lighting
in a scene is approximated by a set of virtual point light sources (VPLs) that
are created by tracing a few “big” photons or particles from the light sources.
These VPLs are then used to illuminate the scene just as with normal point
light sources.

Due to the underlying fast ray tracing engine, IGI can efficiently handle
even complex scenes of several million triangles. However, its efficiency de-
pends to a large degree on the occlusion of a scene: As the performance is
directly proportional to the number of VPLs used, only a small number of
VPLs can be handled efficiently (in the order of 40 to 100).

In highly occluded scenes, most of these few VPLs will likely be located
in parts of the scene where they do not contribute at all to the current image
to be rendered. In that case, many more VPLs than interactively affordable
would have to be used to achieve a reasonably good coverage of the current
view and obtain a good image quality. For example, consider rendering the
ERW10 scene compared to rendering a single of its rooms, where one would
have to use 100 times as many VPLs for the whole model in order to get the
same quality as one would get for the single room.

Using the previously described importance sampling scheme, it should
be possible to concentrate the few precious VPLs to the actually important
rooms, and thus be able to render such scenes with good quality at interactive
rates. However, integrating the new method into an interactive framework
requires to solve new challenges due to the combination of an interactive
setting with extremely low sample rates.

In principle, three problems have to be solved:

Distributed Implementation: The estimation and importance sampling
steps have to be integrated into the distributed computing framework
using a cluster of PCs that IGI runs on. Though future hardware
platforms may not require this distribution framework, today this is
unavoidable in order to achieve interactive performance.

14.4 Application to Instant Global Illumination 245

Suitable construction of the PDF: Special care has to be taken when
constructing the PDF in order to cope with the extremely small sam-
pling rates. In particular, we have to make sure that light sources with
small importance receive some samples at all. If, for example, one light
source contributes 80 percent to the illumination in an image, giving it
16 out of a total of 20 VPLs would only leave 4 VPLs to represent all
other light sources.

Handling of temporal artifacts: Most importantly we have to consider
temporal artifacts of our method. This is especially important due to
the low sample rates that lead to slight errors that are hardly notice-
able in a still image but which can lead to strong flickering between
successive frames.

14.4.1 Distributed Implementation

The distribution framework used in the IGI system uses a tile-based dynamic
load balancing scheme, which lets different clients compute different image
tiles [Wald01c, Wald02b] (see Chapter 8). In order to avoid seeing the tile
borders in the final image, we have to make sure that all clients compute
exactly the same image. In particular this means that the clients have to use
exactly the VPLs for computing their respective image tiles. For the original
system, this was simple to achieve by synchronizing the seed values for the
random number generators on all clients. Using the same random numbers,
all clients would generate exactly the same VPLs, and thus would compute
the same image.

In our new version, however, we also have to make sure that all clients
use exactly the same PDF. Using a different PDF – even when using the
same random numbers to sample it – would result in different VPLs, which
in turn would be clearly visible as a tiling pattern on the image plane where
each tile is illuminated differently.

In order to synchronize the PDFs, there are basically two choices: First,
one could let all clients perform the full estimation step on the whole frame,
and again use synchronized random numbers. Even though this would work,
this approach would not scale: Each client would have to shoot several hun-
dred thousand rays just for the estimation step, which already exceeds the
budget of rays it can shoot for a single frame4. As such, this approach is not
applicable in an interactive setting.

4A full estimation step for the entire image can easily cost more than a second for rea-
sonable quality parameters. If this cannot be amortized over different PCs, no interactive
performance could be expected.

246 Chapter 14: IGI in Complex and Highly Occluded Scenes

In the second approach, each client performs the estimation only for its
current tile. This perfectly fits the load balancing scheme as clients com-
puting more tiles also perform more estimation computations. On the other
side, it results in different PDFs on each client and requires a global syn-
chronization. Due to the long latency of the underlying commodity network
the clients cannot wait for the server to have received and synchronized the
estimate from all clients for the current frame. On the other hand, if we
tolerate one frame of latency for the estimate to be used, we have a simple
and efficient solution. Each client performs the estimation for its current tile
and sends the results to the server in compressed form. The server combines
the different estimates and broadcasts the global estimate by attaching it to
the first tile sent to each client for the next frame. This combination of the
estimates is extremely cheap and thus does not create a bottleneck at the
server.

The latter approach obviously works only if the PDF for the next frame
is not too different from the current frame. This is usually not a problem for
walkthrough applications, but can result in an slight delay, e.g. when newly
turning on a previously switched-off light source, or when newly entering
a previously completely occluded room. In practice, however, the visual
artifacts ususally remain small and tolerable.

14.4.2 Exploiting Temporal Coherence

For a typical walkthrough, successive frames usually do not differ too much.
This temporal coherence can be exploited in several ways: First, we can
smooth the importance estimate by combining the estimates from several
successive frames. We currently do this by combining the old PDF with the
current estimate using the weighed sum Pnew = αPest + (1 − α)Pold. This
allows for using fewer estimate samples per frame and thus to lower the
estimation overhead.

Similarly, we can use the PDF from the last frame to also use impor-
tance sampling in the estimation process. This increases the reliability of
the estimate in the interactive setting. However, we have to make sure that
for the estimation step, each light source gets a minimum probability for
being sampled. Otherwise, a light source that would once receive a zero
PDF would never be sampled nor estimated again and would forever remain
invisible. Though assigning a minimum sampling probability to each light
source eventually samples all lights during estimation, the shadow rays are
shot from the eye path towards the sampled sources, and thus will not touch
far-away geometry around occluded light sources (see Figure 14.3).

Finally, another way of exploiting temporal coherence is to reuse eye rays

14.4 Application to Instant Global Illumination 247

that have to be traced anyway: As the estimate computed in the current tile
will only be used in the next frame we can save time by not tracing separate
primary rays for estimation before the rendering pass. Instead we reuse the
primary rays already traced for rendering the current frame, thereby again
reducing the estimation cost.

14.4.3 Avoiding Temporal Noise

The main problem to cope with in our approach is temporal noise, which
may become visible as flickering of illumination. Even though both instant
radiosity and our importance sampling step are unbiased in theory, the small
number of samples (VPLs) affordable for interactive frame rates lead to a
certain remaining error in the image. As this error is usually smoothly dis-
tributed over the entire image, it is often not noticeable in a still image. In
an interactive setting however, two successive frames that are rendered with
different VPLs may have their error in different parts of the image, resulting
in visible flickering.

For the original system, this flickering could be controlled by using the
same random numbers for successive frames, generating exactly the same
VPLs for both frames. Using view-driven importance sampling, this is no
longer possible, as any kind of user interaction – moving, turning, or interact-
ing with a scene – will change the view importance for the next frame. As this
view importance influences where the VPLs will be placed, any interaction
will lead to “jumping” of the VPLs in between frames.

In order to minimize this temporal flickering, we use the temporal smooth-
ing of the PDF mentioned above to minimize variations in the PDF. This
however can also lead to an increased latency until a drastic change of a light
source’s importance is taken into account.

Even more importantly, we make sure that the VPLs will be computed
as coherent to the previous frame as possible. For example, the usual way
of generating the VPLs would be to process all VPLs one after another by
first sampling a light source (using our PDF), and then randomly placing a
VPL on it. Then, however, it may easily happen that due to a change in
the probability of another light source, a VPL will ’leave’ the light source it
was placed on in the last frame. Now, even if the light source may receive
another VPL, the new VPL will be generated by different random numbers,
and thus be placed differently on the source. In practice, this leads to most
VPLs jumping from frame to frame even with only small changes in the PDF
(see Figure 14.7.

In order to avoid this effect we have reversed the process. We first com-
pute the number of VPLs that start at each light source using an error

248 Chapter 14: IGI in Complex and Highly Occluded Scenes

x0 x1 x2 x3 x4 x5

PDF in new frame

PDF in old frame

Figure 14.7: Small changes in the PDF leading to jumping in the VPLs: As
the same random number is usually used for both sampling the light source
(i.e. either the red, blue, green, or white bar in this example) as well as for
determining the position on that light, even small changes to the PDF can
have a significant impact. In this example, even if the same random numbers
have been used, and even if the number of samples on the white light source
remains the same, the single VPL on the white light source “jumps” from the
right to the left end of that light source, which propuces disturbing flickering
of the illumination.

diffusion process to make up for rounding errors. Then for each light source
that has received some VPLs, we start generating the VPLs with a random
seed that is unique to the light source. Thus, the VPLs on a light source
will always be placed in exactly the same way no matter how the PDFs of
other light sources change. Also, if the number of VPLs on a light sources
changes from n to m the first min(n, m) VPLs will remain the same, leading
to drastically reduced flickering. Instead of processing all interleaving pat-
terns independently, we perform this VPL distribution step for all lights of
all interleaving patterns in order to maximize the average number of VPLs
per light source.

However, if there remain many more active lights than the number of
VPL paths that we compute for IGI, this trick will no longer work. In this
case we can no longer expect VPLs to stay on any particular light sources
if the PDFs change. This could probably be solved by clustering nearby
lights [Meneveaux03] and distributing the VPLs according to these clusters
in the same way as discussed above. So far however this approach has not
been investigated.

14.5 Results and Discussion

Due to the interactive context it is hard to quantify the results of the new
method in tables or present them as still images on paper. The full impact
of the improvements only become obvious when experienced interactively.

14.5 Results and Discussion 249

14.5.1 Temporal Artifacts

Temporal artifacts become most visible in the form of flickering and are
mainly caused by the extremely small sampling rates used in an interac-
tive context. As discussed above flickering is caused by some of the VPLs
changing position between frames. The methods discussed in Section 14.4
use highly dependent solutions by placing the sampling in successive frames
as consistent as possible. Essentially this tries to keep the remaining error
as temporally consistent as possible. However, some change in the samples
must be allowed in order to adapt the solution to the changing environment.

Another source of temporal artifacts is the occasional under-sampling of
contributions by some light sources. This results in ’missing’ illumination
that may suddenly ’reappear’ if the importance of the light source increases
above the threshold. For example, imagine approaching a far away room
that can only be seen through a small door: While far away this room may
not receive any VPL and thus remains completely dark. When approaching
its importance increases until it will receive its first VPL. This appears as if
the light in this room had suddenly been “switched on”.

The temporal artifacts can best be judged using the video accompanying
the original paper5 [Wald03c], which shows several example walkthroughs
through our test scenes with both the original and with the new method.
Though our method cannot completely avoid all temporal artifacts, it signif-
icantly improves the overall image quality of such walkthroughs, and already
provides a good impression of the lighting in the scene. Note that in all of
our experiments all illumination is fully recomputed every frame, allowing to
arbitrarily and interactively change any lighting parameters, materials, and
geometry at any time.

14.5.2 Localization vs. Non-localization

One obvious extension of our method would be to localize the importance
sampling procedure by having each pixel (or set of pixels) choose its own
subset of VPLs. This would allow for using different VPLs in different parts
of the scene, and should reduce the above-mentioned undersampling arti-
facts. However, this localization would incur a high additional per-pixel cost
for determining the VPLs, and would destroy the streaming framework of
the IGI system, which exploits the fact that all rays are doing exactly the
same [Benthin03] (also see the preceding chapter). Furthermore, it is unclear
how the “jumping” of VPLs from image region to image region could be
handled efficiently.

5This video is available from http://www.openrt.de/Publications/.

250 Chapter 14: IGI in Complex and Highly Occluded Scenes

14.5.3 Estimation cost

One of the most obvious questions to quantify is the cost for the estimation
step, which however is hard to determine: One obvious cost factor is the
additional number of rays used for estimation. This, however, is very small
compared to the bulk of the rays that is spent on shadow computations.

Unfortunately however the rays used for the estimate are much less coher-
ent than the shadow rays for the instant radiosity step and can be significantly
more costly. (up to two to three times as costly depending on scene, view,
and parameters)6. Additionally, the estimation step requires other costly
operations like sampling light sources or path directions.

Additionally to shooting the estimation paths, there is also an additional
cost for sending the estimates across the network. This cost however is not
significant. Similarly, the cost for combining the separate estimates on the
server is negligible.

