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Figure 1: Graffinity visualizing 11727 flight paths with length < 3 connecting states in the mid-western USA (Minnesota, lowa, North
Dakota and South Dakota) to states in the Pacific Northwest (Oregon and Washington). Graffinity consists of five views: the query interface,
the connectivity matrix, the intermediate node table, and two views showing details about selected paths: the path list and the node-link view.
The 138 paths connecting the airport FSD (Sioux Falls, SD) to PDX (Portland, OR) are selected and displayed in the path list view.

Abstract

Multivariate graphs are prolific across many fields, including transportation and neuroscience. A key task in graph analysis
is the exploration of connectivity, to, for example, analyze how signals flow through neurons, or to explore how well different
cities are connected by flights. While standard node-link diagrams are helpful in judging connectivity, they do not scale to large
networks. Adjacency matrices also do not scale to large networks and are only suitable to judge connectivity of adjacent nodes.
A key approach to realize scalable graph visualization are queries: instead of displaying the whole network, only a relevant
subset is shown. Query-based techniques for analyzing connectivity in graphs, however, can also easily suffer from cluttering if
the query result is big enough. To remedy this, we introduce techniques that provide an overview of the connectivity and reveal
details on demand. We have two main contributions: (1) two novel visualization techniques that work in concert for summarizing
graph connectivity; and (2) Graffinity, an open-source implementation of these visualizations supplemented by detail views to
enable a complete analysis workflow. Graffinity was designed in a close collaboration with neuroscientists and is optimized
for connectomics data analysis, yet the technique is applicable across domains. We validate the connectivity overview and our
open-source tool with illustrative examples using flight and connectomics data.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Computer Graphics]: Information Interfaces and
Presentation—User Interfaces
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1. Introduction

Graphs are an important datatype across many domains from
transportation to neuroscience. Graph nodes represent entities and
edges the connections or relationships between those entities. For
instance, graphs can model the flights (edges) between airports
(nodes) or synapses (edges) between neurons (nodes). In multivari-
ate graphs, both nodes and edges can be associated with categorical
attributes, such as the city of an airport, and quantitative attributes,
such as the size of a synapse. Analyzing multivariate graphs often
involves understanding some combination of the graph’s topology
and attributes [LPP*06, vdEvW 14].

One important area of graph analysis is concerned with exam-
ining the direct and indirect connections between entities, their
connectivity. This is important for understanding structures im-
plied by the graph’s topology, such as airline routes that directly
or indirectly connect cities. Understanding the direct and indirect
connections involves analyzing a combination of the graph’s ad-
jacency (direct connections), connectivity (presence of paths con-
necting entities), and accessibility (entities reachable from a certain
one) [LPP*06, PPS13]. In this paper, we use the term connectivity
to refer to the direct and indirect connections between entities based
on paths, potentially considering node and edge attributes.

Understanding the connectivity of a graph is challenging because
the number of possible paths connecting two entities increases ex-
ponentially with graph size [Bar16]. This scalability problem is ex-
acerbated by standard graph visualizations such as node-link di-
agrams and adjacency matrices which have their own limitations
when used for connectivity analysis. Node-link diagrams excel at
topology-based tasks for small graphs but degenerate to hairballs
for larger graphs [SA06]. Adjacency matrices are slightly more
scalable for tasks related to adjacency in large graphs, but are ill-
suited for tasks involving indirect connectivity because they require
tracing across rows and columns to follow paths [GhoO5]. As the
size of a graph increases, specialized techniques are needed to make
sense of its connectivity.

Query-based approaches (e.g., [AMHWA™05, HHL"09,ZCQ13,
TS13, PGS*16]) are helpful when dealing with large graphs in
general, and for understanding graph connectivity in particular.
These systems allow analysts to query the graph for the connec-
tions between a set of nodes and return a subset of the entire
graph. These subsets are often displayed as lists [PGS*16], sub-
graphs [HHL*09], or use a specialized representation [TS13]. But
as the size of query results increases, analyzing connectivity again
becomes challenging due to the large number of potential paths.

In this paper we propose a new technique for making sense
of connectivity in large graphs. Our technique provides a flexible
overview of path-based connectivity, enabling a user to explore in-
teresting subsets of paths in a highly scalable way. The design of
the technique was motivated by a collaboration with neuroscien-
tists which, along with a review of visualization literature, allowed
us to identify a set of design requirements for summarizing graph
connectivity in a query-based system.

