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Figure 1: Volume renderings of a 643 synthetic volume with four different curvature measures. Left to right: first principal curvature κ1,
second principal curvature κ2, mean curvature (κ1 + κ2)/2, and Gaussian curvature κ1κ2. Magenta indicates negative curvature, green
indicates positive. Iso-curvature contours are in black, except for zero curvature in blue.

Abstract

Direct volume rendering of scalar fields uses a transfer function to
map locally measured data properties to opacities and colors. The
domain of the transfer function is typically the one-dimensional
space of scalar data values. This paper advances the use of cur-
vature information in multi-dimensional transfer functions, with a
methodology for computing high-quality curvature measurements.
The proposed methodology combines an implicit formulation of
curvature with convolution-based reconstruction of the field. We
give concrete guidelines for implementing the methodology, and il-
lustrate the importance of choosing accurate filters for computing
derivatives with convolution. Curvature-based transfer functions
are shown to extend the expressivity and utility of volume render-
ing through contributions in three different application areas: non-
photorealistic volume rendering, surface smoothing via anisotropic
diffusion, and visualization of isosurface uncertainty.
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1 Introduction

Direct volume rendering depicts structure in scalar fields through a
simple combination of mappings. At each rendered sample point,
locally measured numerical quantities (mainly the data value itself)
are mapped via the transfer function to optical quantities such as
opacity and color. Basic computer graphics routines can then shade,
composite, and project the samples into a coherent visualization.

In nearly all applications, some part of this process involves the
first-order differential structure of the field: the gradient. Shad-
ing routines generally require the gradient direction as input to a
surface-based lighting model. There is also a trend towards using
gradient magnitude in the transfer function domain, enabling vi-
sualization of material boundaries based on data value and edge
strength [Levoy 1988]. In either case, first-order differential field
structure enhances the clarity and effectiveness of direct volume
rendering. This paper further promotes the use of differential struc-
ture in direct volume rendering, by demonstrating a family of trans-
fer functions based on curvature, using second-order derivatives.

The theory behind curvature measurement in volume visualiza-
tion draws from two distinct fields of study. The first is differ-
ential geometry. We compute isosurface curvature directly from
the volume data using a simple algebraic framework of differen-
tial invariants. Additional insight into the underlying field structure
comes from geometry orthogonal to the isosurfaces, which is also
described by an invariant. The second field of study guiding this
work is signal processing and filter design. Numerical differentia-
tion accentuates noise, and the problem increases with the order of
the derivative. Care must be taken to measure second derivatives ro-
bustly and accurately. We describe a convolution-based derivative
measurement scheme which allows control of the tradeoff between
accuracy, continuity, and filter size. This curvature measurement
method obviates intermediate surface construction, surface param-
eterization, and explicit finite difference schemes. The ability to
compute reliable curvature information at arbitrary points in sam-
pled volume data creates new opportunities for direct volume ren-
dering with curvature-based transfer functions.

This paper selects different components of curvature information
to serve as domain variables in multi-dimensional transfer func-



tions. We demonstrate that curvature-based transfer functions en-
hance the expressive and informative power of direct volume ren-
dering with contributions in three different application areas. Non-
photorealistic volume rendering is improved in Section 5 with con-
tours exhibiting constant thickness in image space, and a flexible
method of emphasizing ridge and valley surface creases. Section 6
shows how volume rendering with total curvature provides a tech-
nique for studying the behavior of volumetric surface processing
algorithms. Section 7 uses flowline curvature as a way to quali-
tatively indicate regions of high geometric uncertainty in surface
models created by isosurfacing.

2 Previous Work

This paper builds on a significant amount of previous research in
volumetric curvature measurement and its application to volume vi-
sualization. Monga et al. [1992; 1994] use convolution with Gaus-
sian kernels, as well as their first, second, and third derivatives to
compute surface curvature characteristics, and to find ridge lines
(extrema in normal curvature along the principal curvature direc-
tion). Interrante et al. [1995] use ridge and valley lines to sim-
plify depiction of the skin surface for surgical planning. Their later
work [1997; 1997] systematically explores a variety of methods for
using strokes or textures aligned with principal curvature directions
to effectively convey the configuration of semi-transparent isosur-
faces relative to internal structures. Kinetic visualization [Lum et al.
2003] uses particle motion along the principal curvature direction
to clarify depiction of surface orientation. In the work that most di-
rectly influences our own, Hladůvka et al. [2000] describe volume
renderings with two-dimensional transfer functions using a sim-
plified space of principal curvatures, and demonstrate that surface
shape is an intuitive space in which to specify color and opacity.