Adding all these cost factors for our estimation step together, the run-
time of a single frame increases by about 20 to 50 percent compared to the
unmodified algorithm when using the same number of VPLs during render-
ing7. However, because we drastically reduce the number of shadow rays
(the main cost of the lighting simulation) that are required to reach a certain
image quality we still obtain a significant net improvement. For example, if
we would spend an additional 50% of the original time on the estimate and
only manage to save 90% of all shadow rays, our method will still result in a
net speedup by a factor of roughly five. The impact in practice is typically
even higher and increases for more complex and occluded scenes. Because
the estimation parameter and thus its cost can be chosen interactively the
user can fine-tuned this tradeoff.

14.5.4 Overall Performance

Due to the discussed problems in exactly quantifying the impact of our
method in detail, the best way of judging the improvements of our methods
is to compare both methods side by side at the same frame rate. Therefore,
we have taken the new method and have modified the quality parameters to

6Also note that unlike the bulk of the rays during rendering these sampling rays are
not coherent enough to be shot with the fast SSE code, and have to be shot with the
single-ray C code that is usually much slower (also see Table 7.6).

7Apart from the estimation overhead, this is also influenced by the fact that occluded
shadow rays tend to be cheaper than non-occluded ones. As our method concentrates
samples to non-occluded light sources, the shadow rays get slightly more costly. Even so,
the biggest factor certainly is the estimation overhead.

14.5 Results and Discussion 251

achieve a reasonably good tradeoff for image quality versus rendering perfor-
mance as it would typically be used with the original system in less complex
scenes. For the comparison, we have then taken the original IGI system and
adjusted its quality settings until the same frame rate was obtained.

Figure 14.8: Comparison of the image quality of the original instant global
illumination method (middle) versus our new importance sampling technique
(bottom row) in the ERW10 (80k triangles, 100 lights), Ellipse (19k triangles,
1,164 lights), and Soda Hall scenes (2.2M triangles, 23,256 lights), respec-
tively, while running at the same frame rate. Due to the cost for estimation,
the lower row uses even less VPLs than the upper row (usually about 50%).
While the images computed with the old method are hardly recognizable the
new method produces images of reasonably quality at the same frame rate.
Note that the lower row uses even fewer VPLs due to the cost for estimation.

The results of this side-by-side comparison can be seen in Figure 14.8:
The image quality of the new method is generally much higher than with
the original method. Whereas the original rendering quality is simply not
tolerable at the given frame rate our method allows for image quality that
is reasonably smooth. Although some artifacts are still visible, it nicely

252 Chapter 14: IGI in Complex and Highly Occluded Scenes

reproduces illumination features such as soft shadows that have not been
possible with the original method.

14.6 Summary and Conclusions

In this chapter, we have presented an efficient importance sampling technique
for computing global illumination in complex and highly occluded scenes
such as entire buildings. Using a cheap and purely view-importance driven
estimation step our method can efficiently avoid sampling most occluded
light sources. Thus, the sampling effort is concentrated almost exclusively
on light sources actually contributing to an image. At the same frame rate,
this results in a significantly improved image quality.

Applying our importance sampling technique to the instant global illu-
mination system for the first time allows for interactively and automatically
exploring entire buildings illuminated with highly complex geometry and
thousands of light sources. It is important to note that no expensive or man-
ual preprocessing of the scenes has been necessary. However, some temporal
artifacts remain and become visible as flickering.

We expect that future refinement of the importance estimate will be able
to reduce these temporal artifacts. More samples due to high-performance
realtime ray tracing, possible even with hardware support, would also help.

Even today our method allows for interactive walkthroughs under full
global illumination with reasonably good quality that would be sufficient for
most practical applications. It is important to note that this is possible even
with models that many other rendering algorithms can hardly render at all
even without computing global illumination.

Chapter 15

Instant Global Illumination –
Conclusions and Future Work

As has been described in the previous chapters, realtime ray tracing can – at
least if employed correctly – finally enable the computation of global illumi-
nation at interactive rates. After having outlined the issues and constraints
of using realtime ray tracing for global illumination, we have presented the
“Instant Global Illumination” method, a framework for global illumination
that has been explicitly designed to run efficiently on a highly efficient, dis-
tributed ray tracing infrastructure, be it a software implementation or a
hardware architecture. Instant Global Illumination can faithfully reproduce
the most important lighting effects – smooth and hard shadows, smooth di-
rect and indirect diffuse lighting, color bleeding, reflections and refractions –
while still allowing for interactive and dynamic changes to all scene properties
including geometry, materials and lights.

Instant global illumination scales to massively complex scenes of millions
of polygons, and – at least with the proposed modifications – even to scenes
with many light sources and high occlusion.

In the way proposed above, IGI scales linearly in the number of client PCs,
and achieves frame rates of up to 40 frames per second at 640 × 480 pixels,
even including procedural shaders, textures, tone mapping and antialising.
Even so, much work remains to be done:

Higher performance: Obviously, it has to be investigated how the overall
system performance can be furtherly increased. This includes both opti-
mizations to the global illumination subsystem itself, as well as investigating
methods to further accelerate the ray tracing core.

Once the overall performance gets furtherly increased, it also has to be

254 Chapter 15: Instant Global Illumination – Conclusions & Future Work

evaluated how better networking technology could be used to remove the
currently remaining network bottleneck of at most 40 frames per second at
video resolutions. For practical applications, frame rates of 10–20 frames per
second at full-screen resolutions would be desirable.

At such high resolutions, it would also make sense to re-investigate the op-
timal filter sizes for interleaved sampling and discontinuity buffering. While
we currently use only 3 × 3, larger resolutions should also allow for filter
sizes of 5× 5 or even 7× 7 without producing significantly visible artifacts.
Similarly, as high resolutions might allow for larger packet sizes in the ray
tracing core, such as packets of 4 × 4 rays instead of using only 4 rays per
packet.

Hardware implementation: Apart from faster networking hardware, real-
time performance at fullscreen frame rates could also be achieved by mapping
the instant global illumination method to a hardware architecture such as
the SaarCOR architecture (see Section 5.3). Due to its design, the instant
global illumination method should map very well to such an architecture,
and as such seems promising. Though this has not been finally simulated, is
is currently being evaluated. Prelimirary results are promising.

Hierarchical evaluation model: In the algorithm itself, it has to be eval-
uated whether – and how – the instant global illumination algorithm can
be modified to support a hierarchical evaluation model. Hierarchical meth-
ods and clustering have been highly successful for radiosity [Hanrahan91,
Cohen93, Smits94, Sillion94, Bekaert99, Stamminger99], and might also be
beneficial for instant global illumination. However, it is yet unclear how such
an algorithm could be realized.

Glossyness and Caustics: Qualitatively, it is of major importance to
seek for better ways of supporting highly glossy scenes. In its current form,
instant global illumination is similar to radiosity methods in the sense that
it performs best for scenes that are primarily diffuse. While IGI does not
suffer from tesselation problems and can easily handle reflections and refrac-
tions, other specular effects – like glossiness and high-quality caustics – are
still problematic. The latter effects are often less important for practical
applications, but would nonetheless be interesting to support.

However, it is yet unclear how this can be realized. The most successful
approach to caustics known today is photon mapping [Jensen96, Jensen97,
Jensen01]. As discussed above, this unfortunately does not easily match a

255

realtime ray tracing framework. Efficient alternatives for generating high-
quality caustics so far are not yet known.

Essentially the same is true for highly glossy materials. While perfectly
specular materials are already supported by computing reflections, glossy
reflections are typically computed by sampling the glossy lobe with many
secondary rays. Though this is theoretically simple, in practice it often leads
to an unaffordable number of rays that have to be traced per pixel.

As such, much work still remains to be done for the ultimate goal of real-
time, full-screen global illumination including all effects. Nonetheless, even
in its current form, interactive global illumination offers a significant im-
provement in realism in particular during interactive sessions. This strongly
indicates that interactive global illumination may eventually become a main-
stream feature of 3D graphics.

256 Chapter 15: Instant Global Illumination – Conclusions & Future Work

Chapter 16

Final Summary, Conclusions,
and Future Work

At the end of this thesis, we will first briefly summarize the content and
new contributions that have been discussed in the previous chapters. Before
concluding, we will also discuss and summarize all the potential areas of
future research that have already been pointed out throughout this thesis.

Part I – Realtime Ray Tracing

In the first part of this thesis, we have first summarized the basics of ray trac-
ing, and have discussed the advantages and disadvantages that ray tracing
offers over triangle rasterization. We have shown that ray tracing is not only
superior in offline rendering, but offers many advantages also – and especially
– if used in an interactive context.

After having pointed out the advantages of ray tracing for future realtime
graphics, we have briefly reviewed the different ongoing approaches towards
realizing realtime ray tracing. These approaches include software-based sys-
tems (on shared-memory supercomputers as well as on commodity CPUs),
approaches using the GPU as a ray tracing co-processor, and the design of
specialized ray tracing hardware. All of these three approaches are currently
being pursued both actively and successfully. While all these approaches
have different advantages and disadvantages, we can conclude that the main
remaining question no longer is whether realtime ray tracing will ever be
commonly available on the desktop, but rather in which form this will come
to happen.

258 Chapter 16: Final Summary, Conclusions, and Future Work

Part II – The RTRT/OpenRT Realtime Ray Tracing Engine

In the second part of this thesis, we have taken a closer look at one of these
approaches, by describing and discussing the RTRT/OpenRT realtime ray
tracing engine. This software based ray tracing system achieves interactive
performance by combining several techniques: First, an efficient implementa-
tion of the core ray tracing algorithms, namely fast triangle intersection, fast
BSP traversal, and construction of high-quality BSPs. Second, optimizations
towards the features and limitation of modern CPUs, including SIMD sup-
port and a special emphasis on caching and memory optimizations. Third,
a sophisticated parallelization framework, which allows for efficiently and
linearly scaling the performance of the ray tracing engine by adding more
CPUs, even if those are located on different PCs.

Based on these core algorithms, we have then discussed some of the ad-
vanced issues of ray tracing whose importance is not limited to the previously
described software implementation, but that have to be addressed no matter
what kind of ray tracing architecture will eventually prove to be the most suc-
cessful, be it software, hardware, or GPUs: First, we have discussed methods
that allow for efficiently handling dynamic scenes in a realtime ray tracing
system. We have then discussed API issues for realtime ray tracing, and have
proposed the OpenRT interactive ray tracing API, an API that is as simi-
lar to OpenGL as possible, while still allowing for arbitrarily programmable
shading as possible in RenderMan.

Taking all these measures together, the RTRT/OpenRT engine is a com-
plete, extremely powerful rendering engine that offers arbitrarily programm-
able shading, support for highly complex geometry, efficient handling of dy-
namic scenes, and high performance, all available through a simple yet flexi-
ble and powerful API. This engine enables a set of uniquely new applications
that cannot easily be realized with different approaches. Several practical
examples of such applications have been demonstrated.

Part III – Instant Global Illumination

In the third – and final – part of this thesis we have then described the “In-
stant Global Illumination” method, a global illumination framework that has
been explicitly designed to meet the constraints and restrictions of a realtime
ray tracing system. Running on top of the above-mentioned RTRT/OpenRT
engine, instant global illumination allows for finally achieving interactive
global illumination – the physically correct simulation of light propagation
in a scene at interactive rates. After describing the basic idea of the Instant
Global Illumination method, we have discussed several improvements and op-

259

timizations of this method, including a faster and scalable implementation,
support for programmable shading, and efficient anti-aliasing.

Finally, we have shown how – using an efficient importance estimation
and importance sampling scheme – the Instant Global Illumination method
can be extended to also handle massively complex and highly occluded scenes
with millions of triangles and thousands of light sources.

Future Research

Being a relatively new area of research, realtime ray tracing has received
few attention by researchers so far. While this thesis has discussed the most
important issues of realtime ray tracing and interactive global illumination,
most of these previously discussed techniques allow for extensions and future
research.

Though many of these issues have already been mentioned in their re-
spective chapters earlier in this thesis, we will briefly repeat them here, in
order to present all these open issues side by side.

