
SIBGRAPI 2005
Natal - RN - Brazil 

XVIII Brazilian Symposium on Computer Graphics and Image Processing

GPU-Based Volume Rendering ofGPU-Based Volume Rendering of
Unstructured GridsUnstructured Grids

Module 2:
Projected Tetrahedra + Polyhedral Cell Sorting

Cláudio T. Silva                                     University of Utah



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Outline

• Introduction to Volume Rendering

• Polyhedral Cell Sorting

• Hardware-Assisted Techniques



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Introduction to Volume
Rendering



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Grid Types

Regular

Rectilinear Irregular

Curvilinear



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Volume Rendering vs
Isosurfaces

• Direct Volume Rendering
- Volume data  Image
- Looks “inside” the data

• Isosurfaces
- Volume data  Polygon model
- Slice of the data

MMccPherson, LANLPherson, LANL

MMccPherson, LANLPherson, LANL



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Isosurfaces

• For a query value q, find and
display the  isosurface of q:  C(q) =
{p | F(p) = q}



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Volume Rendering at a
High Level

(a) Sampling Phase
(b) Sorting Phase



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Video



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Rendering
Unstructured Grids

model with
millions of cells

Visibility Sort

graphics card

PC (CPU)

for each cell
in order

compute
cell’s screen

projection

decompose
to triangles

find thickest
cell distance

compute
each
triangle’s
parameters

final image of model

Software
Programmable

Hardware

CPU

GPU



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Visibility Sorting

1
2

4
3

6
7 5 B

p

A

A  <   Bp



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Typical Rendering
Pipeline

Sort Tetrahedra
Subdivide 
Tetrahedra 

into triangles

Render 
Triangles



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Existing Techniques

• Given mesh with n cells, b of them on the boundary.

Sort Tetrahedra
Subdivide 
Tetrahedra 

into triangles

Render 
Triangles

Shirley-Tuchman 90
Generates ~3.4n triangles

CPU GPU

XMPVO  O(n+b2)
BSP-XMPVO O(n+bp)
SXMPVO ~O(n)



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Existing Techniques

Sort Tetrahedra
Subdivide 
Tetrahedra 

into triangles

Render 
Triangles

Wylie et al ‘02
Generates ~3.4n triangles

CPU GPU

XMPVO  O(n+b2)
BSP-XMPVO O(n+bp)
SXMPVO ~O(n)

Unfortunately, it is slower in
practice because of some
implementation overheads!



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

HAVS

Sort Tetrahedra
Subdivide 
Tetrahedra 

into triangles

Render 
Triangles

CPU GPU



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

HAVS

Sort
NOT Tetrahedra

Triangles!

Render 
Triangles

CPU GPU



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Williams’ MPVO

A

B

C

E

D

F

Viewing  direction

A

B

C

E

D

F

B < A
A < C
B < E
C < E
C < D
E < F

D < F

Idea: Define ordering relations
by looking at shared faces.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

MPVO Limitations

Missing relations!



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

MPVONC Rendering
Errors

SXMPVO MPVONC ERRORS



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Depth-Sorting Algorithm
History

Rendering Time

1989-92

1s

10s

100s

1000s

10000s

Max et al, VolVis90
Williams, TOG92

1994 1998 1999

Stein et al, VolVis94

O(n  )2

O(n)

Williams et al, TVCG98
O(n  )2

Convex case only!

General case 

2001



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

XMPVO

Viewing  direction

Idea: Using ray shooting queries
           to complement ordering 
           relations.

A
B

C

D

A < C
A < B
B < D



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Depth-Sorting Algorithm
History

Rendering Time

1989-92

1s

10s

100s

1000s

10000s

Max et al, VolVis90
Williams, TOG92

1994 1998 1999

Stein et al, VolVis94

O(n  )2

O(n)

Williams et al, TVCG98
O(n  )2

Convex case only!

General case 

2001

XMPVO: O(b   +n)
2

Silva et al



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Binary Space Partitioning
Trees

11

4433

22

55

5b5b
5a5a

11

22
44

33 5a5a
5b5b

ff bb

1)1) Breaks geometry into cycle-free Breaks geometry into cycle-free fragmentsfragments
2)2) Provides a mechanism for computing visibility ordersProvides a mechanism for computing visibility orders

OO



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Intuition:
BSP for Visibility Ordering

11

4433

22

55

5b5b
5a5a

11

22
44

33 5a5a
5b5b

ff bb

OO

11 <<



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005
BSP-XMPVO

A

B

C
D
E

F

G

H

1

3
4

5

6

7

9
108

11 12

Idea: Use BSP tree to
replace ray shooting
queries

2

Viewing  direction



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005
BSP-XMPVO

A

B

C
D
E

F

G

H

Viewing  direction

1

3
4

5

6

7

9
108

11 12

Idea: Use BSP tree to
replace ray shooting
queries

I.e., add extra ordering
relation for BSP-tree

H  {2, 3, 4, 5}

2



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005
BSP-XMPVO

A

B

C
D
E

F

G

H

Viewing  direction

1

3
4

5

6

7

9
108

11 12

Idea: Use BSP tree to
replace ray shooting
queries

I.e., add extra ordering
relation for BSP-tree

But Because of Cell
Fragmentation the
BSP-tree Does Not
Catch all Necessary
Ray Shooting Queries