Another thread of previous work adapts non-photorealistic ren-
dering (NPR) techniques to direct volume rendering [Gooch and
Gooch 2001; Ma et al. 2002]. Treavett and Chen [2000] create
pen-and-ink style visualizations of volume data with a combina-
tion of volume-space and image-space measurements, including a
simple curvature measure. Rheingans and Ebert [2001] modify
the standard volume rendering pipeline by applying a variety of
NPR techniques to enhance interesting features and regions, and
to provide depth and orientation cues. Csébfalvi et al. [2001] use
gradient information to create interactive visualizations emphasiz-
ing object contours, quickly revealing internal structures with lit-
tle parameter tuning. Lu et al. [2002] mimic stipple drawing by
using a variety of feature detection methods to place point primi-
tives in the volume with carefully controlled density and location.
Lum and Ma [2002] use commodity graphics hardware to create
richly detailed renderings of volume datasets using a combination
of NPR methods. Nagy et al. [2002] use graphics hardware to en-
rich interactive volume renderings with artistic shading methods
and curvature-directed strokes and hatches.

3 Curvature Measurement

The contribution of this section is a self-contained derivation and
intuitive explanation of our curvature measurement method, ending
with the three simple steps required to put it into practice. The steps
can be implemented without perfect understanding of the underly-
ing mathematics. Following Monga et al. [1992], we rely on convo-
lution with continuous filters, rather than an explicitly constructed
coordinate frame aligned with the gradient direction [Interrante
1997; Nagy et al. 2002]. We feel our convolution-based approach
is significantly simpler than a previous method based on charac-
terizing multiple planar curves passing through the point of inter-
est [Hladůvka et al. 2000]. Though visualization results may bene-

fit from a pre-process smoothing of the data, no pre-computation is
required for the curvature measurement itself.

The curvature of a surface is defined by the relationship be-
tween small positional changes on the surface, and the resulting
changes in the surface normal. In sampled volume data, surfaces
are implicitly represented as isosurfaces of reconstructed contin-
uous data values f (x). Assuming that the values of f increase
as we move further inside objects of interest (e.g., a standard CT
scan), the surface normal is defined as n = −g/|g|, with the gradi-

ent g = ∇ f =
[

∂ f
∂x

∂ f
∂y

∂ f
∂ z

]T
. Curvature information is contained in

∇nT, a 3×3 matrix. However, we do not want to evaluate the gradi-
ent of a (pre-computed) normalized vector, since this hinders direct
convolution-based measurement of the original data. Expanding
upon the derivation in [Mitchell and Hanrahan 1992]:

∇nT = −∇
(

gT

|g|
)

= −
(

∇gT

|g| − g ∇T|g|
|g|2

)

= − 1
|g|

(
H− g ∇T(gTg)1/2

|g|
)

= − 1
|g|

(
H− g ∇T(gTg)

2 |g|(gTg)1/2

)

= − 1
|g|

(
H− g (2gTH)

2 |g|2
)

= − 1
|g|

(
I− ggT

|g|2
)

H

= − 1
|g| (I−nnT)H .

I is the identity matrix, and H is the Hessian matrix:

H =


 ∂ 2 f /∂x2 ∂ 2 f /∂x∂y ∂ 2 f /∂x∂ z

∂ 2 f /∂x∂y ∂ 2 f /∂y2 ∂ 2 f /∂y∂ z
∂ 2 f /∂x∂ z ∂ 2 f /∂y∂ z ∂ 2 f /∂ z2


 . (1)

The outer product of n with itself, nnT, is a linear operator that
projects onto the one-dimensional span of n. I−nnT projects onto
the orthogonal complement of the span of n, namely, the tangent
plane to the isosurface. Letting P = I−nnT, then

∇nT = − 1
|g|PH . (2)

Reading Equation 2 from right to left permits some intuitive un-
derstanding of ∇nT. Vector calculus tells us that the Hessian matrix
H represents how the gradient g changes as a function of infinites-
imal changes of position in R

3 [Marsden and Tromba 1996]. The
changes in g have a component along g (the gradient can change
length), and a component within the tangent plane (the gradient
can change direction). For the purposes of describing curvature,
only the latter component matters. It can be isolated with left-
multiplication by P. Finally, the −1/|g| scaling factor converts in-
finitesimal changes of the (un-normalized) gradient g into infinites-
imal changes of the unit-length normal n.