Faster Ray Tracing Implementations

Obviously, realtime ray tracing can be further improved my making it even
faster. While we have spent significant effort in achieving high ray trac-
ing performance, we are nonetheless convinced that further improvements
are possible. As the biggest potential for furtherly optimizing ray tracing
probably lies in the better exploitation of coherence, future research in accel-
erating ray tracing may also require to find new algorithms that concentrate
on shooting rays in a more coherent way.

Efficient Shading

In order to improving the effective ray tracing performance one also has to
reduce the performance impact of shading. As already discussed in Section 7,
even simple shading has now become the bottleneck of the RTRT/OpenRT
system, and for many scenes is more costly than tracing and intersecting the
rays. However, how to best accelerate the shading process is still an open
question.

The streaming-like shading in the Instant Global Illumination (see Sec-
tion 13.3) has already shown up first successful steps into that direction, and
has thereby shown the potential of this approach. However, it is yet unclear
how exactly to solve that problem for arbitrarily programmable, unrestricted

260 Chapter 16: Final Summary, Conclusions, and Future Work

kinds of shaders. Most likely, research on faster shading will eventually also
require to look out for more coherent rendering algorithms, design new shad-
ing APIs, and probably also on shading language compilers.

Better Support for Dynamic Scenes

Apart from higher performance in ray tracing and shading, establishing ray
tracing as an alternative to triangle rasterization also requires the investi-
gation and design of new methods for better handling dynamic scenes. Es-
pecially for highly interactive applications such as computer games, efficient
support for dynamic scenes will be a prime prerequisite. This will especially
require methods that can efficiently be used in parallel settings, and that can
also be realized on potential future hardware architectures such as SaarCOR.

Construction of Ray Tracing Hardware

Commodity CPUs get increasingly faster every year, and in a few years will
eventually be fast enough to deliver full-screen realtime ray tracing perfor-
mance on a single desktop PC. On the other hand, once more compute power
is available, it is likely to be used immediately for even further increasing the
rendering quality, e.g. by antialiasing, even higher resolutions and framerates,
even more complex shading, global illumination, etc.

As such, in order to reach the scenario of realtime ray tracing being
cheaply available on everybodys desktop, it might be necessary to spend more
effort on designing – and eventually building and marketing – ray tracing
hardware. Eventually, such a different hardware platform may also require
to re-investigate the previously discussed isses of dynamic scenes, proper API
support, and efficient shading also from a hardware perspective.

Support for Non-Polygonal Primitive Types

In order to make ray tracing useful for a wide range of applications, we also
have to investigate means of efficiently ray tracing non-polygonal geometry
such as lines, text, or points. While these are often used by practical ap-
plications, they are surprisingly hard to (efficiently) support in ray tracing.
Except for these kinds of primitives, many applications could benefit from
the direct, built-in support for higher-order primitives such as Bezier- or
NURBS-patches, or subdivision surfaces. Similarly, built-in support for in-
teractively ray tracing point clouds, volumetric data, or ISO-surfaces would
enable completely new kinds of applications, especially if all these different
kinds of rendering primitives can be supported in one single framework.

261

While the respective algorithms for ray tracing these kinds of primitives
are already well-known, the performance of these algorithms has to be signifi-
cantly improved in order to meet the performance requirements of a realtime
ray tracing system. This especially includes the question how to be able
to support these primitives without thereby reducing the ray tracing perfor-
mance for polygonal scenes.

Better API Support

Furthermore, more work has to be investigated into better API support for
ray tracing. The most crucial issues of such future ray tracing APIs will be
the support for dynamic scenes, the support for advanced primitive types, as
well as the way that shading is being expressed (i.e. the shading language and
shader API). However, as long as it is not clear how these respective issues
themselves are best solved in a ray tracer (see above), it is not appropriate
to address them already at the API level.

In the end, designing new APIs that are suitable for ray tracing may also
lead to the convergence of rasterization and ray tracing APIs. Eventually, it
would be advantageous to have one single, common API that equally supports
triangle rasterization, point-based rendering, and ray tracing.

Extensions to Instant Global Illumination

Currently, the main limitation of the Instant Global Illumination technique is
its dependence on mostly diffuse scenes (plus perfectly specular reflections),
and its missing support for glossy materials and caustics. For many practical
applications (especially in the VR industry), high frame rates, good scalabil-
ity and a high-quality simulation of diffuse inter-reflection are actually much
more important than support for caustics. On the other hand, many ap-
plications would benefit from the accurate caustics, at least if this does not
corrupt the achievable performance and the quality of the diffuse lighting
simulation. As photon mapping is currently the best known method for pro-
ducing convincing shadows, support for high-quality caustics will eventually
also require to design methods and techniques for realtime photon mapping.

Even more important however might be the support for “typical” real-
world effects like glossy reflections, motion blur, or depth of field. These
techniques are standard features for offline rendering, but are currently too
expensive to be simulated at realtime rates.

262 Chapter 16: Final Summary, Conclusions, and Future Work

Building Practical Applications

Finally, it has to be evaluated how all this vast potential that has now
become available – massively complex scenes, high-quality and physically
correct shading, and even global illumination – can be used for real-world,
practical applications. Eventually, this is likely to further encourage the
transition from purely “good-looking” images to “predictive” rendering be-
ing based on the accurate simulation of real-world phenomena. This however
will also require to take a closer look at more realistic lighting and material
models than are currently used in mainstream computer graphics.

Conclusions

Though the previous discussion has shown that there are enough open ques-
tions left to be answered, realtime ray tracing in recent time has made
tremendous progress towards offering a practical alternative to triangle ras-
terization. Already today, it enables completely new applications that are
currently impossible to realize with any other technique.

With all these uniquely new application that are already possible today,
realtime ray tracing is likely to play a larger role in future 3D graphics.
Similar to the introduction of texture mapping a few decades ago, it is likely
to provide a new level of realism that is likely to soon be a standard feature
of mainstream graphical applications.

Zusammenfassung

Die im Rahmen dieser Arbeit bearbeiteten Themen gliedern sich in drei Teile:
Erstens, in Grundlagen, Zusammenfassung, und aktueller Stand der Dinge
des Echtzeit Ray-Tracing; zweitens, in die Beschreibung des RTRT/OpenRT
Echtzeit Ray-Tracing Systems; sowie drittens, die Benutzung des Echtzeit
Ray-Tracings für die Interaktive Globale Beleuchtungsberechnung mittels
“Instant Global Illumination”.

Teil I – Echtzeit Ray-Tracing

Im ersten Teil dieser Arbeit wurden sowohl die Grundlagen des Ray-Tracing
dargestellt, als auch die Vor- und Nachteile des Ray-Tracing im Vergle-
ich zur Dreiecksrasterisierung aufgezeigt. Darauf basierend wurde gezeigt,
daß das Ray-Tracing Verfahren nicht nur bei der nicht-interaktiven Bildsyn-
these vorteilhafter ist als Dreiecksrasterisierung, sondern dass es auch – und
inbesondere – im interaktiven Kontext Vorteile bietet.

Nachdem diese Vorteile des Ray-Tracings fuer künftige Echtzeit-Graphik
aufgezeigt wurden, folgte eine kurze Übersicht über die zur Zeit von unter-
schiedlichen Gruppen verfolgten Ansätze zur Verwirklichung dieser Echtzeit
Ray-Tracing Technologie. Diese Ansätze kann man in drei Kategorien klas-
sifizieren: Software-basierte Systemen (sowohl auf Mehrprozessor-Supercom-
putern als auch auf Standard-PC-Prozessoren), Ansätze die Graphikchips
als Ray-Tracing Koprozessoren verwenden, sowie letztendlich das Design auf
Ray-Tracing spezialisierter Hardware. Alle diese Ansätze werden heutzu-
tage aktiv und zeitgleich mit großen Fortschritten weiterverfolgt. Während
alle diese unterschiedlichen Ansätze unterschiedliche Stärken und Schwächen
aufweisen, so stellt sich doch heute weniger die Frage, ob Echtzeit Ray-
Tracing jemals eine weitverbreitete Graphiktechnologie sein wird, sondern
nur noch, in welcher Form diese Entwicklung vonstatten gehen wird.

264 Chapter 16: Final Summary, Conclusions, and Future Work

Teil II – Das RTRT/OpenRT Echtzeit Ray-Tracing System

Im zweiten Teil dieser Arbeit wurde dann einer dieser Ansätze genauer unter-
sucht, indem die RTRT/OpenRT Echtzeit Ray-Tracing Architektur genauer
beschrieben und diskutiert wurde. Dieses Software-basierte System erreicht
interaktive Performanz durch die Kombination mehrerer Techniken: Erstens,
eine effizient, hochgradig optimierte Implementierung der Kernalgorithmen
des Ray-Tracing, insbesondere schnelle Strahl-Dreiecks-Schnittberechnungen,
schnelles Traversieren von BSP-Bäumen, sowie die Generierung hochquali-
tativer BSPs. Zweitens, Optimierungen, die speziell auf die Eigenschaften
moderner Prozessoren abgestimmt sind, insbesondere die Konzentration auf
Caching-Effekte und die effiziente Unterstützung von SIMD-Erweiterungen.
Drittens, eine ausgereifte Parallelisierungs-Architektur, die es erlaubt, die
Performanz der Ray-Tracing Architektur linear und transparent dadurch zu
steigern, dass die Rechenkapazitäten mehrer Prozessoren (bzw. PCs) kom-
biniert werden.

Basierend auf diesen Algorithmen wurden dann einige der fortgeschrit-
teneren Themen des Echtzeit Ray-Tracing angesprochen, welche nicht auf
diese Software-basierte Architektur beschränkt sind, sondern auch für al-
ternative Ansätze des Echtzeit Ray-Tracing (wie GPUs und spezialisierte
Ray-Tracing Hardware)in gleicher oder ähnlicher Form behandelt werden
müssen: Dazu wurde zuerst eine Methode diskutiert, die es erlauben, auch
dynamisch änderbare Szenen effizient in einem Echtzeit Ray-Tracer zu un-
terstützen. Danach wurden dann Anforderungen an Anwendungsschnittstel-
len (API’s) für das Echtzeit Ray-Tracing diskutiert, wobei auch das OpenRT
API vorgestellt wurde. Dieses OpenRT API wurde dabei speziell daraufhin
entworfen, so ähnlich wie moeglich zu existierenden APIs fuer Echtzeit Gra-
phik (OpenGL) zu erscheinen, dabei aber auch die Stärken des Ray-Tracing
zu unterstützen, und dabei auch frei programmierbares, RenderMan-ähn-
liches Shading zu unterstützen.

Die Integration aller dieser Komponenten liefert dann die RTRT/OpenRT
Echtzeit Ray-Tracing Architektur, eine vollständige, extrem mächtige Gra-
phikarchitektur, welche sich auszeichnet durch frei programmierbares Shad-
ing, die Unterstützung auch massivst komplexer Geometrien, effiziente Hand-
habung dynamisch änderbarer Szenen, sowie hohe, interaktive Performanz;
alle die für Applikationen zugänglich durch eine einfache aber nichtsdestotrotz
mächtige Anwendungsschnittstelle. Diese Graphikarchitektur ermöglicht eine
Anzahl von grundlegend neuen Anwendungen, welche nur schwer mit anderen
Ansätzen realisierbar wären. Mehrere praktische Beispiele solcher Anwen-
dungen wurden vorgestellt.

265

Teil III – Interaktive Beleuchtungssimulation durch “Instant
Global Illumination”

Im dritten – und abschließenden – Teil dieser Arbeit wurde dann disku-
tiert, welche Implikationen sich durch die jetzt verfügbar gewordene Echtzeit
Ray-Tracing Technologie auf dem Feld der Globalen Beleuchtungsberechnung
ergeben. Dazu wurde die “Instant Global Illumination” Methode vorgestellt,
welche explizit dahingehend entworfen wurde, die Voraussetzungen und Be-
schränkungen eines Echtzeit Ray-Tracing Systems zu erfüllen. In Kombina-
tion mit der vorgehend besprochenen RTRT/OpenRT Architektur ermöglicht
diese Instant Global Illumination Methode nun endlich auch die Globale
Belechtung – das heißt, die physikalisch korrekte Berechnung des Licht-
transports – zu interaktiven Bildwiederholraten. Nach der Beschreibung der
Grundlagen dieser Methode wurden dann noch einige Erweiterungen dieser
Methode vorgestellt, insbesondere sowohl Verbesserungen und Optimierun-
gen der Performanz und Skalierbarkeit der Methode, als auch Unterstützung
für programmierbares Shading und effizientes Anti-Aliasing, sowie die Un-
terstützung massiv komplexer und hochgradig durch Verdeckung geprägter
Szenen.