Based on these requirements we present two contributions: (1)
two novel and complementary visualization techniques for summa-
rizing the connectivity in a subset of a graph selected by queries,

the connectivity matrix and the intermediate node table; and (2)
Graffinity, an open-source implementation of these techniques. Al-
though this work is motivated by our collaboration with neuroscien-
tists, our visualization techniques and prototype generalize to graph
analysis in other domains. We validate this work through illustra-
tive examples and case studies with flight and neuroscience data.

2. Requirements

We introduce a set of requirements (R1-R5) for visualizations de-
signed to summarize graph connectivity. We identified these re-
quirements in a user-centered design process involving a group
of up to eight neuroscientists over a period of 18 months. We
used methods including contextual inquiry [HJ93], creativity work-
shops [GDJ*13], and informal interviews to elicit requirements and
receive feedback on prototypes. The requirements were also influ-
enced by prior visualization research, discussed in Section 3.

While these requirements were informed by a domain collabo-
ration, we argue that they apply broadly. They are, however, not
meant to be exhaustive for general graph analysis, but are targeted
at a use case of analyzing connectivity between node sets. This
so-called many-to-many analysis is useful for understanding rela-
tionships in a graph at a higher level of abstraction than individual
nodes. For instance, an airline analyst may be interested in how two
states, both with many airports, are connected by air travel. Another
example is the analysis of trade or migration between geographic
regions that are represented as sets of nodes [YDGM16]. In neuro-
science, researchers examine the flow of signals between different
types of neurons [LSA*16].

Many-to-many analysis is often performed on graphs that are
too large to be drawn directly. In these cases, analysts often use
queries to identify interesting subgraphs [vdEvW14]. Hence, our
requirements focus on query-based connectivity analysis between
node sets.

We assume that all measures of connectivity are based on short
paths connecting the nodes. It follows that our requirements address
both abstract measures of connectivity as well as specific paths con-
necting the nodes.

R1 Query many-to-many paths. Analysts should be able to specify
path queries based on node lists, shared attributes of starting or
ending nodes, or the types of nodes and edges involved in the
paths.

R2 Visualize an overview of connectivity. Analysts should be pre-
sented with a visual summary of the relationships between the
nodes that they queried for. It is important that this representa-
tion appropriately scales to handle large numbers of paths. Con-
nectivity can also be defined in various ways, hence a system
targeted at analyzing connectivity should allow analysts to spec-
ify different metrics to represent connectivity.

R3 Support dynamic aggregation of nodes and paths. In order
to understand higher-level structures in a network, analysts may
be interested in relationships between node sets. To support
this type of analysis, dynamic aggregation of nodes, and con-
sequently of the paths connecting these nodes, should be sup-
ported.
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Figure 2: Analyzing node connectivity is challenging with tradi-
tional graph encodings and path listing techniques. A query for
paths connecting nodes A,B,C with nodes F,G returned a subgraph
shown here. Node-link diagrams (left) give an overview of graph
topology but require manual tracing to analyze relationships be-
tween the start and end nodes. Adjacency matrices (middle) are ill
suited for connectivity analysis as tracing paths is challenging in
matrices. Path lists (right) do not provide a connectivity overview.

R4 Visualize path details. The details of paths, including the indi-
vidual nodes and edges that make up paths, as well as the node
and edge attributes should be accessible on demand.

RS Visualize path context. The context of a path describes how it
is embedded within the topology of the graph. Also, when ap-
propriate, a meaningful spatial representation of the nodes and
edges should be available.

Finally, underlying our requirements is the assumption that an-
alysts have already identified interesting queries about the connec-
tivity. These queries may be based on existing domain knowledge
and bottom-up analysis such as tracing paths in node-link diagrams
or other visualization techniques discussed in the next section.

3. Related Work

We focus our discussion of related work on techniques that sup-
port path-based connectivity analysis in large, multivariate graphs.
Summaries of the extensive research on graph visualization beyond
path analysis are available for various areas, including visualization
of large graphs [VLKS™11], dynamic graphs [BBDW17], and mul-
tivariate graphs [KPW14].

Representations for paths in graphs include traditional node-link
layouts, adjacency matrices, and path-listing techniques [PGS™*16]
(Figure 2). Each of these techniques can be combined with an initial
query step to reduce a larger graph into a smaller subgraph (R1) to
enhance scalability. Path queries are supported by general purpose
graph software packages, such as Tulip [MJ04] and Gephi [BHJ09],
and databases such as Neo4j [Neol6].