Both P and H are symmetric matrices, but in general, ∇nT is not
symmetric. However, if v lies in the tangent plane, then Pv = v and
vTP = vT, so for u and v in the tangent plane,

vTPHu = vTHu = uTHv = uTPHv .

That is, the restriction of ∇nT = −PH/|g| to the tangent plane is
symmetric, and thus there exists an orthonormal basis {p1,p2} for
the tangent plane in which ∇nT is a 2×2 diagonal matrix [Hoffman
and Kunze 1971]. This basis can be easily extended to an orthonor-
mal basis for all of R

3, {p1,p2,n}. In this basis, the derivative of
the surface normal is

∇nT =


 κ1 0 σ1

0 κ2 σ2
0 0 0


 .

The bottom row is all zero because no change in position can
make the normal n change in length. Motion within the tangent



plane, along p1 and p2, leads to changes of n along the same di-
rections, with proportionalities κ1 and κ2 respectively. There is no
cross-term, or twisting of the normal, by the choice of {p1,p2}. By
the definition of surface curvature [Do Carmo 1976], p1 and p2 are
the principal curvature directions, while κ1 and κ2 are the principal
curvatures. As one moves along the normal, off of the surface or
deeper into it, the normal tilts according to σ1 and σ2. This aspect
of implicit surface curvature, termed flowline curvature by ter Haar
Romeny et al. [1991], is explored further in Section 7. The above
derivation of ∇nT is not novel. Others have exploited the fact that
it has eigenvalues κ1, κ2, and 0 to compute curvature of implicit
surfaces [Belyaev et al. 1998; Preusser and Rumpf 2002].

Multiplying ∇nT by P has the effect of isolating κ1 and κ2 in the
{p1,p2,n} basis:

G = ∇nTP = ∇nT


 1 0 0

0 1 0
0 0 0


 =


 κ1 0 0

0 κ2 0
0 0 0


 . (3)

Our surface curvature measurements are based on G, which we
term the geometry tensor. In practice, G will be known only in
the (X ,Y,Z) basis of the volume axes, and will not have the readily
transparent form of Equation 3. Matrix invariants provide the lever-
age to extract the desired curvature values κ1 and κ2 from G, re-
gardless of the principal curvature direction coordinate frame. The
trace of G is κ1 + κ2. The Frobenius norm of G, notated |G|F and

defined as
√

trace(GGT), is
√

κ2
1 +κ2

2 . κ1 and κ2 are then found
with the quadratic formula.

To summarize, here are the steps needed to compute curvature at
an arbitrary point in a scalar field:

1. Measure the first partial derivatives comprising the gradient g.
Compute n = −g/|g|, and P = I−nnT.

2. Measure the second partial derivatives comprising the Hessian
H (Equation 1). Compute G = −PHP/|g|.

3. Compute the trace T and Frobenius norm F of G. Then,

κ1 =
T +

√
2F2 −T 2

2
, κ2 =

T −
√

2F2 −T 2

2
.

If the data values inside regions of interest are lower than the
background (e.g., inverted from a standard CT scan), the only
change in the formulation is the sign of the geometry tensor:
G = PHP/|g|. Though not used in this paper, the principal cur-
vature directions are easily found as eigenvectors of G. The most
important task in the curvature computation is measuring all the
necessary partial derivatives (in g and H). It is for this task that we
use convolution with continuous filters.

4 Measuring Derivatives with Convolution

Image-order volume rendering of discretely sampled data relies on
convolution with continuous filters to reconstruct values at arbi-
trary locations, such as sample points along a ray. We perform
three-dimensional reconstruction as a separable product of one-
dimensional convolutions along the X ,Y,Z axes. The combination
of filters used on each axis determines whether the reconstructed
quantity is the interpolated data value, or one of its many partial
derivatives. Measuring ∂ 2 f /∂x∂y, for example, is done with first-
order derivative filters on the X and Y axes, and with a zero-order
derivative (interpolation) filter on the Z axis. Accurate curvature
measurement depends on a judiciously chosen combination of fil-
ters for zero, first, and second derivatives. For reasons of practical-
ity and efficiency, we use piecewise polynomial filters with sym-
metric support. We apply the filter design framework of Möller

et al. [1998] to inform the choice of filters. It is the first time the
framework has been used to create second derivative filters.