Schlußfolgerung

Obwohl die Entwicklung und die Fortschritte des Echtzeit Ray-Tracing heutzu-
tage sicherlich noch nicht abgeschlossen sind, so erlauben doch auch die im
Rahmen dieser Arbeit vorgestellten Möglichkeiten schon vollkommen neue
Anwendungen, welche vorher in dieser Form nicht denkbar waren. Ähn-
lich wie die Einführung der Texturierung vor wenigen Jahrzehnten erlaubt
diese neue Technologie einen neue Ebene des Realismus in graphischen An-
wendungen, der vermutlich schon bald zur Standardausstattung auch von
Alltags-Graphikanwendungen gehören wird.

266 Chapter 16: Final Summary, Conclusions, and Future Work

Appendix A

List of Related Papers

Parts of this PhD thesis have already been published in previous publications.
The following is a list of papers that have contributed to this thesis, and that
might contain additional information.

Note however that some of these publications by now are significantly
older than this thesis, and thus may contain information (such as performance
data) that is already outdated by now. If in doubt, the information and data
given in this thesis should precede all information and data given in any of
these papers.

2001

Interactive Rendering using Coherent Ray Tracing
Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek
Computer Graphics Forum, 20(3), 2001, pages 153–164, by A. Chalmers
and T.–M. Rhyne (editors), Blackwell Publishers, Oxford, (Proceedings
of Eurographics 2001), Manchester, UK [Wald01a]

Interactive Distributed Ray Tracing of Highly Complex Models
Ingo Wald, Philipp Slusallek, and Carsten Benthin
Rendering Techniques 2001 (Proceedings of the 12th Eurographics Work-
shop on Rendering), by Steven J. Gortler and Karol Myszkowski (edi-
tors), pages 274–285, pages 2001, London, UK [Wald01c]

State of the Art in Interactive Ray Tracing
Ingo Wald and Philipp Slusallek
Eurographics 2001 State-of-the-Art Reports, Manchester, UK
[Wald01b]

268 Chapter A: List of Related Papers

2002

Interactive Global Illumination using Fast Ray Tracing
Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, Philipp
Slusallek , Rendering Techniques 2002, by P. Debevec and S. Gibson
(editors) pages 15–24, 2002, Pisa, Italy, (Proceedings of the 13th Eu-
rographics Workshop on Rendering) [Wald02b]

Interactive Headlight Visualization –A Case Study of Interac-
tive Distributed Ray Tracing–
Carsten Benthin, Ingo Wald, Tim Dahmen and Philipp Slusallek, Pro-
ceedings of the Fourth Eurographics Workshop on Parallel Graphics
and Visualization (PVG), pages 81–88, Blaubeuren, Germany, 2002
[Benthin02]

SaarCOR – A Hardware Architecture for Ray Tracing
Jörg Schmittler, Ingo Wald, and Philipp Slusallek, Proceedings of the
ACM SIGGRAPH/Eurographics Conference on Graphics Hardware,
2002, pages 27–36, 2002, Saarbrücken, Germany [Schmittler02]

OpenRT – A Flexible and Scalable Rendering Engine for Inter-
active 3D Graphics
Ingo Wald, Carsten Benthin, and Philipp Slusallek, Technical Report
2002, Saarland University Saarbrücken, Germany [Wald02a]

2003

Towards Realtime Ray Tracing – Issues and Potential
Ingo Wald, Carsten Benthin, and Philipp Slusallek, Technical Report
2003, Saarland University Saarbrücken, Germany [Wald03d]

The OpenRT Application Programming Interface – Towards A
Common API for Interactive Ray Tracing –
Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp Slusallek,
OpenSG Symposium 2003, Darmstadt, Germany [Dietrich03]

Interactive Global Illumination in Complex and Highly Oc-
cluded Scenes
Ingo Wald, Carsten Benthin, and Philipp Slusallek, Proceedings of the
14th Eurographics Symposium on Rendering, by P. H. Christensen and
D. Cohen-Or (editors) pages 74–81, 2003, Leuven, Belgium [Wald03c]

269

Interactive Distributed Ray Tracing on Commodity PC Clus-
ters –State of the Art and Practical Applications –
Ingo Wald, Carsten Benthin, and Philipp Slusallek, in Harald Kosch,
Laszlo Böszörmenyi, and Hermann Hellwagner, editors, Euro-Par 2003,
Klagenfurt, Austria, volume 2790 of Lecture Notes in Computer Sci-
ence, Springer. [Wald03a]

A Scalable Approach to Interactive Global Illumination
Carsten Benthin, Ingo Wald, and Philipp Slusallek, in Computer Graph-
ics Forum, 22(3), 2003, pages, 621–630, (Proceedings of Eurographics
2003), Granada, Spain [Benthin03]

Distributed Interactive Ray Tracing in Dynamic Environments
Ingo Wald, Carsten Benthin, and Philipp Slusallek, SIGGRAPH/Eurographics
Workshop on Parallel Graphics and Visualization (PVG) 2003, Seattle,
WA, USA, pages 77-86 [Wald03b]

Realtime Ray Tracing and its use for Interactive Global Illumi-
nation
Ingo Wald, Timothy J.Purcell, Jörg Schmittler, Carsten Benthin, and
Philipp Slusallek, Eurographics 2003 State-of-the-Art Reports, Granada,
Spain [Wald03e]

Streaming Video Textures for Mixed Reality Applications in
Interactive Ray Tracing Environments
Andreas Pomi, Gerd Marmitt, Ingo Wald, and Philipp Slusallek, Vir-
tual Reality, Modelling and Visualization (VMV) 2003, Munich, Ger-
many [Pomi03]

VRML Scene Graphs on an Interactive Ray Tracing Engine
Andreas Dietrich, Ingo Wald, Markus Wagner and Philipp Slusallek,
IEEE VR 2004 (to appear) [Dietrich04]

270 Chapter A: List of Related Papers

Bibliography

[Agelet97] Fernando Aguado Agelet, Fernando Perez Fontan, and
Arno Formella. Fast Ray Tracing for Microcellular and
Indoor Environments. IEEE Transactions on Magnetics
(to appear), March 1997.

[Akenine-Möller02] Tomas Akenine-Möller and Eric Haines. Realtime Ren-
dering (2nd edition). A K Peters Ltd, July 2002. ISBN:
1568811829.

[Aliaga99] Daniel G. Aliaga, Jon Cohen, Andrew Wilson, Eric
Baker, Hansong Zhang, Carl Erikson, Kennth E. Hoff
III, Tom Hudson, Wolfgang Stürzlinger, Rui Bastos,
Mary C. Whitton, Frederick P. Brooks Jr., and Dinesh
Manocha. MMR: An Interactive Massive Model Render-
ing System using Geometric and Image-Based Accelera-
tion. In ACM Symposium on Interactive 3D Graphics,
pages 199–206, Atlanta, USA, April 1999.

[AltiVec] Motorola Inc. AltiVec Technology Facts. Available at
http://www.motorola.com/AltiVec/facts.html.

[Amanatides87] John Amanatides and Andrew Woo. A Fast Voxel Traver-
sal Algorithm for Ray Tracing. In G. Marechal, editor,
Eurographics ’87, pages 3–10. Elsevier Science Publish-
ers, Amsterdam, North-Holland, 1987.

[AMDa] Advanced Micro Devices. Inside 3DNow![tm] Tech-
nology. http://www.amd.com/products/cpg/k623d/-
inside3d.html.

[AMDb] Advanced Micro Devices. Software Optimization Guide
for AMD Athlon(tm) 64 and AMD Opteron(tm)
Processors. Available from http://www.amd.com/us-
en/Processors/TechnicalResources/.

272 BIBLIOGRAPHY

[AMD03a] Advanced Micro Devices. AMD Athlon XP Pro-
cessor Model 8 Data Sheet. Available from
http://www.amd.com/us-en/Processors/, March 2003.
Publication number 25175.

[AMD03b] Advanced Micro Devices. AMD Opteron Processor
Model 8 Data Sheet. http://www.amd.com/us-en/-
Processors, 2003.

[Anido02] Manuel Anido, Nozar Tabrizi, Haitao Du, Marcos
Sanchez-Elez, and Nader Bagherzadeh. Interactive Ray
Tracing using a SIMD Reconfigurable Architecture. In
Proceedings of the 14th Symposium on Computer Archi-
tecture and High Performance Computing, pages 20–28.
IEEE Computer Soc, 2002.

[Apodaca90] A. Apodaca and M. Mantle. RenderMan: Pursuing the
Future of Graphics. IEEE Computer Graphics & Appli-
cations, 10(4):44–49, July 1990.

[Apodaka00] Anthony Apodaka and Larry Gritz. Advanced Render-
Man: Creating CGI for Motion Pictures. Morgan Kauf-
mann, 2000. ISBN: 1558606181.

[Appel68] Arthur Appel. Some Techniques for Shading Machine
Renderings of Solids. SJCC, pages 27–45, 1968.

[ART] Advanced Rendering Technologies. http://www.art.-
eco.uk/.

[Artusi03] Alessandro Artusi, Jiri Bittner, Michael Wimmer, and
Alexander Wilkie. Delivering Interactivity to Complex
Tone Mapping Operators. In Per H. Christensen and
Daniel Cohen-Or, editors, Proceedings of the 2003 Euro-
graphics Symposium on Rendering, pages 38–51, 2003.

[Arvo87] James Arvo and David Kirk. Fast Ray Tracing by
Ray Classification. Computer Graphics (SIGGRAPH ’87
Proceedings), 21(4):55–64, July 1987.

[Arvo88] J. Arvo. Linear-time Voxel Walking for Octrees. Ray
Tracing News (available at htpp://www.acm.org/tog/-
resources/RTNews/html/rtnews2d.html, 1(5), March
1988.

BIBLIOGRAPHY 273

[Arvo90a] James Arvo. Ray Tracing with Meta-Hierarchies. In
SIGGRAPH ’90 Advanced Topics in Ray Tracing course
notes. ACM Press, August 1990.

[Arvo90b] James Arvo and David B. Kirk. Particle Transport and
Image Synthesis. Computer Graphics (Proceedings of
SIGGRAPH ’90), 24(4):63–66, August 1990.

[ATI02] ATI. Radeon 9700 Pro Product Web Site, 2002.
http://mirror.ati.com/products/pc/radeon9700pro/-
index.html.

[Aupperle93] Larry Aupperle and Pat Hanrahan. Importance and Dis-
crete Three Point Transport. In Proceedings of the Fourth
Eurographics Workshop on Rendering, pages 85–94, June
1993.

[Badouel92] Didier Badouel. An Efficient Ray Polygon Intersection.
In David Kirk, editor, Graphics Gems III, pages 390–393.
Academic Press, 1992. ISBN: 0124096735.

[Bala99] Kavita Bala, Julie Dorsey, and Seth Teller. Radiance In-
terpolants for Accelerated Bounded-Error Ray Tracing.
ACM Transactions on Graphics, 18(3):213–256, August
1999.

[Bala03] Kavita Bala, Bruce Walter, and Donald Greenberg. Com-
bining Edges and Points for Interactive High-Quality
Rendering. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2003), pages 631–640, July 2003.
ISSN:0730-0301.

[Baxter III02] William V. Baxter III, Avneesh Sud, Naga K Govin-
daraju, and Dinesh Manocha. GigaWalk: Interactive
Walkthrough of Complex Environments. In Rendering
Techniques 2002 (Proceedings of the 13th Eurographics
Workshop on Rendering), pages 203 – 214, June 2002.

[Bekaert99] Philippe Bekaert. Hierarchical and Stochastic Algorithms
for Radiosity. PhD thesis, Katholieke Universitiet Leu-
ven, Belgium, 1999.