2



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005
BSP-XMPVO

A

B

C
D
E

F

G

H

Viewing  direction

1

3
4

5

6

7

9
108

11 12

2

Problem:  G is partially 
projected, but we need to 
guarantee that F is projected
after G

Solution: Keep a list of 
partially projected cells



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

BSP-XMPVO relations

• MPVO dependencies (<  )
- Adjacency relation given by mesh

• BSP dependencies (<   )
- Each fragment c’ on the boundary of C

define a BSP-dependency for cell C
• PPC dependency (<   )

- If C’ is partially projected and C’ lies behind
cell C, then we create a PPC dependency for
C

adj

bsp

ppc



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

BSP-XMPVO Algorithm

BSP TraversalBSP Traversal Update Graph Dep.Update Graph Dep. WilliamsWilliams’’ MPVO MPVO

See paper for proof of correctness!See paper for proof of correctness!



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Depth-Sorting Algorithm
History

Rendering Time

1989-92

1s

10s

100s

1000s

10000s

Max et al, VolVis90
Williams, TOG92

1994 1998 1999

Stein et al, VolVis94

O(n  )2

O(n)

Williams et al, TVCG98
O(n  )2

Convex case only!

General case 

2001

XMPVO: O(b   +n)

BSP-XMPVO:  
  O(n + |PPC| * b)

2
Silva et al



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Depth-Sorting Algorithm
History

Rendering Time

1989-92

1s

10s

100s

1000s

10000s

Max et al, VolVis90
Williams, TOG92

1994 1998 1999

Stein et al, VolVis94

O(n  )2

O(n)

Williams et al, TVCG98
O(n  )2

Convex case only!

General case 

2001

XMPVO: O(b   +n)

BSP-XMPVO:  
  O(n + |PPC| * b)

2

SXMPVO:  O(n)

Silva et al



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Outline

• Introduction to Volume Rendering

• Polyhedral Cell Sorting

• Hardware-Assisted Techniques



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Shirley-Tuchman (ST)
Algorithm

Class 1

Class 2

Class 3 Class 4



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Wylie et al’s GPU-
based ST

• Moves all of the following functions from the
CPU the GPU:
– Transform to screen space
– Determine projection class
– Calculate thick vertex location
– Determine depth at thick vertex
– Compute color and opacity for thick vertex
– Apply exponential attenuation texture



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

GPU Limitations

 Each instance of a vertex shader program works
independently on a single vertex in SIMD fashion

 No support dynamic vertex creation or topology
modification within the vertex program

 No branching (at the time!)

 No knowledge of neighboring vertices

 Cannot change execution based on past information



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Idea: Morph a
Canonical Graph

V1’ 
V4’ 

V0’ 

V3’

V2’ 

Basis Graph
Isomorphic to all projection cases

Example later…



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

PT algorithm in Vertex
Program

 Transform to screen space.

 Determine projection class (and permutation).

 Map the vertices to the basis graph.

 Calculate intersection point of line segments.

 Determine depth at thick vertex.

 Compute color and opacity for thick vertex ( texture )

 Multiplex the result to correct output vertex.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

PT algorithm in Vertex
Program

 Transform to screen space. (Trivial)

 Determine projection class (and permutation).

 Map the vertices to the basis graph.

 Calculate intersection point of line segments.

 Determine depth at thick vertex.

 Compute color and opacity for thick vertex ( texture )

 Multiplex the result to correct output vertex.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

PT algorithm in Vertex
Program

 Transform to screen space.

 Determine projection class (and permutation).

 Map the vertices to the basis graph.

 Calculate intersection point of line segments.

 Determine depth at thick vertex.

 Compute color and opacity for thick vertex ( texture )

 Multiplex the result to correct output vertex.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Projection Classes

Class 1

Class 2

Class 3 Class 4



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Projection Permutations

• Permutation Determination
• 14 cases need at least 4 Boolean tests

• Definitions
•   vec1 = v1-v0
•   vec2 = v2-v0
•   vec3 = v3-v0
•   cross1 = vec1 x vec2
•   cross2 = vec1 x vec3
•   cross3 = vec2 x vec3

• Tests
•   test1 = (cross1*cross2 < 0)
•   test2 = (cross1*cross3 > 0)
•   test3 = (distance from v0 to middle vertex –
•               distance from v0 to Intersection) > 0
•   test4 = (cross1 > 0)

 



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

PT algorithm in Vertex
Program

 Transform to screen space.