We review the spatial filter design framework by considering
a continuous function f (t) in one dimension. Sampling f (t) at
unit intervals produces a sequence of discrete values, notated f [k],
where k is an integer. From f [k] we must approximate both the
original function f (t), as well as its first and second derivatives
f ′(t) and f ′′(t). Each of the three approximations is done by con-
volution with a continuous filter. The result of convolving f [k] with
continuous filter w(t) is notated f w

r (t). By combining the Nth or-
der Taylor expansion of f with the convolution definition of f w

r (t),
Möller et al. [1998] derive:

f w
r (t) = aw

0 f (t) + aw
1 f ′(t) + aw

2 f ′′(t) + . . .

+ aw
N f (N)(t) + rw

N (4)

The aw
n are termed error coefficients. From a formulaic standpoint,

aw
n encapsulates a convolution of w with the n-th term of the sam-

pled Taylor expansion of f .
From a practical standpoint, however, the vector of error coeffi-

cients is the means by which we “dial up” a filter w, according to
the desired derivative and accuracy properties. We describe both
of these in turn. Looking at Equation 4, we can see that if a filter
w does a perfect job of reconstructing f (t), then f w

r (t) = f (t), so
aw

0 = 1 and all other aw
n (as well as the remainder term rw

N ) are zero.
Similarly, for ideal first (or second) derivative filters, aw

1 (or aw
2 ) is

unity, and all other coefficients are zero. The measurement behav-
ior of a filter w is governed by its first non-zero error coefficient.
To specify that w should be a d-order derivative filter, we require
aw

n = 0 for all n < d, and set aw
d = 1.

In spatial filter design, filter quality is quantified in terms of ac-
curacy: the more accurate a filter is, the higher degree polynomial
it can reconstruct exactly. A kth degree error filter (k-EF) filter is
one which can exactly reconstruct polynomials of degree k− 1 or
lower. In the context of Equation 4, we gain accuracy by requir-
ing one or more of the error coefficients beyond aw

d to be zero. To
specify that w should be a d-derivative k-EF filter, we let N = d +k
and require aw

n = 0 for all n : d < n < N. Note that the number of
constraints we set (that is, the number of aw

n we specify) is the sum
of the derivative order and the accuracy level. This also turns out to
be the lower bound on the filter support (the number of data value
samples required in the convolution sum).

Continuity is also a desirable filter property, since it avoids
visual artifacts in reconstruction, and it helps reduce post-
aliasing [Marschner and Lobb 1994]. A continuous filter is CM

if it has M continuous derivatives. It can be shown that infinitely
many piecewise polynomial filters satisfy any given derivative, ac-
curacy, and continuity requirements [Möller 1999]. The filter w(t)
is ultimately implemented as a list of coefficients of piecewise poly-
nomials in t. The coefficients are found as the solution of a linear
system embodying the derivative, accuracy, and continuity proper-
ties described above [Möller 1999].

Spatial filter design supports the creation and characterization
of second derivative filters, but unfortunately curvature is not sim-
ply a second derivative. Rather, Section 3 showed how curvature
is extracted from both first and second derivatives, through alge-
braic transforms. We have conducted an empirical study to better
understand how filter quality affects curvature measurements. Our
study used measurements of mean curvature (κ1 + κ2)/2 on the
Marschner-Lobb [1994] dataset, a 403 sample floating-point vol-
ume with isosurfaces resembling a graph of the sinc function. Fig-
ures 2 shows the analytical form of the data, including colormap-
ping with correct mean curvature values.

Figure 3 shows results from a variety of filter combinations. Fig-
ure 3(a) uses the Catmull-Rom cubic spline and its first and sec-
ond derivatives. Because the Catmull-Rom spline is C1 but not C2,
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Figure 2: Marschner-Lobb dataset with ideal reconstruction. In (b),
colors indicate mean curvature.

its second derivative is discontinuous, leading to markedly discon-
tinuous curvature measurements. This example demonstrates how
well-regarded reconstruction filters are not always the basis of use-
ful derivative reconstruction filters, especially in the context of sec-
ond derivatives. Figure 3(b), on the other hand, better captures the
shape and curvature on the thin ridges, but at the expense of using
an 83 sample support over which the convolutions are performed.
Large filter supports are costly, especially in three dimensions, be-
cause of poor memory locality. Finding filters which give good
results with reasonable supports is an ongoing research problem.

Seeking to provide practical advice on a filter set for efficient cur-
vature measurement, we performed a search among the filters (cre-
ated by the framework above) with 43 sample support. Allowing up
to 3rd order continuity (C3) and 4th order accuracy (4-EF), a total of
200 filter combinations were assessed by rendering the Marschner-
Lobb dataset. These renderings (not shown) used an orthonormal
projection from directly above the dataset, with shading turned off,
to generate grayscale images of mean curvature. Based on the dif-
ference between the ideal and rendered curvatures, an “optimal” 43

filter set was found; see Figure 3(c). An interesting property of this
filter set is that for the derivatives, high accuracy is more important
than high continuity. For example, there are 4-support 2nd deriva-
tive filters with higher continuity than C0, but they are 1-EF, not
2-EF.