274 BIBLIOGRAPHY

[Bekaert01] Philippe Bekaert. Extensible Scene Graph Manager,
August 2001. http://www.cs.kuleuven.ac.be/∼graphics-
/XRML/.

[Benthin02] Carsten Benthin, Ingo Wald, Tim Dahmen, and Philipp
Slusallek. Interactive Headlight Simulation – A Case
Study of Distributed Interactive Ray Tracing. In Pro-
ceedings of the Fourth Eurographics Workshop on Paral-
lel Graphics and Visualization (PGV), pages 81–88. Eu-
rographics Association, 2002. ISBN: 1-58113-579-3.

[Benthin03] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A
Scalable Approach to Interactive Global Illumination.
Computer Graphics Forum, 22(3):621–630, 2003. (Pro-
ceedings of Eurographics).

[Bentley75] Jon Louis Bentley. Multidimensional Binary Search
Trees Used for Associative Searching. Communications
of the ACM, 18(9):509–517, 1975.

[Bentley79] Jon Louis Bentley and Jerome H. Friedman. Data struc-
tures for range searching. Computing surveys, 11(4):397–
409, 1979.

[Bittner99] Jiri Bittner. Hierarchical Techniques for Visibility De-
termination. Technical Report DS-005, Department
of Computer Science and Engineering, Czech Techni-
cal University in Prague, March 1999. Also avail-
able as http:/www.cgg.cvut.cz/∼bittner/publications/-
minimum.ps.gz.

[Bolz03] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter
Schroeder. Sparse Matrix Solvers on the GPU: Conjugate
gradients and multigrid. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH 2003), 22(3):917–924,
2003. ISSN: 0730-0301.

[Carey97] Rikk Carey, Gavin Bell, and Chris Mar-
rin. ISO/IEC 14772-1:1997 Virtual Reality
Modelling Language (VRML97), April 1997.
http://www.vrml.org/Specifications/VRML97.

BIBLIOGRAPHY 275

[Carr02] Nathan A. Carr, Jesse D. Hall, and John C. Hart.
The ray engine. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 37–46. Eurographics Association, 2002.
ISBN: 1-58113-580-7.

[Cassen95] T. Cassen, K. R. Subramanian, and Z. Michalewicz.
Near-Optimal Construction of Partitioning Trees by
Evolutionary Techniques. In Proceedings of Graphics In-
terface ’95, pages 263–271, Canada, June 1995.

[Chalmers02] Alan Chalmers, Timothy Davis, and Erik Reinhard, ed-
itors. Practical Parallel Rendering. AK Peters, 2002.
ISBN 1-56881-179-9.

[Chase00] Ronald J. Chase, Thomas M. Kendall, and Steven R.
Thompson. Parametric Radar Cross Section Study of a
Ground Combat Vehicle. Technical report, Army Re-
search Laboratory and Raytheon corp., 2000.

[Chen91] Shenchang Eric Chen, Holly E. Rushmeier, Gavin
Miller, and Douglass Turner. A progressive multi-pass
method for global illumination. In Proceedings of the
18th annual conference on Computer graphics and in-
teractive techniques, pages 165–174. ACM Press, 1991.
ISBN: 0-89791-436-8.

[Cleary86] John G. Cleary, Brian M. Wyvill, Graham M. Birtwistle,
and Reddy Vatti. Multiprocessor Ray Tracing. In Com-
puter Graphics Forum, volume 5, pages 3–12. North-
Holland, Amsterdam, 1986.

[Cohen93] Micheal F. Cohen and John R. Wallace. Radiosity and
Realistic Image Synthesis. Morgan Kaufmann Publish-
ers, 1993. ISBN 0-12178-270-0.

[Cohen94] Daniel Cohen. Voxel Traversal along a 3D Line. In
Paul Heckbert, editor, Graphics Gems IV, pages 366–
369. Academic Press, 1994. ISBN: 0123361559.

[Cook84a] Robert Cook, Thomas Porter, and Loren Carpenter. Dis-
tributed Ray Tracing. Computer Graphics (Proceeding of
SIGGRAPH 84), 18(3):137–144, 1984.

276 BIBLIOGRAPHY

[Cook84b] Robert L. Cook. Shade trees. Computer Graphics
(Proceedings of ACM SIGGRAPH), 18(3):223–231, July
1984.

[Cook87] Robert L. Cook, Loren Carpenter, and Edwin Catmull.
The REYES Image Rendering Architecture. Computer
Graphics (Proceedings of ACM SIGGRAPH 1987), pages
95–102, July 1987.

[Crow77] F.C. Crow. Shadow algorithms for computer graphics. In
Computer Graphics (SIGGRAPH 77 Proceedings). ACM
Press, July 1977.

[Damez03] Cyrille Damez, Kirill Dmitriev, and Karol Myszkowski.
State of the Art in Global Illumination for Interactive
Applications and High-Quality Animations. Computer
Graphics Forum, 22(1):55–77, March 2003.

[Dandekar99] Kapil R. Dandekar, Alberto Arredondo, Guanghan Xu,
and Hao Ling. Using Ray Tracing to Evaluate Smart
Antenna System Performance in Outdoor Wireless Com-
munications. In 1999 SPIE 13th Annual International
Symposium on Aerospace / Defense Sensing, Simulation,
and Controls, April 1999.

[Debevec97] Paul E. Debevec and Jitendra Malik. Recovering High
Dynamic Range Radiance Maps from Photographs.
Computer Graphics, 31(Annual Conference Series):369–
378, 1997.

[Debevec98] Paul Debevec. Rendering Synthetic Objects into Real
Scenes: Bridging Traditional and Image-based Graph-
ics with Global Illumination and High Dynamic Range
Photography. Computer Graphics (Proceedings of SIG-
GRAPH 98), 32(4):189–198, 1998.

[DeMarle03] David E. DeMarle, Steve Parker, Mark Hartner, Chris-
tiaan Gribble, and Charles Hansen. Distributed Interac-
tive Ray Tracing for Large Volume Visualization. In Pro-
ceedings of the IEEE Symposium on Parallel and Large-
Data Visualization and Graphics (PVG), pages 87–94,
2003.

BIBLIOGRAPHY 277

[Diefenbach96] Paul J. Diefenbach. Pipeline Rendering: Interaction and
Realism through Hardware-Based Multi-Pass Rendering.
PhD thesis, University of Pennyslvania, 1996.

[Dietrich03] Andreas Dietrich, Ingo Wald, Carsten Benthin, and
Philipp Slusallek. The OpenRT Application Program-
ming Interface – Towards A Common API for Interac-
tive Ray Tracing. In Proceedings of the 2003 OpenSG
Symposium, pages 23–31, Darmstadt, Germany, 2003.
Eurographics Association.

[Dietrich04] Andreas Dietrich, Ingo Wald, Markus Wagner, and
Philipp Slusallek. VRML Scene Graphs on an Interac-
tive Ray Tracing Engine. In Proceedings of IEEE VR
2004, pages 109–116, 2004.

[DirectX] Microsoft DirectX 8.0. http://www.microsoft.com/-
windows/directx/.

[Dmitriev02] Kirill Dmitriev, Stefan Brabec, Karol Myszkowski, and
Hans-Peter Seidel. Interactive Global Illumination using
Selective Photon Tracing. In Proceedings of the 13th Eu-
rographics Workshop on Rendering, pages 21–34, 2002.

[Drettakis97] George Drettakis and François Sillion. Interactive Up-
date of Global Illumination using a Line-Space Hierar-
chy. In Computer Graphics (Proceedings of SIGGRAPH
1997), pages 57–64, Aug 1997.

[Du03] Haitao Du, Marcos Sanchez-Elez, Nozar Tabrizi, Nader
Bagherzadeh, Manuel Anido, and Milangros Fernandez.
Interactive Ray Tracing on Reconfigurable SIMD Mor-
phoSys. In Design Automation and Test in Europa Con-
ference and Exhibition, pages 144–149, March 2003.

[Durand97] Fredo Durand, George Drettakis, and Claude Puech. The
Visibility Skeleton: A Powerful and Efficient Multi-
Purpose Global Visibility Tool. In SIGGRAPH 97 Con-
ference Proceedings, pages 89–100, 1997.

[Durand99] Fredo Durand. 3D Visibility: Analytical Study and Ap-
plications. PhD thesis, Universite Grenoble I – Joseph
Fourier Sciences et Geographie, July 1999.

278 BIBLIOGRAPHY

[Durgin97] Greg D. Durgin, Neal Patwari, and Theodore S. Rap-
paport. An Advanced 3D Ray Launching Method for
Wireless Propagation Prediction. In IEEE 47th Vehicu-
lar Technology Conference, volume 2, May 1997.

[Dutre01] Philip Dutre, Kavita Bala, and Philippe Bekaert. Ad-
vanced Global Illumination, 2001. SIGGRAPH 2001
Course Notes, Course 20.

[Ebert02] David Ebert, F. Kenton Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley. Texturing & Model-
ing: A Procedural Approach. Morgan Kaufmann, Third
edition, 2002. ISBN 1-55860-848-6.

[Eldridge00] Matthew Eldridge, Homan Igehy, and Pat Hanrahan.
Pomegranate: A Fully Scalable Graphics Architecture.
Computer Graphics (Proceedings of ACM SIGGRAPH),
pages 443–454, July 2000.

[Erickson97] Jeff Erickson. Pluecker Coordinates. Ray Trac-
ing News, 1997. http://www.acm.org/tog/resources/-
RTNews/html/rtnv10n3.html#art11.

[Fernandez02] Sebastian Fernandez, Kavita Bala, and Donald Green-
berg. Local Illumination Environments for Direct Light-
ing Acceleration. In Proceedings of 13th Eurographics
Workshop on Rendering, pages 7–14, Pisa, Italy, June
2002.

[Fernando03] Randima Fernando and Mark J. Kilgard. The Cg Tuto-
rial – The Definitive Guide to Programmable Real-Time
Graphics. Addison-Wesley, 2003.

[Foley97] Foley, van Dam, Feiner, and Hughes. Computer Graph-
ics – Principles and Practice, 2nd edition in C. Addison
Wesley, 1997.

[Formella94] Arno Formella, Christian Gill, and V. Hofmeyer. Fast
Ray Tracing of Sequences by Ray History Evaluation. In
Proceedings of Computer Animation ’94, pages 184–191.
IEEE Computer Society Press, May 1994.

[Foruma] MPI Forum. MPI – The Message Passing Interface Stan-
dard. http://www-unix.mcs.anl.gov/mpi.

BIBLIOGRAPHY 279

[Forumb] Myrinet Forum. Myrinet. http://www.myri.com/-
myrinet/overview/.

[Fujimoto86] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata.
ARTS: Accelerated Ray Tracing System. IEEE Com-
puter Graphics and Applications, 6(4):16–26, 1986.

[Futral01] William T. Futral. Infiniband Architecture: Development
and Deployment – A Strategic Guide to Server I/O So-
lutions. Intel Press, 2001.

[Gamma94] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994. ISBN
0-201-63361-2.

[Geist94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidyalingam S. Sunderam.
PVM: Parallel Virtual Machine. A User’s Guide and Tu-
torial for Network Parallel Computing. MIT Press, Cam-
bridge, 1994.

[Gigante88] Michael Gigante. Accelerated Ray Tracing using Non-
Uniform Grids. In Proceedings of Ausgraph ’90, pages
157–163, 1988.

[Glassner84] Andrew S. Glassner. Space Subdivision For Fast Ray
Tracing. IEEE Computer Graphics and Applications,
4(10):15–22, October 1984.

[Glassner88] Andrew Glassner. Spacetime Ray Tracing for Animation.
IEEE Computer Graphics and Applications, 8(2):60–70,
1988.

[Glassner89] Andrew Glassner. An Introduction to Ray Tracing. Mor-
gan Kaufmann, 1989. ISBN 0-12286-160-4.

[Glassner94] Andrew S. Glassner. 3D Computer Graphics, Second
Edition. The Lyons Press, July 1994. ISBN: 1558213058.