 Determine projection class (and permutation).

 Map the vertices to the basis graph.

 Calculate intersection point of line segments.

 Determine depth at thick vertex.

 Compute color and opacity for thick vertex ( texture )

 Multiplex the result to correct output vertex.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Isomorphic Property of
Basis Graph



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

PT algorithm in Vertex
Program

 Transform to screen space.

 Determine projection class (and permutation).

 Map the vertices to the basis graph.

 Calculate intersection point of line segments.

 Determine depth at thick vertex.

 Compute color and opacity for thick vertex ( texture )

 Multiplex the result to correct output vertex.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Thick Vertex Calculation

 In all cases the coordinates of the intersection point I are computed.
(Intersection of lines computed ala Graphics Gems III p. 199-202). This
intersection calculation gives us α and β terms that are used for
interpolation (depth, alpha, and color) later on.

 

 Class 1:

 Class 2:

 

// Compute thick vertex "thickness"
float z1 = P1[2] + alpha * (P2[2] - P1[2]);
float z2 = P3[2] + beta  * (P4[2] - P3[2]);
float thickness = fabs(z1-z2);

// Extra computation for class 1
if (!test3) thickness /= alpha;



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

PT algorithm in Vertex
Program

 Transform to screen space.

 Determine projection class (and permutation).

 Map the vertices to the basis graph.

 Calculate intersection point of line segments.

 Determine depth at thick vertex.

 Compute color and opacity for thick vertex ( texture )

 Multiplex the result to correct output vertex.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Color and Opacity
Calculation

 Use same α and β terms to interpolate color and opacity along the line
segments to give the front and back face intersection terms CF, CB and
τF, τB.

 Thick vertex color (CF + CB) / 2 *

 The extinction coefficient τ is (τF + τB) / 2.

 τ and the thickness l, are then used as lookups into a 2D texture map
defined as 1 – exp (-τl). [Stein et al. 1994].

* approximate color from Shirley and Tuchman.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

PT algorithm in Vertex
Program

 Transform to screen space.

 Determine projection class (and permutation).

 Map the vertices to the basis graph.

 Calculate intersection point of line segments.

 Determine depth at thick vertex.

 Compute color and opacity for thick vertex ( texture )

 Multiplex the result to correct output vertex.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Multiplex input to output

 Use a lookup table (loaded in the parameter registers)
 and an index based on the 4 tests to determine the
 output vertex.

// Which vertex to copy to output (using lookup table)
lookup_index = test1*8 + test2*4 + test3*2 + test4;
output_vertex = lookup_table[call_index][lookup_index];



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

‘Feeding’ the Vertex
Program

  // Load up the 4 vertices
       glVertexAttrib3fvNV(1, nodes[0]->getXYZ());
 glVertexAttrib3fvNV(2, nodes[1]->getXYZ());
       glVertexAttrib3fvNV(3, nodes[2]->getXYZ());
       glVertexAttrib3fvNV(4, nodes[3]->getXYZ());


        // Load up color for the vertices
 glVertexAttrib4fvNV(5, colorvectors[0]);
 glVertexAttrib4fvNV(6, colorvectors[1]);
 glVertexAttrib4fvNV(7, colorvectors[2]);
 glVertexAttrib4fvNV(8, colorvectors[3]);

  // Writing to v[0] here invokes the vertex program.
 glBegin(GL_TRIANGLE_FAN);
 glVertexAttrib3sNV(0, 0, 1, 0);
 glVertexAttrib3sNV(0, 1, 0, 1);
 glVertexAttrib3sNV(0, 2, 0, 1);
 glVertexAttrib3sNV(0, 3, 0, 1);
 glVertexAttrib3sNV(0, 4, 0, 1);
 glVertexAttrib3sNV(0, 1, 0, 1);
  glEnd();

 These calls could easily be wrapped up into a glTetraExt ()  call.



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Remarks

• Wylie et al’s technique can be easily extended
to other computations, e.g., isosurface or
isoline generation (this was a homework
exercise in my graphics class last Spring)

• For isosurfaces, one can send two triangles
(four vertices in a strip), since for a tetrahedral
cell, the isosurface going through it has at
most two triangles (see Comba’s talk later
today)



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

More Remarks

• Cell sorting is complicated, and error prone!
(In our opinion, SXMPVO is probably easier
to implement, and most robust technique)

• Cell projection is more stable, but still fairly
complicated.

• Code available from
http://www.cs.utah.edu/~csilva



GPU-Based Volume Rendering of Unstructured Grids

SIBGRAPI 2005

Acknowledgements

• DOE VIEWS, DOE MICS, SNL, and
LLNL, NSF, ARO, NIH, IBM, U of Utah.

• Joao Comba, Ricardo Farias, Brian
Wylie, and others for slides and help
with presentation