Figure 3(d) uses another set of filters, also created by the frame-
work above, but better known through the BC-splines of Mitchell
and Netravali [1988]. Interpolation is done by the Catmull-Rom fil-
ter (B,C = 0,0.5), which is the only 3-EF (the most accurate) inter-
polating BC-spline. The first and second derivatives are measured
with the first and second derivatives of the cubic B-spline (B,C =
1,0), which is the only C2 (the most smooth) BC-spline. In our
quantitative comparison of 200 filter sets, these did nearly as well
as the “optimal” 43 filters. Given that any 43 sample filter set will
be quite limited in the feature detail it can reconstruct and mea-
sure, we recommend that when practical considerations dictate a 43

support, the filters listed in Figure 3(d) are sufficient; only slightly
better results will come from filters with higher polynomial degree.

When larger filter supports can be employed, higher accuracy
is more important than higher continuity. In most practical appli-
cations, the underlying data can be sufficiently modeled with low
degree polynomials. 3-EF or 4-EF filters should be sufficient; those
in Figure 3(b) are excellent. When measuring derivatives in noisy
data, smoothing often improves accuracy. Such smoothing can be
a pre-process. Or, it can be folded into the convolution, by slightly
blurring values, instead of interpolating them. For instance, instead
of using the Catmull-Rom filter as in Figure 3(d), we can use the
B-spline. We have found that the resulting loss of accuracy on very
small features is compensated for by the reduction of spurious cur-
vature variations due to noise. For the remainder of this paper, we
use the B-spline and its derivatives for our curvature measurements.

(a) f : Catmull-Rom
f ′ : 1st deriv of Catmull-Rom
f ′′ : 2nd deriv of Catmull-Rom

(b) f : 0-D, C3, 4-EF (degree 6)
f ′ : 1-D, C3, 4-EF (degree 6)
f ′′ : 2-D, C3, 4-EF (degree 5)

(c) f : 0-D, C3, 3-EF (degree 7)
f ′ : 1-D, C2, 2-EF (degree 4)
f ′′ : 2-D, C0, 2-EF (degree 1)

(d) f : Catmull-Rom
f ′ : 1st deriv of B-spline
f ′′ : 2nd deriv of B-spline

Figure 3: Marschner-Lobb dataset with various filtered reconstruc-
tions. Below each image is a list of the three filters used to re-
construct the data value and the first and second derivatives. The
polynomial degrees are listed for (b) and (c). In (a) and (d) the
polynomial degrees are 3, 2, and 1.

5 Non-Photorealistic Volume Rendering

5.1 Controlling Contour Thickness

Contours (sometimes referred to as silhouettes) are a basic part of
all current approaches to non-photorealistic volume rendering. By
emphasizing the transition between front-facing and back-facing
surface locations, contours delineate object shape and clarify sites
of occlusion. Contours of polygonal surfaces are drawn on edges
between faces with different visibilities, as determined by a sign
change in v ·n, the dot product between the view vector v and the
face normal n [Gooch and Gooch 2001]. Lacking polygonal dis-
cretization, volume rendered contours are generally produced with
a univariate function of v ·n. For instance, the surface color is dark-
ened when v ·n is within some user-determined range around zero.

Figure 4: Contours based solely on v ·n



An unfortunate consequence of this approach is uncontrolled
variation in the apparent contour thickness. As shown in Figure 4,
where the surface is nearly flat, a large region of surface normals
is nearly perpendicular to the view vector, making the contours too
thick. Conversely, in fine structures, where the emphasis provided
by contours could be especially helpful, they can be too thin.

We propose regulating the thickness of volume rendered con-
tours by using curvature. Specifically, the normal curvature along
the view direction, κv, restricts the range of surface normal ori-
entations rendered as contour. We find κv in terms of the tangent
projection P and the geometry tensor G, exploiting the fact that re-
stricted to the tangent plane, G is exactly the Weingarten map [Do
Carmo 1976]:

κv =
(Pv)T

|Pv| G
Pv
|Pv| =

vT G v
|Pv|2 =

vT G v
vT P v

.

θT

R−T

R

n

v

m

surface

√
R

2−
(R−

T
) 2

T

Figure 5: Creating contour thickness T based on surface normal n,
view vector v, and radius of surface curvature R = 1/κv.