Traditional node-link diagrams support the exploration of con-
nectivity by enabling analysts to trace paths to identify the rela-
tionships between nodes (R4) within the graph’s topological con-
text (RS) [GhoOS5]. They fail to scale to many nodes and paths
(R2), however, as they require manual tracing of paths, and they
quickly degenerate to hairballs when they exceed about 50 nodes
and 200 links [SA06]. RelFinder [HHL*09] and the path topology
view in Pathfinder [PGS*16] are examples of node-link diagrams
being used to display the results of path queries.

Adjacency matrices are generally considered ill-suited for path-

related tasks because they require tedious manual tracing between

(© 2017 The Author(s)
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rows and columns to follow the paths [GhoO5]. Augmented matri-
ces exist to support browsing paths and accessing details of those
paths (R4). In MatLink, Henry et al. [HFO7] augmented adjacency
matrices with additional edge representations. This approach has
been expanded by Shen and Ma [SMO07] who draw links directly on
top of matrices. Recently, the Ego-Lines tool [ZGC*16] has used
a similar approach for representing paths in ego-centric adjacency
matrices. These augmented matrix approaches are appropriate for
following a relatively small number of paths, but do not provide a
scalable overview of connectivity (R2).

Matrices can also be augmented to display aggregations of rela-
tionships (R3). Aggregated matrices such as those used in Honey-
comb [VHSDO09] and MapTrix [YDGM16] are suitable for analyz-
ing adjacency between sets of nodes. Yet, these approaches suffer
from the same problem as non-aggregated matrices when consider-
ing connectivity and hence do not provide an adequate overview of
connectivity (R2).

There are also node-link based aggregation approaches for
graphs. PivotGraphs [Wat06] create aggregate representations of
graphs based on node attributes (R3), but this representation hides
the paths that connect individual nodes and hence does not meet
the requirements related to individual paths (R4, RS). GraphChar-
ter [TS13] is a pivot graph implementation modified to support it-
erative query-based path browsing, but does not adequately pro-
vide information about connections between many-to-many nodes.
Details-to-overview-via-selection-and-aggregation [vdEvW14] en-
ables users to transform node-link representations of a graph into
aggregated summaries (R3). These summaries can explain connec-
tions between sets of nodes, but do not necessarily support analysis
of connections within those sets, or between individual nodes (R4).

Statistical summaries can be used to give an overview of connec-
tivity. B-Matrices [BBSBA07,Cze11] and graph prisms [KMSH12]
offer such summaries of nodes and edges in a graph, such as the
number of reachable nodes, but these approaches contain little in-
formation about relationships between specific nodes (R2).

Specialized techniques are particularly suitable for query-based
path analysis and have focused extensively on querying paths be-
tween a small number of start and end nodes. RelClus [ZCQ13]
clusters paths hierarchically according to length and co-occurring
nodes (R3) and displays these clusters in a tree view. This tech-
nique, however, does not provide an overview of many-to-many
relationships without manual aggregation (R2). Aleman-Meza et
al. [AMHWA™05] support ranking and browsing paths (R4) to
identify interesting regions of a graph, but do not provide explicit
summaries of the resulting connectivity (R2). PathFinder [PGS*16]
supports querying for paths between sets of nodes (R1) and interac-
tive browsing and ranking of those paths (R4), but does not provide
an adequate overview of the connectivity (R2).

This work aims to support queries between large sets of start and
end nodes, visualize an overview of their connectivity, and then
support analysis of the paths in detail.

4. Connectivity Overviews

In this section, we describe two visualization techniques for pro-
viding an overview of graph connectivity. These two complemen-
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Figure 3: The construction of a connectivity matrix using the sub-
graph introduced in Figure 2. We create path sets based on common
start and end nodes then represent those sets in a matrix where
each cell shows a metric applied to paths connecting a pair of
nodes. Examples of path-based metrics shown here are the count
of paths connecting two nodes and the minimum distance between
two nodes. Additionally, the matrix rows and columns can be ag-
gregated by computing the union of the corresponding path sets.

tary techniques are designed to give an overview of paths between
nodes (R2) and support dynamic aggregation of those paths (R3).
The first technique is the connectivity matrix, which provides an
overview of paths as relationships between start and end nodes.
The second, complementary, technique is the intermediate node ta-
ble, which provides additional details about the role of intermedi-
ate nodes in these paths. These two techniques are implemented
in a prototype, called Graffinity, that addresses the other require-
ments of querying for paths (R1), accessing path details (R4), and
providing context (RS). We discuss these features of Graffinity in
Section 5. Here we describe the connectivity matrix and the inter-
mediate node table assuming that a user has provided a query for
paths connecting sets of nodes.