[GNU] The GNU gcc compiler, version 3.3.1.
http://www.gnu.org.

280 BIBLIOGRAPHY

[Goldsmith87] Jeffrey Goldsmith and John Salmon. Automatic Creation
of Object Hierarchies for Ray Tracing. IEEE Computer
Graphics and Applications, 7(5):14–20, May 1987.

[Goodnight03] Nolan Goodnight, Rui Wang, Cliff Woolley, and Greg
Humphreys. Interactive Time-Dependent Tone Mapping
using Programmable Graphics Hardware. In Per H.
Christensen and Daniel Cohen-Or, editors, Proceed-
ings of the 2003 Eurographics Symposium on Rendering,
pages 26–37, 2003.

[Govindaraju03] Naga K. Govindaraju, Brandon Lloyd, Sung-Eui Yoon,
Avneesh Sud, and Dinesh Manocha. Interactive Shadow
Generation in Complex Environments. ACM Transac-
tion on Graphics (Proceedings of ACM SIGGRAPH),
22(3):501–510, 2003.

[Granier01] Xavier Granier, George Drettakis, and Bruce Walter.
Fast Global Illumination Including Specular Effects. In
Proceedings of the 2001 Eurographics Workshop on Ren-
dering, pages 47–58, 2001.

[Gritz96] Larry Gritz and James K. Hahn. BMRT: A Global Illu-
mination Implementation of the RenderMan Standard.
Journal of Graphics Tools, 1(3):29–47, 1996.

[Gröller91] Eduard Gröller and Werner Purgathofer. Using temporal
and spatial coherence for accelerating the calculation of
animation sequences. In Proceedings of Eurographics ’91,
pages 103–113. Elsevier Science Publishers, 1991.

[Haber01] Jörg Haber, Karol Myszkowski, Hitoshi Yamauchi, and
Hans-Peter Seidel. Perceptually Guided Corrective
Splatting. Computer Graphics Forum (Proceedings of
Eurographics 2001), 20(3):142–152, September 2001.

[Haines86] Eric A. Haines and D. P. Greenberg. The Light Buffer:
A Ray Tracer Shadow Testing Accelerator. IEEE Com-
puter Graphics and Applications, 6(9):6–16, September
1986.

[Haines87] Eric A. Haines. A Proposal for Standard Graph-
ics Environments. IEEE Computer Graphics and

BIBLIOGRAPHY 281

Applications, 7(11):3–5, November 1987. Avail-
able from http://www.acm.org/pubs/tog/resources/-
SPD/overview.html.

[Haines91a] Eric Haines. Efficiency Improvements for Hierarchy
Traversal in Ray Tracing. In James Arvo, editor, Graph-
ics Gems II, pages 267–272. Academic Press, 1991.

[Haines91b] Eric A. Haines. Fast Ray-Convex Polyhedron Intersec-
tion. In James Arvo, editor, Graphics Gems II, pages
247–250. Academic Press, San Diego, 1991. includes
code.

[Hall01] D. Hall. The AR350: Today’s ray trace rendering pro-
cessor. In Proceedings of the Eurographics/SIGGRAPH
workshop on Graphics hardware - Hot 3D Session 1,
2001.

[Hanrahan90] Pat Hanrahan and Jim Lawson. A language for shading
and lighting calculations. Computer Graphics (Proceed-
ings of ACM SIGGRAPH), 24(4):289–298, August 1990.
ISBN: 0-201-50933-4.

[Hanrahan91] Pat Hanrahan, David Salzman, and Larry Aupperle.
A Rapid Hierarchical Radiosity Algorithm. In Com-
puter Graphics (SIGGRAPH 91 Conference Proceed-
ings), pages 197–206, 1991.

[Harris02] Mark Harris, Greg Coombe, Thorsten Scheuermann, and
Anselmo Lastra. Physically-based visual simulation on
graphics hardware. In Graphics Hardware, pages 109–
118, 2002.

[Havran97] Vlastimil Havran. Cache Sensitive Representation for the
BSP Tree. In Compugraphics’97, pages 369–376. GRASP
– Graphics Science Promotions & Publications, Decem-
ber 1997.

[Havran98] Vlastimil Havran, Jimı́ Bittner, and Jimi Sára. Ray
Tracing with Rope Trees. In László Szirmay Kalos,
editor, 14th Spring Conference on Computer Graphics,
pages 130–140, 1998.

282 BIBLIOGRAPHY

[Havran99] Vlastimil Havran. Analysis of Cache Sensitive Represen-
tation for Binary Space Partitioning Trees. Informatica,
23(3):203–210, May 1999. ISSN: 0350-5596.

[Havran00] Vlastimil Havran, Jan Prikryl, and Werner Purgath-
ofer. Statistical Comparison of Ray-Shooting Efficiency
Schemes. Technical Report TR-186-2-00-14, Department
of Computer Science, Czech Technical University; Vi-
enna University of Technology, July 2000.

[Havran01] Vlastimil Havran. Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2001.

[Heckbert87] Paul S. Heckbert. Ray Tracing JELL-O (R) Brand
Gelatin. Computer Graphics (SIGGRAPH ’87 Proceed-
ings), 21(4):73–4, July 1987. revision appears in CACM,
Vol. 31, #2, Feb. 1988, p. 130-134.

[Heckbert92] P. Heckbert. Discontinuity meshing for radiosity. In
Eurographics Rendering Workshop 92 proceedings, pages
203–226, May 1992.

[Heidrich99] Wolfgang Heidrich. High-quality Shading and Lighting
for Hardware-accelerated Rendering. PhD thesis, Uni-
versität Erlangen-Nürnberg, 1999.

[Held97] Martin Held. ERIT: A Collection of Efficient and Reli-
able Intersection Tests. Journal of Graphics Tools: JGT,
2(4):25–44, 1997.

[Hennessy96] John L. Hennessy and David A. Patterson. Computer
Architecture – A Quantitative Approach, 2nd edition.
Morgan Kaufmann, 1996.

[Hoppe99] Reiner Hoppe, Gerd Wölfle, and Friedlich M. Landstor-
fer. A Fast and Enhanced Ray Optical Propagation
Model for Indoor and Urban Scenarios based on an Intel-
ligent Preprocessing of the Database. In 10th IEEE In-
ternational Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC), Osaka, Japan F5-3,
September 1999.

BIBLIOGRAPHY 283

[Hsiung92] Ping-Kang Hsiung and Robert H. Thibadeau. Accelerat-
ing ARTS. The Visual Computer, 8(3):181–190, March
1992.

[Humphreys96] Greg Humphreys and C. Scott Ananian. TigerSHARK:
A Hardware Accelerated Ray-tracing Engine. Technical
report, Princeton University, 1996.

[Humphreys02] Greg Humphreys, Mike Houston, Ren Ng, Sean Ahern,
Randall Frank, Peter Kirchner, and James T. Klosowski.
Chromium: A Stream Processing Framework for Interac-
tive Graphics on Clusters of Workstations. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2002),
21(3):693–702, July 2002.

[Hurley02] James T. Hurley, Alexander Kapustin, Alexander
Reshetov, and Alexei Soupikov. Fast Ray Tracing for
Modern General Purpose CPU. In Proceedings of Graph-
icon, 2002. Available from http://www.graphicon.ru/-
2002/papers.html.

[Intel] Intel Corp. Intel Computer Based Tutorial. http://-
developer.intel.com/vtune/cbts/cbts.htm.

[Intel01] Intel Corp. IA-32 Intel Architecture Optimization – Ref-
erence Manual, 2001.

[Intel02a] Intel Corp. Intel C/C++ Compilers, 2002.
http://www.intel.com/software/products/compilers.

[Intel02b] Intel Corp. Intel Pentium III Streaming SIMD Exten-
sions. http://developer.intel.com/vtune/cbts/simd.htm,
2002.

[Intel02c] Intel Corp. Introduction to Hyper-Threading Tech-
nology. http://developer.intel.com/technology/-
hyperthread, 2002.

[Jensen95] Henrik Wann Jensen and Niels Jorgen Christensen. Ef-
ficiently Rendering Shadows using the Photon Map. In
H. Santo, editor, Edugraphics + Compugraphics Proceed-
ings, pages 285–291. GRASP- Graphic Science Promo-
tions & Publications, 1995.

284 BIBLIOGRAPHY

[Jensen96] Henrik Wann Jensen. Global Illumination using Photon
Maps. Rendering Techniques 1996, pages 21–30, 1996.
(Proceedings of the 7th Eurographics Workshop on Ren-
dering).

[Jensen97] Henrik Wann Jensen. Rendering Caustics on Non-Lam-
bertian Surfaces. Computer Graphics Forum, 16(1):57–
64, 1997.

[Jensen01] Henrik Wann Jensen. Realistic Image Synthesis Using
Photon Mapping. A K Peters Ltd, 2001. ISBN 1-56881-
147-0.

[Jevans89] David Jevans and Brian Wyvill. Adaptive Voxel Subdi-
vision for Ray Tracing. Proceedings of Graphics Interface
’89, pages 164–172, June 1989.

[Kajiya86] James T. Kajiya. The Rendering Equation. In David C.
Evans and Russell J. Athay, editors, Computer Graphics
(Proceedings of SIGGRAPH 86), volume 20, pages 143–
150, 1986.

[Kautz03] Jan Kautz. Realistic, Real-Time Shading and Rendering
of Objects with Complex Materials. PhD thesis, Saar-
land University (Max-Planck-Institut fuer Informatik),
Saarbrücken, Germany, 2003.

[Kay86] Timothy L. Kay and James T. Kajiya. Ray Tracing
Complex Scenes. Computer Graphics (Proceedings of
SIGGRAPH 86), 20(4):269–278, June 1986. Held in Dal-
las, Texas.

[Keates95] Martin J. Keates and Roger J. Hubbold. Interactive
Ray Tracing on a Virtual Shared-Memory Parallel Com-
puter. Computer Graphics Forum, 14(4):189–202, Octo-
ber 1995.

[Kedem84] G. Kedem and J. L. Ellis. The Raycasting Machine.
In Proceedings of the IEEE International Conference on
Computer Design: VLSI in Computers ICCD ’84, pages
533–538. IEEE Computer Society Pess, 1984.

[Keller97] Alexander Keller. Instant Radiosity. Computer Graphics
(Proceedings of ACM SIGGRAPH), pages 49–56, 1997.

BIBLIOGRAPHY 285

[Keller98] Alexander Keller. Quasi-Monte Carlo Methods for Real-
istic Image Synthesis. PhD thesis, University of Kaiser-
slautern, 1998.

[Keller00] Alexander Keller and Ingo Wald. Efficient Importance
Sampling Techniques for the Photon Map. In Vision,
Modelling, and Visualization (VMV) 2000, pages 271–
279, November 2000.

[Keller01] Alexander Keller and Wolfgang Heidrich. Interleaved
Sampling. Rendering Techniques 2001, pages 269–276,
2001. (Proceedings of the 12th Eurographics Workshop
on Rendering).

[Keller03] Alexander Keller. Monte Carlo & Beyond - Course Ma-
terial. Technical Report 320/02, University of Kaiser-
slautern, 2003. Published in Eurographics 2003 Tutorial
Notes.

[Kessenich02] John Kessenich, Dave Baldwin, and Randi Rost. The
OpenGL Shading Language, Version 1.051, February
2002. Available from http://www.3dlabs.com/support/-
developer/ogl2/downloads/ShaderSpecV1.051.pdf.

[Kirk91] David Kirk and James Arvo. Improved Ray Tagging
For Voxel-Based Ray Tracing. In James Arvo, editor,
Graphics Gems II, pages 264–266. Academic Press, 1991.

[Kirk92] David Kirk, editor. Graphics Gems III. Academic Press,
1992. ISBN: 0124096735.

[Klimaszewski97] Kryzsztof S. Klimaszewski and Thomas W. Sederberg.
Faster Ray Tracing using Adaptive Grids. IEEE Com-
puter Graphics and Applications, 17(1):42–51, January/
February 1997.

[Kolb95] Craig Kolb, Don Mitchell, and Pat Hanrahan. A Re-
alistic Camera Model for Computer Graphics. Com-
puter Graphics, 29(Annual Conference Series):317–324,
November 1995.