Contours with approximate image space thickness T are ren-
dered with a two-dimensional transfer function of κv and v ·n. Our
method is an approximation because κv is assumed to be constant
over the contour extent. Figure 5 illustrates a slice through a sur-
face, on the plane spanned by the surface normal and the view vec-
tor as it grazes the surface. Within this plane, m is the single surface
normal orthogonal to v. A certain range of surface normals around
m must be rendered as contour so that, when projected on the image
plane, the contour region appears to have thickness T . This range is
a function of T and of R, the radius of curvature at this point along
the contour. Letting θT denote the maximum angle between m and
a surface normal within the contour:

|m ·n| ≥ cos(θT ) ⇒ |v ·n| ≤ sin(θT )

⇒ |v ·n| ≤
√

R2 − (R−T )2

R
=

√
2RT −T 2

R2 =

√
T
R

(
2− T

R

)

⇒ |v ·n| ≤
√

T κv(2−T κv) (5)

Figure 6(a) graphs the inequality in Equation 5; it is simply a
portion of a circle. When curvature κv is small, a narrow range
of surface orientations should contribute to the contour, while a
larger range of orientations must be colored to create the contour
on high curvature features. The lookup table in Figure 6(b) is one
way to implement the contour transfer function. High values of
κv are clamped to 1/T to ensure that very small features are not
missed. The transition between dark and light in the contour trans-
fer function may be blurred somewhat to soften the contour edges,
and to avoid accentuating minor surface variations near the contour.

κv
0 1/T

0

1
|v ·n|

(a) Contour function

κv

v ·n

−1

0

1

(b) 2-D lookup table

Figure 6: Graph of contour function, and the lookup table used to
implement thickness-controlled contours in practice.

Figure 7: Thickness-controlled contours, using T = 1 (left) and
T = 2.5 (right).

Figure 7 demonstrates thickness-controlled contours with two
different values for the thickness parameter T . The contour thick-
ness around the ears and back of the bunny are now equal, and the
surface details on the lower body are more clearly depicted, in con-
trast to Figure 4. Also, varying T succeeds in adjusting the image
space thickness of the contours. Since the dimensions of T are vox-
els, setting T = 1 means that contours should be about as thick as
the size of one voxel projected onto the image plane. As with pre-
vious methods for volume rendered contours, it is possible for our
thickness-controlled contours to be drawn at locations where there
is actually no change in surface visibility. Also, contours may be
drawn improperly in regions where curvature is too low to be mea-
sured accurately. We have not found either of these problems to be
serious impediments to the illustrative purpose of contours.

5.2 Emphasizing Valleys and Ridges

One ingredient missing in the current vocabulary of non-
photorealistic volume rendering techniques is the use of curvature
magnitudes to enhance depiction of surface details. Conveying
overall surface shape is effectively done by using textures aligned
with curvature directions [Interrante et al. 1997; Interrante 1997;
Girshick et al. 2000; Lum et al. 2003], but we wish to avoid the
overhead of pre-computing and storing the necessary volumetric
texture. Though visually similar to depiction of ridge and valley
lines, our approach is simpler than previous volumetric methods in
that we do not use third derivatives [Monga et al. 1994], nor do we
perform a local search to determine curvature extrema [Interrante
et al. 1995]. Rather, we work in the two-dimensional space of prin-
cipal curvatures (κ1,κ2), similar to the approach of Hladůvka et
al. [2000], with the important difference that the geometry tensor
can distinguish between convex and concave surface geometry.

Figure 8 demonstrates transfer functions of the (κ1,κ2) principal
curvatures. Figure 8(a) portrays curvature space with a sequence of
quadratic surface patches (each a 203 volume) rendered with the
transfer function shown. Figure 8(b) shows how curvature trans-
fer functions can emphasize surface variations not otherwise read-



κ1

κ2

(a) Volume rendered diagram of (κ1,κ2) space. The colors in the
(κ1,κ2) transfer function domain are mapped onto the patches with
corresponding surface curvature.

κ1

κ2

(b) Left: Visualization of ear curvature using transfer function from
(a); Right: ridge and valley emphasis implemented with inset transfer
function, combined with Gooch shading

Figure 8: Principal curvature transfer functions

ily seen. Following a technical illustration convention of darken-
ing valleys and lightening ridges [Gooch et al. 1999], we darken
or lighten volume rendered samples according to their location in
(κ1,κ2) space, using the transfer function shown in Figure 8(b). In
addition to the curvature-based transfer function, Gooch shading is
used to convey overall shape [Gooch et al. 1998].