4.1. Connectivity Matrix

We designed the connectivity matrix to provide users with an
overview of path-based connectivity when they query for paths
between sets of nodes. The connectivity matrix visualizes sets of
paths connecting start and end nodes. We apply metrics to these
path sets, such as the count of paths, and display the results of these
metrics in a matrix. The matrix rows correspond to the start nodes
and the columns correspond to the end nodes. This matrix repre-
sentation is a generalization of the adjacency matrix for showing
path relationships. In the remainder of this subsection we provide
a definition of path sets, example metrics to analyze those sets, and
discuss the aggregation of paths.

A query returns a subgraph G = (N, E) that contains paths be-
tween the user-specified start nodes, Nyarr = {starty, starty, ...}
and end nodes, N,y = {endy, end;, ...}. The paths are P =
{po, P1, ... ,pr}- We define connectivity sets, C, for all pairs of
the start and end nodes as the set of paths that connect those nodes.

Formally,

C(start,end) ={p | p € P A Start(p) = start N\ End(p) = end}
V start € Nstart,¥ end € Ny

Each of these sets contains the paths matching the query criteria
that connect a pair of start and end nodes. An example derivation
of the path sets is shown in Figure 3.

Each row in the connectivity matrix corresponds to a start node,
start € Ngart, and each column corresponds to an end node, end €
Nepng. Each matrix cell represents the path set, C(start,end). An
alternative derivation of this matrix that relies on properties of the
graph’s adjacency matrix is described in the supplemental material.

We use the cells of the matrix to visualize a metric derived from
its path sets. For example, in Figure 3 (left) we use a metric that
counts the number of paths in a set. More generally, a metric is a
function that operates on a path set and returns one or more val-
ues representing those paths. Two domain-agnostic metrics are the
count and minimum length of paths in a set (Figure 3 (right)), yet
there are many possibilities for other metrics that account for node
and edge attributes, e.g., taking edge weights into account.

The result of the metrics can be displayed using various visual
encodings. Color coding the cells (i.e., creating a heat map) pro-
vides a visual summary of connectivity when using metrics that
return a single value per set. More complex metrics that return an
array of values could make use of a small multiples display of the
table or a glyph representing multiple values in a cell [EDG*08].
These are described in more detail in Section 5.

Aggregating nodes in Ngqrs and/or N,y can help to further sim-
plify a connectivity matrix. For example, we could group nodes
and their associated paths by node attributes to capture higher level
phenomena in the network, to, e.g., group all airports in the New
York City area. Aggregation is realized by taking the union of path
sets. For instance, if two nodes (startq, start,) € Nsart are to be
aggregated, then a new aggregated connectivity set is computed by
taking the union of both existing sets:

C(starty U starty, end) = C(starta, end) U C(starty,, end)
YV end € Nopg

These aggregated sets can be displayed using the aforementioned
metrics and encodings (Figure 3 (right)). Note, however, that the
scales of aggregated and non-aggregated values can be quite dif-
ferent, which potentially requires dedicated visual encodings when
showing both aggregated and not aggregated connectivity in the
same matrix.

The connectivity matrix intentionally hides information about
the intermediate nodes of paths to support analysis on the general
connectivity between start and end nodes. However, understanding
the role of intermediate nodes can be important for certain analysis
tasks, such as identifying major hubs in a flight network. Thus, we
introduce an additional, complementary visualization that focuses
on the intermediate node information, which is described next.

(© 2017 The Author(s)
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Figure 4: The intermediate node table for the connectivity matrix
shown in Figure 3. Rows correspond to nodes and columns corre-
spond to a node’s position in a path of a certain length. Here, node
D appears once as the middle node in paths of length two. Node E
is included twice as the second node in paths of length three.

4.2. Intermediate Node Table

The intermediate node table, illustrated in Figure 4, visualizes the
properties of a path set defined by an intermediate node at a specific
position in a path. For instance, in the the flight graph, queries for
paths of length three identify paths of three flights between four
airports. The intermediate node table defines path sets based on the
airports used for layovers and whether those airports are the first or
second stop in the journey. Again, we provide a formal definition
of path sets and describe considerations for visualizing these sets.