[Kollig02] Thomas Kollig and Alexander Keller. Efficient Mul-
tidimensional Sampling. Computer Graphics Forum,

286 BIBLIOGRAPHY

21(3):557–563, 2002. (Proceedings of Eurographics
2002).

[Krüger03] Jens Krüger and Rüdiger Westermann. Linear Algebra
Operators for GPU Implementation of Numerical Algo-
rithms. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH), 22(3), July 2003.

[Lafortune93] Eric Lafortune and Yves Willems. Bidirectional Path
Tracing. In Proc. 3rd International Conference on Com-
putational Graphics and Visualization Techniques (Com-
pugraphics), pages 145–153, 1993.

[Lafortune96] Eric Lafortune. Mathematical Models and Monte Carlo
Algorithms for Physically Based Rendering. PhD thesis,
Katholieke Universitiet Leuven, Belgium, 1996.

[Larsen01] E. Scott Larsen and David McAllister. Fast Matrix
Multiplies using Graphics Hardware. In Supercomputing
2001, pages 55–60, 2001.

[Larson98] Greg Ward Larson. The Holodeck: A Parallel Ray-
Caching Rendering System. Proceedings Eurographics
Workshop on Parallel Graphics and Visualization, 1998.

[Leray87] Pascal Leray. Towards a Z-Buffer and Ray-Tracing Mul-
timode System Based on Parallel Architecture and VLSI
Chips. In Wolfgang Straßer, editor, Advances in Com-
puter Graphics Hardware I, pages 141–145. Springer Ver-
lag, 1987.

[Levoy96] Marc Levoy and Pat Hanrahan. Light Field Rendering.
In Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques (ACM SIG-
GRAPH), pages 31–42. ACM Press, 1996.

[Lext00] Jonas Lext, Ulf Assarsson, and Tomas Möller. BART:
A Benchmark for Animated Ray Tracing. Technical re-
port, Department of Computer Engineering, Chalmers
University of Technology, Göteborg, Sweden, May 2000.
Available at http://www.ce.chalmers.se/BART/.

BIBLIOGRAPHY 287

[Lext01] Jonas Lext and Tomas Akenine-Möller. Towards Rapid
Reconstruction for Animated Ray Tracing. In Eurograph-
ics 2001 – Short Presentations, pages 311–318, 2001.

[Lischinski92] Dani Lischinski, Filippo Tampieri, and Donald P.
GreenBerg. Discontinuity meshing for accurate radiosity.
IEEE Computer Graphics and Applications, 12(6):25–39,
November 1992.

[Lischinski93] Dani Lischinski, Filippo Tampieri, and Donald P.
Greenberg. Combining Hierarchical Radiosity and Dis-
continuity Meshing. In Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Tech-
niques (ACM SIGGRAPH), pages 199–208. ACM Press,
1993.

[MacDonald89] J. David MacDonald and Kellogg S. Booth. Heuristics for
Ray Tracing using Space Subdivision. In Proceedings of
Graphics Interface ’89, pages 152–63, Toronto, Ontario,
June 1989. Canadian Information Processing Society.

[MacDonald90] J. David MacDonald and Kellogg S. Booth. Heuristics for
Ray Tracing using Space Subdivision. Visual Computer,
6(6):153–65, 1990.

[Mai00] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho,
William J. Dally, and Mark Horowitz. Smart Memo-
ries: A Modular Recongurable Architecture. IEEE In-
ternational Symposium on Computer Architecture, pages
161–171, 2000.

[Mark01] William Mark. Shading System Immediate-Mode API,
v2.1. In SIGGRAPH 2001 Course 24 Notes – Real-Time
Shading, August 2001.

[Mark03] William R. Mark, R. Steven Glanville, Kurt Akeley,
and Mark J. Kilgard. Cg: A System for Programming
Graphics Hardware in a C-like Language. ACM Trans-
actions on Graphics (Proceedings of ACM SIGGRAPH),
22(3):896–907, 2003.

[McKown91] John W. McKown and R.Lee Hamilton Jr. Ray Tracing
as a Design Tool for Radio Networks. IEEE Network
Magazine, November 1991.

288 BIBLIOGRAPHY

[Meissner98] M. Meissner, U. Kanus, and W. Strasser. VIZARD
II, A PCI-Card for Real-Time Volume Rendering. In
Eurographics/ACM SIGGRAPH Workshop on Graphics
Hardware, 1998.

[Meißner02] M. Meißner, U. Kanus, G. Wetekam, J. Hirche,
A. Ehlert, W. Straßer, M. Doggett, P. Forthmann, and
R. Proksa. VIZARD II: A Reconfigurable Interactive
Volume Rendering System. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 137–146. Eurographics Association,
2002.

[Meneveaux03] Daniel Meneveaux, Kadi Bouatouch, Gilles Subrenat,
and Philippe Blasi. Efficient Clustering and Visibility
Calculation for Global Illumination. AFRIGRAPH 2003,
pages 87–94, 2003.

[Möller] Tomas Möller. Practical Analysis of Optimized Ray-
Triangle Intersection. http://www.ce.chalmers.se/staff/-
tomasm/raytri/.

[Möller97] Tomas Möller and Ben Trumbore. Fast, minimum stor-
age ray triangle intersection. Journal of Graphics Tools,
2(1):21–28, 1997.

[Muuss95a] Michael J. Muuss. Towards Real-Time Ray-Tracing of
Combinatorial Solid Geometric Models. In Proceedings
of BRL-CAD Symposium ’95, June 1995.

[Muuss95b] Michael J. Muuss and Maximo Lorenzo. High-Resolution
Interactive Multispectral Missile Sensor Simulation for
ATR and DIS. In Proceedings of BRL-CAD Symposium
’95, June 1995.

[Myszkowski01] Karol Myszkowski, Takehiro Tawara, Hiroyuki Akamine,
and Hans-Peter Seidel. Perception-Guided Global Illu-
mination Solution for Animation Rendering. In Proceed-
ings of the 28th annual conference on Computer graph-
ics and interactive techniques (ACM SIGGRAPH), pages
221–230. ACM Press, 2001.

BIBLIOGRAPHY 289

[Neider93] Jackie Neider, Tom Davis, and Mason Woo. OpenGL
Programming Guide. Addison-Wesley, 1993. ISBN 0-
20163-274-8.

[NVidia01] NVIDIA Corporation. NVIDIA OpenGL Exten-
sion Specifications, March 2001. Available from
http://www.nvidia.com.

[Olano98] Marc Olano and Anselmo Lastra. A Shading Language
on Graphics Hardware: The PixelFlow Shading System.
In Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques (ACM SIG-
GRAPH), pages 159–168. ACM Press, July 1998.

[OpenSG01] OpenSG-Forum. http://www.opensg.org, 2001.

[OSG] OpenSceneGraph. http://www.openscenegraph.org.

[Parker98a] Steven Parker, Peter Shirley, Yarden Livnat, Charles
Hansen, and Peter-Pike Sloan. Interactive Ray Trac-
ing for Isosurface Rendering. In IEEE Visualization ’98,
pages 233–238, October 1998.

[Parker98b] Steven Parker, Peter Shirley, and Brian Smits. Sin-
gle Sample Soft Shadows. Technical Report UUCS-
98-019, Computer Science Department, University of
Utah, October 1998. Available at http://www.cs.-
utah.edu/∼bes/papers/coneShadow.

[Parker99a] Steven Parker, Michael Parker, Yarden Livnat, Peter-
Pike Sloan, Chuck Hansen, and Peter Shirley. Inter-
active Ray Tracing for Volume Visualization. IEEE
Transactions on Computer Graphics and Visualization,
5(3):238–250, July-September 1999.

[Parker99b] Steven Parker, Peter Shirley, Yarden Livnat, Charles
Hansen, and Peter-Pike Sloan. Interactive Ray Tracing.
In Proceedings of Interactive 3D Graphics (I3D), pages
119–126, April 1999.

[Paul02] Wolfgang J. Paul, Peter Bach, Michael Bosch, Jörg
Fischer, Cédric Lichtenau, and Jochen Röhrig. Real
PRAM-Programming. In Proceedings of EuroPar 2002,
2002. Jörg Fischer is the same person as Jörg Schmittler.

290 BIBLIOGRAPHY

[PCI Express] PCI Express Specifications. http://www.pcisig.com/-
specifications/pciexpress/.

[PCI-X] PCI-X 2.0 Specifications. http://www.pcisig.com/-
pcix 20/#overview.

[Peercy00] Mark S. Peercy, Marc Olano, John Airey, and P. Jef-
frey Ungar. Interactive Multi-Pass Programmable Shad-
ing. ACM Press/Addison-Wesley Publishing Co., New
Orleans, USA, July 2000.

[Pfister99] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh
Lauer, and Larry Seiler. The VolumePro real-time ray-
casting system. Computer Graphics, 33(Annual Confer-
ence Series):251–260, 1999.

[Pfister01] Hanspeter Pfister. RAYA – A Ray Tracing Architecture
for Volumes and Polygons. SIGGRAPH course on Inter-
active Ray Tracing, 2001.

[Pharr97] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanra-
han. Rendering Complex Scenes with Memory-Coherent
Ray Tracing. Computer Graphics, 31(Annual Conference
Series):101–108, August 1997.

[Pixar89] Pixar. The RenderMan Interface. San Rafael, September
1989.

[Plasi97] Philippe Plasi, Betrant Le Saëc, and Gèrad Vignoles.
Application of Rendering Techniques to Monte-Carlo
Physical Simulation of Gas Diffusion. In Julie Dorsey
and Philipp Slusallek, editors, Rendering Techniques ’97,
pages 297–308. Springer, 1997.

[Pomi03] Andreas Pomi, Gerd Marmitt, Ingo Wald, and Philipp
Slusallek. Streaming Video Textures for Mixed Reality
Applications in Interactive Ray Tracing Environments.
In Proceedings of Virtual Reality, Modelling and Visual-
ization (VMV), 2003.

[Proudfoot01] Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov,
and Pat Hanrahan. A Real-Time Procedural Shad-
ing System for Programmable Graphics Hardware. In
Proceedings of the 28th annual conference on Computer

BIBLIOGRAPHY 291

graphics and interactive techniques (ACM SIGGRAPH),
pages 159–170. ACM Press, August 2001.

[Pulleyblank87] Ron Pulleyblank and John Kapenga. The Feasibility of
a VLSI Chip for Ray Tracing Bicubic Patches. IEEE
Computer Graphics and Applications, 7(3):33–44, March
1987.

[Purcell02] Timothy J. Purcell, Ian Buck, William R. Mark, and
Pat Hanrahan. Ray Tracing on Programmable Graphics
Hardware. ACM Transactions on Graphics, 21(3):703–
712, 2002. (Proceedings of SIGGRAPH 2002).

[Purcell03] Timothy J. Purcell, Craig Donner, Mike Cammarano,
Henrik Wann Jensen, and Pat Hanrahan. Photon Map-
ping on Programmable Graphics Hardware. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Conference
on Graphics Hardware, pages 41–50. Eurographics Asso-
ciation, 2003.

[Reinhard95] Erik Reinhard. Scheduling and Data Management for
Parallel Ray Tracing. PhD thesis, University of East
Anglia, 1995.

[Reinhard00] Erik Reinhard, Brian Smits, and Chuck Hansen. Dy-
namic Acceleration Structures for Interactive Ray Trac-
ing. In Proceedings of the Eurographics Workshop on
Rendering, pages 299–306, Brno, Czech Republic, June
2000.

[Rohlf94] John Rohlf and James Helman. IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-Time 3D
Graphics. Computer Graphics, 28(Annual Conference
Series):381–394, July 1994.

[Rubin80] Steve M. Rubin and Turner Whitted. A Three-
Dimensional Representation for Fast Rendering of Com-
plex Scenes. Computer Graphics, 14(3):110–116, July
1980.

[Samet89] Hanan Samet. Implementing Ray Tracing with Oc-
trees and Neighbor Finding. Computers and Graphics,
13(4):445–60, 1989.