Figure 9 highlights the complementary nature of our two
curvature-based non-photorealistic volume rendering effects.
Thickness-controlled contours delineate the shapes of large struc-
tures, while ridges and valleys highlight fine surface details. In
these renderings, surface color is assigned as a function of three
vectors (v, n, l: view, surface normal, light) and three different
kinds of curvature (κv, κ1, κ2: view direction, principal curvatures).
We follow the example of previous work demonstrating the benefit
of expressing multi-dimensional transfer functions as the separable
product of simpler functions [Kniss et al. 2002]:

RGB(v,n, l,κv,κ1,κ2) = g(n · l) c(κv,v ·n) e(κ1,κ2) .

Gooch shading comes from g(n · l); c(κv,n · v) creates thickness-
controlled contours; e(κ1,κ2) provides ridge and valley emphasis.
The contour thickness T is the only parameter to tune in c(κv,v ·n).
The ridge and valley emphasis does require subjective adjustments,
but the intuitive nature of (κ1,κ2) space makes this relatively sim-
ple. By far the most challenging parameter setting remains the
opacity assignment, for which we use a two-dimensional transfer
function of data value and gradient magnitude, as guided by previ-
ous work [Kindlmann and Durkin 1998; Kniss et al. 2002].

6 Visualizing Surface Smoothing

Medical imaging and three-dimensional range sensing technologies
produce high resolution descriptions of object surfaces, but they of-
ten suffer from noise. Level set methods for denoising the data have
become popular because of their inherent ability to handle com-
plex topology [Osher and Sethian 1988]. Level sets can be evolved
by minimizing an energy function based on principal curvatures,
the lowest-order differential invariants of surface shape [Tasdizen
et al. 2002]. Minimizing the surface integral of total curvature
κT =

√
κ2

1 +κ2
2 gives an isotropic surface smoothing, analogous

to Gaussian image blurring. A variant of this energy function can
be used to preserve prominent features on the surface while elimi-
nating noise [Tasdizen et al. 2002], generalizing anisotropic image
diffusion [Perona and Malik 1990] to surface processing.

We propose that curvature-based direct volume rendering is a
natural and effective tool for visualizing curvatures and surfaces as
they evolve during a level set solution. Level sets and direct vol-
ume rendering share an implicit surface representation on a com-
mon underlying grid. Because curvature-based volume rendering
requires no pre-processing, it permits direct inspection of interme-
diate smoothing results, without an intervening meshing step. To
visualize the spatial and temporal structure of total curvature on the
evolving surface, we use two one-dimensional transfer functions.
One assigns surface color as a function of total curvature; the other
assigns opacity as a function of data value.

κT

Figure 10: Six snapshots of anisotropic surface smoothing

Figure 10 shows volume renderings of six instances during the
anisotropic smoothing of an isosurface from MRI data. All ren-
dering parameters are fixed; only the volume dataset is changing.
Noise in the original surface (top-left picture) is seen as randomly
distributed high curvature points on the surface. As the surface
evolves, most of the high curvature points fade away, while the
rest coalesce into prominent creases. This is predicted by mathe-
matical analysis of the anisotropic diffusion equations [Perona and
Malik 1990]. Our visualization experiment verifies this property,
as well as illuminating other features of the process. For instance,
as the surface smoothly evolves, the network of creases undergoes
discrete changes in connectivity. An interesting research topic sug-
gested by these visualizations is steering the energy function in or-
der to create or maintain a particular topology in the crease network.



Figure 9: Curvature-based non-photorealistic volume rendering. The two small images depict the contribution of thickness-controlled con-
tours (top) and ridge and valley emphasis (bottom). The large images show the combination of the two effects.

7 Visualizing Isosurface Uncertainty

If a grayscale image is thought of as a height field on which a fluid
is flowing downward, flowline curvature is the curvature of the path
of the flow, as viewed from above [ter Haar Romeny et al. 1991].
In three dimensions, flowline curvature κ f characterizes the degree
to which an isosurface changes its orientation as a function of small
changes in isovalue. With zero flowline curvature, adjacent isosur-
faces are parallel. Like the principal curvatures, flowline curvature
is a differential invariant. However, instead of describing change
within a single isosurface, it describes change between isosurfaces.
It can be computed from ∇nT (Equation 2):

κ f = |∇nT(nnT)|F =

∣∣∣∣∣∣

 κ1 0 σ1

0 κ2 σ2
0 0 0




 0 0 0

0 0 0
0 0 1



∣∣∣∣∣∣
F

=
√

σ2
1 +σ2

2 .