Formally, the intermediate node table defines path sets based on
the intermediate node, the path length, and node position. Let L be
the maximum length of all paths in the query result P. Let (j,/)
represent position j in paths of length [. Also, let node(p, j) return
the node at position j in path p. The intermediate node sets, /, are
defined as:

I(ni,(j,)) ={p|p € P A Node(p, j) =n; A Len(p) =1}
Vn; € N,Vje|[l.. ]|,V el,.. L]

These sets are represented in a table where the rows correspond to
nodes and the columns correspond to the position of the node in a
path of a given length.

The number of columns in the intermediate node table depends
on the length of paths returned by a query. In queries for paths of
length two, the table contains only one column representing the
middle node position in all of the paths. In queries for paths of
length three, the table contains three columns representing the pos-
sible positions for nodes inside the paths as shown in Figure 4.

Various metrics can be used for summarizing the path sets in
the intermediate node table. In addition to the count metric used in
Figure 4, other metrics could include the weight of paths passing
through an intermediate node, or the number of unique start and
end nodes that an intermediate node connects.

Just as the connectivity matrix supports various visual encod-
ings to represent metric results, the intermediate node table sup-
ports similar encodings. Likewise, dynamic aggregation of the in-
termediate node table based on node attributes is possible.

The intermediate node table, hence, displays a summary of the

(© 2017 The Author(s)
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ND (state) SD (state)
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Show cyph
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Waco (city_name)
Waterloo (city_name)
WA (state)

Figure 5: The flight query interface defines paths by a maximum
length as well as attributes of the start and end nodes. Here, the
user can select any attributes matching the input string “WA”.

intermediate nodes returned by a path query. When paired with
the connectivity matrix, the two techniques display an overview
of paths connecting start/end nodes as well as of the importance
of the intermediate nodes that those paths pass through. Interactive
highlighting and selections can be used to access the relationships
of paths between the two views. These interactions, along with a
detailed discussion of metrics, encodings and aggregation are de-
scribed in the following section.

5. Graffinity

‘We have implemented the connectivity matrix and the intermediate
node table in a prototype system, Graffinity (Figure 1). Graffinity
includes three additional components: a query interface and two
supplemental views.

While our system was designed with neuroscience data in mind,
we introduce its functionality with a flight dataset. This dataset is
a graph of flights in the US over three days in 2015 [BTS16]. It
consists of 308 airports (nodes) and 13K flights (edges) connecting
the airports. Nodes have categorical attributes, including a unique
three letter airport code, a city name, and a state. The categorical
elements of this dataset have a hierarchical structure: one or multi-
ple airports are associated with one city, one or multiple cities are
associated with one state. Nodes also have quantitative attributes,
such as their degree, as well as geographic locations. Edges have
categorical attributes, such as an identifier for the airline, and quan-
titative attributes, including arrival time, departure time, and length
of any delays.

5.1. Queries

The query interface supports visually defining queries for many-to-
many paths by either specifying lists of start and end nodes or by
defining node sets based on shared categorical attributes (satisfying
R1). In addition, a maximum path length must be provided. Fig-
ure 5 shows an example where the start nodes are airports in any
of four states and the end nodes can be defined using any of the
options shown.
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Figure 7: Two encodings for the number of paths connecting Cal-
ifornia to New York. Left is a bar chart where height encodes the
number of paths. Right is a bar chart where the left bar encodes
paths of length one and the right bar encodes paths of length two.

Graffinity also supports defining advanced queries in the graph-
ical interface, including restrictions on the edge types and on in-
termediate nodes. Examples of advanced queries are shown in the
supplemental material. Additionally, queries can be specified in the
cypher language [Neol6], which enables queries of arbitrary com-
plexity that are not easily specified using a graphical user interface.

In addition to queries, paths can also be filtered by quantitative
or categorical node attributes. By filtering out nodes with a high de-
gree, for example, we can reveal connections that do not go through
the major hubs of a network.

5.2. Connectivity Overview

The connectivity overview consists of the connectivity matrix and
intermediate node table as described in Section 4. Here, we de-
scribe the details of their implementation, including the display of
path metrics and visual encodings, dynamic aggregation, node at-
tributes, reordering, highlighting, and selection.

The cells in the connectivity matrix and the intermediate node
table display the result of metrics applied to path sets. The default
metric for both views is a path count displayed with a quantitative
color map (Figure 1). There are many other possible metrics be-

t
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Figure 8: The connectivity matrix supports dynamic aggregation
of nodes by attribute. Here, the connectivity matrix from Figure 1 is
aggregated by starting node state; the airports in Minnesota (MN)
are then expanded. Different color scales in aggregated cells ac-
count for differences in scales and emphasize the aggregation. Dot-
plots represent quantitative attributes for both the aggregated and
expanded rows.

yond a path count, such as the percent of delayed flights connecting
two airports, which is shown in Figure 6.