292 BIBLIOGRAPHY

[Sbert97] Mateu Sbert. The Use of Global Random Directions
to Compute Radiosity. Global Monte Carlo Techniques.
PhD thesis, University of Catalonia, Spain, 1997.

[Schachter83] Bruce Schachter. Computer Image Generation. John
Wiley and Sons, New York, 1983.

[Schmittler02] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. Saar-
COR – A Hardware Architecture for Ray Tracing. In
Proceedings of the ACM SIGGRAPH/Eurographics Con-
ference on Graphics Hardware, pages 27–36, 2002.

[Schmittler03] Jörg Schmittler, Alexander Leidinger, and Philipp
Slusallek. A Virtual Memory Architecture for Real-Time
Ray Tracing Hardware. Computer and Graphics, Volume
27, Graphics Hardware, pages 693–699, 2003.

[Shirley96] Peter Shirley, Changyaw Wang, and Kurt Zimmerman.
Monte Carlo Techniques for Direct Lighting Calcula-
tions. ACM Transactions on Graphics, 15(1):1–36, 1996.

[Shirley02] Peter Shirley. Fundamentals of Computer Graphics. A
K Peters Ltd, 2002. ISBN 1-56881-124-1.

[Shirley03] Peter Shirley and R. Keith Morley. Realistic Ray Trac-
ing. A K Peters Ltd, Second edition, 2003. ISBN 1-
56881-198-5.

[Shoemake98] Ken Shoemake. Pluecker Coordinate Tutorial. Ray Trac-
ing News, 1998. http://www.acm.org/tog/resources/-
RTNews/html/rtnv11n1.html#art3.

[Sillion94] François X. Sillion and Claude Puech. Radiosity and
Global Illumination. Morgan Kaufmann Publishers,
1994. ISBN: 1558602771.

[Simiakakis95] George Simiakakis. Accelerating Ray Tracing with Direc-
tional Subdivision and Parallel Processing. PhD thesis,
University of East Anglia, 1995.

[Simmons00] Maryann Simmons and Carlo H. Sequin. Tapestry: A
Dynamic Mesh-based Display Representation for Inter-
active Rendering, June 2000. ISBN 3-211-83535-0.

BIBLIOGRAPHY 293

[Slusallek95] Philipp Slusallek, Thomas Pflaum, and Hans-Peter Sei-
del. Using Procedural RenderMan Shaders for Global
Illumination. In Computer Graphics Forum (Proc. of
Eurographics ’95, pages 311–324, 1995.

[Smits94] Brian Smits, James Arvo, and Donald Greenberg. A
Clustering Algorithm for Radiosity in Complex Envi-
ronments. In Proceedings of the 21st annual Conference
on Computer Graphics and Interactive Techniques (ACM
SIGGRAPH), pages 435–442. ACM Press, 1994.

[Smits98] Brian Smits. Efficiency Issues for Ray Tracing. Journal
of Graphics Tools, 3(2):1–14, 1998.

[Spackman91] John Spackman and Philip Willis. The SMART Navi-
gation of a Ray Through an Oct-Tree. Computers and
Graphics, 15(2):185–194, 1991.

[Stamminger99] Marc Stamminger. Finite Element Methods for Global
Illumination Computations. Herbert Utz Verlag, 1999.
ISBN: 3896756613.

[Stamminger00] Marc Stamminger, Jörg Haber, Hartmut Schirmacher,
and Hans-Peter Seidel. Walkthroughs with Corrective
Textures. In Proceedings of the 11th Eurographics Work-
shop on Rendering, pages 377–388, 2000.

[Stevens98] W. Richard Stevens. Unix Network Programming Vol-
ume 1. Prentice Hall, 1998.

[Subramanian90a] K. R. Subramanian. A Search Structure based on K-d
Trees for Efficient Ray Tracing. PhD thesis, The Univer-
sity of Texas at Austin, December 1990.

[Subramanian90b] K. R. Subramanian and Donald S. Fussel. Factors Af-
fecting Performance of Ray Tracing Hierarchies. Techni-
cal Report Tx 78712, The University of Texas at Austin,
July 1990.

[Sung91] Kelvin Sung. A DDA Octree Traversal Algorithm for Ray
Tracing. In Werner Purgathofer, editor, Eurographics
’91, pages 73–85. North-Holland, September 1991.

294 BIBLIOGRAPHY

[Sung92] Kelvin Sung and Peter Shirley. Ray Tracing with the
BSP Tree. In David Kirk, editor, Graphics Gems
III, pages 271—274. Academic Press, 1992. ISBN:
0124096735.

[Szirmay-Kalos98] Laszlo Szirmay-Kalos and Gabor Márton. Worst-Case
versus Average Case Complexity of Ray-Shooting. Com-
puting, 61(2):103–131, 1998.

[Teller98] Seth Teller and John Alex. Frustum Casting for Progres-
sive, Interactive Rendering. Technical Report MIT LCS
TR-740, MIT, January 1998.

[Tole02] Parag Tole, Fabio Pellacini, Bruce Walter, and Don-
ald P. Greenberg. Interactive Global Illumination in
Dynamic Scenes. ACM Transactions on Graphics,
21(3):537–546, 2002. (Proceedings of ACM SIGGRAPH
2002).

[Ullman03] Thomas Ullman, Thomas Preidel, and Beat Brüderlin.
Efficient Sampling of Textured Scenes in Vertex Trac-
ing. In Proceedings of Eurographics Conference (Short
Presentations), 2003.

[Ullmann01a] Thomas Ullmann, Alexander Schmidt, Daniel Beier, and
Beat Brüderlin. Adaptive Progressive Vertex Tracing for
Interactive Reflections. Computer Graphics Forum (Pro-
ceedings of Eurographics), 20(3), September 2001.

[Ullmann01b] Thomas Ullmann, Alexander Schmidt, Daniel Beier, and
Beat Brüderlin. Adaptive Progressive Vertex Tracing in
Distributed Environments. In Proceedings of the Ninth
Pacific Conference on Computer Graphics and Applica-
tions (Pacific Graphics 2001), pages 285–294. IEEE, Oc-
tober 2001.

[Upstill90] Steve Upstill. The RenderMan Companion. Addison-
Wesley, 1990.

[Veach94] Eric Veach and Leonid Guibas. Bidirectional Estimators
for Light Transport. In Proceedings of the 5th Eurograph-
ics Worshop on Rendering, pages 147 – 161, Darmstadt,
Germany, June 1994.

BIBLIOGRAPHY 295

[Veach97] Eric Veach. Robust Monte Carlo Methods for Light
Transport Simulation. PhD thesis, Stanford University,
1997.

[Wagner02] Markus Wagner. Development of a Ray-Tracing-Based
VRML Browser and Editor. Master’s thesis, Computer
Graphics Group, Saarland University, Saarbrücken, Ger-
many, 2002.

[Wald] Ingo Wald and Tim Dahmen. OpenRT User Man-
ual. Computer Graphics Group, Saarland University.
http://www.openrt.de.

[Wald01a] Ingo Wald, Carsten Benthin, Markus Wagner, and
Philipp Slusallek. Interactive Rendering with Coherent
Ray Tracing. Computer Graphics Forum, 20(3):153–164,
2001. (Proceedings of Eurographics 2001).

[Wald01b] Ingo Wald and Philipp Slusallek. State-of-the-Art in In-
teractive Ray-Tracing. In State of the Art Reports, Eu-
rographics 2001, pages 21–42, 2001.

[Wald01c] Ingo Wald, Philipp Slusallek, and Carsten Benthin. In-
teractive Distributed Ray Tracing of Highly Complex
Models. In Steven J. Gortler and Karol Myszkowski, edi-
tors, Rendering Techniques, Proceedings of the 12th Eu-
rographics Workshop on Rendering Techniques, London,
UK, June 25-27, 2001, pages 274–285. Springer, 2001.

[Wald02a] Ingo Wald, Carsten Benthin, and Philipp Slusallek.
OpenRT - A Flexible and Scalable Rendering Engine
for Interactive 3D Graphics. Technical report, Saarland
University, 2002. Available at http://graphics.cs.uni-
sb.de/Publications.

[Wald02b] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander
Keller, and Philipp Slusallek. Interactive Global Illumi-
nation using Fast Ray Tracing. Rendering Techniques
2002, pages 15–24, 2002. (Proceedings of the 13th Euro-
graphics Workshop on Rendering).

[Wald03a] Ingo Wald, Carsten Benthin, Andreas Dietrich, and
Philipp Slusallek. Interactive Ray Tracing on Commod-

296 BIBLIOGRAPHY

ity PC Clusters – State of the Art and Practical Ap-
plications. In Harald Kosch, László Böszörményi, and
Hermann Hellwagner, editors, Euro-Par, volume 2790 of
Lecture Notes in Computer Science, Klagenfurt, Austria,
August 2003. Springer.

[Wald03b] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Dis-
tributed Interactive Ray Tracing of Dynamic Scenes.
In Proceedings of the IEEE Symposium on Parallel and
Large-Data Visualization and Graphics (PVG), 2003.

[Wald03c] Ingo Wald, Carsten Benthin, and Philipp Slusallek. In-
teractive Global Illumination in Complex and Highly Oc-
cluded Environments. In Per H Christensen and Daniel
Cohen-Or, editors, Proceedings of the 2003 Eurograph-
ics Symposium on Rendering, pages 74–81, Leuven, Bel-
gium, June 2003.

[Wald03d] Ingo Wald, Carsten Benthin, and Philipp Slusallek. To-
wards Realtime Ray Tracing – Issues and Potential.
Technical report, Saarland University, 2003.

[Wald03e] Ingo Wald, Timothy J. Purcell, Jörg Schmittler, Carsten
Benthin, and Philipp Slusallek. Realtime Ray Tracing
and its use for Interactive Global Illumination. In Euro-
graphics State of the Art Reports. Eurographics, 2003.

[Wallace87] John R. Wallace, Michael F. Cohen, and Donald P.
Greenberg. A Two-pass Solution to the Rendering Equa-
tion: A Synthesis of Ray Tracing and Radiosity Methods.
Computer Graphics, 21(4):311–320, 1987.

[Walter99] Bruce Walter, George Drettakis, and Steven Parker. In-
teractive Rendering using the Render Cache. In Render-
ing Techniques 1999 (Proceedings of Eurographics Work-
shop on Rendering), 1999.

[Walter02] Bruce Walter, George Drettakis, and Donald P. Green-
berg. Enhancing and Optimizing the Render Cache. In
Rendering Techniques 2002 (Proceedings of Eurographics
Workshop on Rendering), 2002.

[Ward91] Gregory Ward. Adaptive Shadow Testing for Ray Trac-
ing. In 2nd Eurographics Workshop on Rendering, 1991.

BIBLIOGRAPHY 297

[Ward92] Gregory J. Ward and Paul Heckbert. Irradiance Gra-
dients. In Third Eurographics Workshop on Rendering,
pages 85–98, Bristol, UK, 1992.

[Ward99] Gregory Ward and Maryann Simmons. The Holodeck
Ray Cache: An Interactive Rendering System for Global
Illumination in Nondiffuse Environments. ACM Trans-
actions on Graphics, 18(4):361–398, October 1999.

[Wernecke94] Josie Wernecke. The Inventor Mentor. Addison-Wesley,
1994. ISBN 0-20162-495-8.

[Whang95] K. Y. Whang, J. W. Song, J. W. Chang, J. Y. Kim,
W. S. Cho, C. M. Park, and I. Y. Song. Octree-R:
An Adaptive Octree for efficient Ray Tracing. IEEE
Transactions on Visualization and Computer Graphics,
1(4):343–349, December 1995. ISSN 1077-2626.

[Whitted80] Turner Whitted. An Improved Illumination Model for
Shaded Display. CACM, 23(6):343–349, June 1980.

[Wilson93] Tom Wilson. Ray Tracing Abstracts Survey, 1993. avail-
able from ftp://nic.funet.fi/pub/sci/papers/graphics/-
rtabs.4.93.shar.Z.

[Woo90] Andrew Woo. Fast Ray-Polygon Intersection. In An-
drew S. Glassner, editor, Graphics Gems, page 394. Aca-
demic Press, San Diego, 1990.