To our knowledge, flowline curvature has not been used in vol-
ume visualization. We propose that flowline curvature can be used
to visualize the uncertainty of material boundaries as modeled by
isosurface extraction. The physical shape of a boundary between
two materials is a fixed and intrinsic property of the object being
sampled in the volume dataset. At locations where small changes
in isovalue produce large changes in isosurface orientation, the iso-
surface is probably a poor model of the material boundary. On the
other hand, where the shape of an isosurface is robust against small
isovalue changes, we can be more certain of its geometric accu-
racy. By colormapping flowline curvature onto volume rendered
surfaces, we can qualitatively indicate uncertainty of surface shape.
Regions of especially high flowline curvature are visually flagged
as suspect.

One common material boundary that can be hard to extract via
isosurfacing is the surface of bone in CT data. Figure 11 shows
six pseudo-isosurface volume renderings of a thumb. Each is ren-
dered with a univariate opacity function changing from transparent
to fully opaque over a narrow range of data values, effectively cre-
ating a threshold at the specified isovalue. Flowline curvature is
colormapped onto the surfaces through a single transfer function
common to all the renderings. The (anatomically erroneous) holes
on the bone surface are consistently lined by high flowline curva-
ture, and the sites of hole formation can largely be predicted by
flowline curvature patterns at lower isovalues. There are, however,
locations with high surface curvature and low flowline curvature,

κ f

Figure 11: CT isosurfaces at values 1055, 1095, 1175, 1255, 1335,
and 1405, colormapped by flowline curvature. Circle indicates site
of high surface curvature and low flowline curvature.

such as the (circled) lower edge of the top bone in the second im-
age. Because there is no single isovalue for which the resulting
isosurface has consistently low flowline curvature, these visualiza-
tions illustrate how hard it is to find a CT isovalue which represents
the bone surface with high certainty.

8 Discussion, Future Work

We have demonstrated that curvature plays a valuable role in cre-
ating informative volume visualizations. Our method conforms to
a standard post-classification volume rendering pipeline: the color
and opacity assignments at each raycast sample are generated from
transfer functions, on the basis of locally computed quantities, such
as gradient and curvature. Rheingans and Ebert [2001] have de-
scribed how this approach engenders the difficult task of transfer
function creation and modification. However, as noted in Sec-
tion 5.2, we seek to control this complexity by enforcing separabil-
ity of the transfer function into simpler, intuitive components. The
conceptual orthogonality of the various NPR effects maps to or-
thogonality between the corresponding transfer function domains.

Biological surfaces tend to be somewhat noisy, and as a result,



where the surface curvature is very low, as on the scalp or the top
of the skull, it is hard to measure curvature accurately. Adaptive
methods which measure derivatives over a larger area in such cir-
cumstances could help, as could proper application of scale-space
methods [ter Haar Romeny et al. 1991]. As mentioned in Section 4,
more analysis is needed to determine the precise relationship be-
tween the characteristics of the convolution filters, and the quality
of curvature measurements produced. Finally, our proof-of-concept
raycaster does not exploit graphics hardware, and is far from inter-
active. Previous work on hardware-based convolution [Hadwiger
et al. 2001] and hardware-based NPR [Lum and Ma 2002; Nagy
et al. 2002], however, suggests the exciting possibility of high-
quality curvature measurements at interactive rates.
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2001. Fast visualization of object contours by non-photorealistic volume
rendering. Computer Graphics Forum 20, 3, C452–C460.

DO CARMO, M. 1976. Differential Geometry of Curves and Surfaces.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

GIRSHICK, A., INTERRANTE, V., HAKER, S., AND LEMOINE, T. 2000.
Line direction matters: An argument for the use of principal direc-
tions in 3D line drawing. In First International Symposium on Non-
Photorealistic Animation and Rendering, 43–52.

GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Rendering. A K
Peters, Ltd., Natick, MA.

GOOCH, A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A non-
photorealistic lighting model for automatic technical illustraction. In
Proceedings SIGGRAPH ’98, 447–452.

GOOCH, B., SLOAN, P.-P., GOOCH, A., SHIRLEY, P., AND RIESENFELD,
R. 1999. Interactive technical illustration. In 1999 ACM Symposium on
Interactive 3D Graphics, 31–38.

HADWIGER, M., THEUSSL, T., HAUSER, H., AND GRÖLLER, E. 2001.
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