In addition to dynamic metrics, Graffinity supports interactively
changing the visual encodings. Figure 7, for example, shows two
encodings that use bar charts. The left example uses a bar to encode
the total number of paths. The right example contains two bars,
where the first bar visualizes the number of paths of length one,
and the second bar visualizes the number of paths of length two.

Graffinity supports dynamic aggregation of nodes based on their
attributes. This is important for analyzing higher-level relationships
in the graph, for instance, to understand connections between states
instead of individual airports. This aggregation is demonstrated in
Figure 8, where the starting nodes are aggregated by state. Aggre-
gated sets can be expanded to show the nested rows or columns.
We use different color scales for aggregated values to (a) make it
obvious that a row or column is aggregated and (b) to account for
the often significantly different data ranges between aggregates and
individual nodes.

Graffinity also displays node attributes. Node attributes are visu-
alized adjacent to the rows and columns of the connectivity matrix
and intermediate node table. Categorical attributes are visualized
as strings. Quantitative attributes are shown using dotplots (see Fig-
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Figure 9: The connectivity matrix supports dynamic ordering. The

left matrix is in the order that was returned by the database query,

while the right matrix is using an optimal leaf ordering algorithm.

ure 8). The dotplots are well suited to display multiple entries. This
is particularly important for representing aggregated sets of nodes,
such as when airports are aggregated by their state.

The features that can be discovered in matrices are strongly in-
fluenced by the matrix ordering [BBHR*16]. Consequently, Graf-
finity supports dynamic re-ordering either based on node attributes,
or using matrix reordering algorithms [Fek15]. An example of the
optimal leaf ordering applied to a matrix is shown in Figure 9.

Linked highlighting reveals relationships between the connec-
tivity matrix and intermediate node table. For example, hovering
over a node or path set in the intermediate node table reveals the
flights and paths that pass through that node in the connectivity
matrix. Similarly, hovering over a node or path set in the connec-
tivity matrix highlights the intermediate nodes used in those paths.
Individual cells can also be selected so that the contained paths can
be inspected in detail in the supplemental views.

5.3. Supplemental Views

The supplemental views are meant to provide context (RS) and de-
tails (R4) about a selection of paths. They are updated every time
a cell in the connectivity matrix or the intermediate node table is
selected. We currently provide node-link diagrams (Figure 10) and
path-list views (Figure 1).

We provide two layouts for the node link diagram. The first is a
force-directed layout that provides topological context. It, for ex-
ample, lets analyst identify well-connected nodes in the selected
paths. The second layout renders the network in a spatial context
and can be overlaid with, e.g., a map, as shown in Figure 10.

The path-list views enables analysts to browse the paths and pro-
vides details about the individual paths (R4). In particular, it dis-
plays a list of the selected paths in a motif hierarchy. For the flight
dataset, the motifs describe the airports that flights pass through.
The motifs can be expanded to display the underlying paths, e.g.,
to display information such as their ID, carrier, and departure times.

The spatial layout and the motifs are domain specific, i.e., a map
of the US is an appropriate layout for the US flight data, where as
map of the location of neurons in a microscopy image could be an
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Figure 10: A node-link view with geographic layout for the data
selected in Figure 1. Graffinity also supports force-directed layouts
for this diagram.

appropriate layout for the connectomics data. Similarly, the motifs
and details displayed in the path list view depend on the dataset.
In the flight data, the airport codes provide a meaningful path ag-
gregation while the classification of neurons provides a meaningful
aggregation for our collaborators.

5.4. Implementation

Graffinity is a web-based client-server tool that was developed
using a combination of web technologies. The visualizations
are implemented in ES6 using D3, Angular]S, and Bootstrap.
The server is implemented using Python, Flask, and uses the
Neo4j graph database. The path queries are executed with a
breath first search strategy. We have included the source code
in our supplemental material and made it available on GitHub
under an open-source license: http://www.github.com/
visdesignlab/graffinity.

6. Case Study: Retinal Connectomics

We demonstrate the usefulness of Graffinity through a case study
of analyzing a connectome, a graph of connections between cells.
Our collaborators (some of whom are also co-authors) are connec-
tomics researchers studying the connectome of cells in the retina. In
this 18-month collaboration, we have leveraged user-centered de-
sign methods, such as creativity workshops [GDJ*13] and contex-
tual inquiry [HJ93], to understand the analysis needs of this group
of neuroscientists. We developed Graffinity to support those needs.
In this section, we briefly describe the data involved in retinal con-
nectomics research, followed by a case study where Graffinity was
used to detect errors in the connectomics dataset.

The retinal connectome that we worked with, a database called
RCI1, was generated from a rabbit retina through automated elec-
tron microscopy imaging, image processing, and manual annota-
tions [AMG™10]. It is a multivariate graph of 15K neurons (nodes)
and 26K synapses (directed edges) [AJW* 11]. The nodes have cat-
egorical attributes, such as a label which specifies the type of the
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Figure 11: Using Graffinity to discover anomalies in the connectome graph. Here, the connectivity matrix shows paths of length two con-
necting cone bipolar cells to rod bipolar cells. (1) The intermediate node 179 with label YAC Ai participates in a large number of these
crossover paths. Hovering on this row in the intermediate node table reveals the starting and ending nodes of these paths in the connectivity
matrix. (2) The yellow boxes around matrix cells for the rows of CBb3 and CBb6 show that node 179 receives input from both of these
classes. This is surprising as nodes with label YAC Ai should not form connections with CBb3 nodes, though they technically could access
them. We questioned whether this anomaly was a biological wiring error or a data collection error. Ultimately, Graffinity guided access to
the database images, showing the anomaly to be an annotation error.

cell. They also have quantitative attributes, such as the size of the
cell’s convex hull. The edges have categorical attributes, such as the
type of synapse. It is important to note that the nodes and edges in
the graph are annotated based on microscopy images of the retina,
i.e., the graph’s nodes and edges are an abstraction of the connec-
tions observed in the images.

Understanding the connectivity of retinal cells enables re-
searchers to reason about the flow of information through the
retina and the functions of various cells. For example, Lauritzen
et al. [LSA*16] recently identified the winner-take-all, rod-cone
crossover networks that switch between pathways for cone-driven
bright light vision and those for rod-driven dim light vision. Fast
crossover networks are particularly important in mesopic environ-
ments where both rods and cones are active and compete for net-
work dominance. This circuitry was discovered through the analy-
sis of approximately 8000 different paths of various lengths in the
RC1 connectome.

In one of our sessions for getting feedback on Graffinity, we
worked with our collaborator to revisit the cone-rod crossover anal-
ysis performed by Lauritzen et al. [LSA*16]. One particularly in-
teresting part of this analysis occurred when we discovered an
anomalous pathway in the dataset that had not previously been de-
tected. In the remainder of this section, we describe the steps of
detecting that anomaly and analyzing its significance — please see
our supplemental material for a more detailed set of images.

In the analysis, we queried for two-hop paths that matched the
cone-rod crossover circuitry. This resulted in 272 paths that con-
nected 90 cone bipolar cells (denoted with labels that start with
CBb) to 74 rod bipolar cells (label of Rod BC) through 104 inter-
mediate amacrine cells (label containing YAC or AC).

In these query results, we were interested in connections formed
by classes of cells. We aggregated the source nodes (rows of the
connectivity matrix) and the intermediate nodes (rows of the inter-

mediate node table) by label. We then inspected the intermediate
nodes that connect rods and cones.

In particular, we examined intermediate nodes with the label
YAC Ai. One of these cells had many more connections than the
others of the same label. We expanded the aggregated YAC Ai row
and we were able to use linked highlighting between the connec-
tivity matrix and intermediate node table to reveal the paths con-
nected by the intermediate nodes. In particular, we noticed that cell
179 received input from a cell with label CBb3 (Figure 11), which
violated the expected connections for that cell type.

The question triggered by this finding is central to all of con-
nectomics: is this anomaly a biological error, which addresses the
nature of biological wiring precision, or a technical error inherent
in connectomics mapping? By selecting the paths through cell 179
in the intermediate node table, we were able to use the path list view
to drill down to the individual synapses responsible for these paths.
With these synapse IDs, we accessed the images of the database and
discovered that the connection from CBb3 to YAC Ai 179 was an er-
ror. Although this crossover network had been rigorously analyzed
with coarser granularity, fine-scale annotation errors persisted and
these became apparent when viewed with Graffinity.

We have described one case study where Graffinity and our con-
nectivity overview were used to support analysis in connectomics
research. Our supplemental material describes an additional case
study in this domain. We demonstrate how Graffinity supports anal-
ysis of communication between cell types. This provides important
information for analysts who are trying to appropriately label cone
bipolar cells in their database. Qualitative feedback on the proto-
type is included in the next section.

7. Discussion

In addition to our case study validation, we discuss the qualitative
feedback on Graffinity and the scalability of the proposed visual-
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ization techniques. We also reflect on the role of these techniques
in the larger scope of graph analysis.

Our collaborators provided positive feedback on the range of
connectivity analysis supported by Graffinity during six hours of in-
formal interviews and demonstrations. One analyst said that Graf-
finity “generated figures that I didn’t think were possible” and that
those figures were “exactly what I need” for her on-going research
of neuron connectivity. Another analyst referred to the connectiv-
ity matrix as “very powerful ... and truly exciting [for connectivity
analysis].” Throughout these feedback sessions we encouraged an-
alysts to use Graffinity to visualize both novel and previously doc-
umented patterns in connectivity. In both cases, analysts were able
to generate new insights about neuron connectivity.

One goal of our feedback sessions was to evaluate whether
relatively short paths were sufficient for connectivity analysis.
Throughout these sessions, our collaborators expressed interest in
querying for paths of length four or less. This supports our assump-
tion that, in practice, relatively short paths are desirable for con-
nectivity analysis, which holds for transportation networks, and we
believe is valid for many other analysis scenarios.

As the number of paths connecting two nodes increases expo-
nentially with path length, there are computational limitations re-
garding query-based analysis. Path queries on the highly connected
flight dataset that include paths of length three often require min-
utes to execute. In contrast, the neuroscience dataset is relatively
sparse and supports interactive query results for paths of length
four. Graffinity could be improved with streaming query results and
progressive visualization updates [FPDS12] or with heuristics that
predict connectivity.

Informal testing with the flight and neuroscience datasets re-
vealed that the connectivity matrix and intermediate node table
scale effectively with the number of paths returned by a query but
they suffer from limitations common to other table-based visualiza-
tions as the number of nodes returned by a query increases. Both
techniques can interactively display around 100K paths as both vi-
sualizations are created in linear time. However, the number of
rows and columns in each visualization are limited by screen space,
which can require scrolling as seen in Figures 1 and 11.

Our reliance on queries to provide an overview of connectivity
of large graphs requires that the analyst has knowledge of the graph
and can formulate relevant queries. While this is true in many sce-
narios, such as the flight dataset, for which it is easy to formulate
queries by a typical user, and for the neuroscience dataset, which
our collaborators know well, it implies that Graffinity is not well
suited to explore a graph that a user does not know much about.
Due to this, Graffinity should be used as part of a larger tool chain
that supports open exploration, such as through degree-of-interest
functions [VHP09] or visual summaries [Wat06].

8. Conclusion and Future Work

In this paper, we introduced the connectivity matrix and the inter-
mediate node table, two novel visualization techniques for summa-
rizing connectivity relationships in large graphs. The connectivity
matrix uses the metaphor of an adjacency matrix generalized to
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show path-based relationships between start and end nodes. This
scalable representation avoids required manual tracing of adjacency
matrices. The intermediate node table reveals information about
nodes hidden by the connectivity matrix. These two techniques pro-
vide an overview of tens of thousands of paths potentially using a
variety of connectivity metrics.

We realized these techniques in a prototype system, called Graf-
finity. This system also contains two supplemental views, a path-
list view and node-link diagram view, so that a wide range of con-
nectivity questions can be answered and all our requirements can
be addressed. We demonstrated Graffinity’s fitness for use in case
studies on a retinal connectomics dataset, though more work re-
mains to integrate it into a larger tool chain for graph analysis.

Our prototype implementation illuminated interesting areas of
future work focused on the exploration of connectivity metrics and
visual encodings to represent these metrics. We have demonstrated
a few interesting metrics for path analysis, such as the path count
and minimum length, as well as domain-specific metrics such as the
percent of delayed flights. We hope to explore the design space of
connectivity metrics and optimal visual encodings for their results
in the future.

Finally, the Graffinity system could be extended to support com-
parison tasks. For example, it would be interesting to compare the
flight connectivity using individual airlines, to, e.g., see the dif-
ferences in connectivity of two airline carriers. Another interesting
comparison use case is analyzing inhibitory and excitatory synaptic
pathways in the retina. These comparisons could be achieved either
using small multiples of the connectivity matrix and the intermedi-
ate node table, or by using explicit metrics for the differences of
these queries, paired with tailored visual encodings.
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