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ABSTRACT

The inhomogeneous Laplace (Poisson) equation with internal Dirich-
let boundary conditions has recently appeared in several applica-
tions to image processing and analysis. Although these approaches
have demonstrated quality results, the computational burden of so-
lution demands an efficient solver. Design of an efficient multigrid
solver is difficult for these problems due to unpredictable inho-
mogeneity in the equation coefficients and internal Dirichlet con-
ditions with arbitrary location and value. We present a geomet-
ric multigrid approach to solving these systems designed around
weighted prolongation/restriction operators and an appropriate sys-
tem coarsening. This approach is compared against a modified in-
complete Cholesky conjugate gradient solver for a range of im-
age sizes. We note that this approach applies equally well to the
anisotropic diffusion problem and offers an alternative method to
the classic multigrid approach of Acton [1].

1. INTRODUCTION

The solution of the inhomogeneous Laplace (Poisson) equa-
tion with internal Dirichlet boundary conditions has recently
appeared in several applications, ranging from image seg-
mentation [2, 3] to image filtering [2] and image coloriza-
tion [4]. Although these algorithms are framed in a discrete
(graph) setting, they have been almost exclusively employed
in a rectilinear coordinate system, resulting in the use of
a (widely) banded Laplacian matrix. Unfortunately, tradi-
tional fast Laplace/Poisson solvers are inappropriate dueto
the inhomogeneity of the PDE coefficients. This paper ad-
dresses the problem of an efficient solution to the inhomo-
geneous problem by introducing a weighted multigrid ap-
proach [5].

A multigrid approach was applied by Acton [1] to the
similar problem of anisotropic diffusion. His approach em-
ployed a simple injection restriction operator and a tradi-
tional interpolation prolongation method to prevent smooth-
ing/restriction across edge boundaries. The formal relation-
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Fig. 1. Example of the multilabel segmentation obtained from the
algorithm of [3]. Gray marks represent the result of user interaction
(i.e., seeds) to indicate three objects (corpus callosum, cerebellum
and background). Thick black lines indicate the computed segment
boundaries. Even though no prior knowledge is built into the algo-
rithm to find a particular object, the algorithm correctly segments
both objects, despite unusual shapes and textures.

ship and relative advantages of our approach will be dis-
cussed in Section 4.

The general application is this: Given knowledge at cer-
tain pixels, termedseeds, of a certain quantity of interest
(e.g., object labels in [3], grayscale intensities in [2] or col-
ors in [4]), assign appropriate quantities to the unlabeled
pixels that reflect the spatial structure of the image. The
approach is then to set the seed pixels as Dirichlet bound-
ary conditions (despite being internal to the domain), allow
the pixel intensities to define the coefficients (weights) and
then solve the Laplace equation (or Poisson equation, in the
case of [2]) to find the quantities at the unlabeled nodes.
As shown in [3], this approach respects weak (or absent)
object boundaries, has provable robustness to noise and ad-
mits interpretation in the context of a random walk in the
domain. Figure 1 shows segmentation results on a medi-



cal image obtained through application of the segmentation
technique described in [3].

2. PROBLEM

Since [3, 2, 4] were formulated on a discrete space (due to a
finite set of pixels and corresponding “diffusion constants”)
we find the language of graph theory most suitable for expo-
sition. A graph consists of a pairG = (V,E) with vertices
(nodes) v ∈ V and edges e ∈ E ⊆ V × V . An edge,
e, spanning two vertices,vi andvj , is denoted byeij . A
weighted graph assigns a nonnegative value to each edge
called aweight. The weight of an edge,eij , is denoted by
w(eij) or wij . Thedegree of a vertex isdi =

∑

w(eij) for
all edgeseij incident onvi. The following will assume that
our graph is connected. In our context of 2D image process-
ing, the graph nodes are taken as the image pixels, which lie
on a rectangular, 4-connected, grid. Image intensities may
by converted into edge weights (i.e., diffusion constants)
through many different methods [6, 4, 1, 3]. Although these
values may be interpreted as diffusion constants, we will re-
fer to them asweights throughout this manuscript.

Define the combinatorial Laplacian matrix [7] as

Lvivj
=











dvi
if i = j,

−wij if vi andvj are adjacent nodes,

0 otherwise,

(1)

whereLvivj
is used to indicate that the matrixL is indexed

by verticesvi andvj .
Given a set of marked pixels (obtained interactively or

automatically) to be set with Dirichlet boundary conditions,
we may partition the vertices into two sets,VM (marked/seed
pixels) andVU (unmarked pixels) such thatVM ∪ VU = V

andVM ∩ VU = ∅. The Laplacian may be decomposed into
the form

L =

[

LM B

BT LU

]

, (2)

corresponding to the marked/unmarked sets. Fixing some
of the nodes as “boundary” nodes results in their removal
from the Laplacian matrix and incorporation into the right
hand side (see [2]). Therefore, our purpose is to develop a
multigrid technique that is addressed to solving the problem

LUxU = f, (3)

for xU in the presence of some right hand side,f , that de-
pends on the application (cf., [2, 4, 3]). Given the context
of potential theory for these applications, we refer to the
quantitiesxU as thepotentials for the unmarked set. The
potentials of the marked set are assumed known and fixed
(depending on the application).

We note that the anisotropic diffusion problem has a sim-
ilar formulation withVM = ∅ andVU = V . In this context,

the solution to the combinatorial diffusion (heat) equation
[7] requires solution to

dx

dt
= −Lx, (4)

given some time,t, and initial distribution,x0. By em-
ploying a backward Euler approach to solving the diffusion
equation, a linear system may be established with the form

(

1

t
I + L

)

x =
1

t
x0, (5)

which is equivalent to our system (3) withf = 1

t
x0 and a

constant addition to the diagonal ofL. Since there are typi-
cally no Dirichlet boundary conditions in the formulation of
diffusion, a multigrid approach to this problem is often less
complicated. Although we will ignore the addition of a con-
stant to the diagonal of our Laplacian operator, the multigrid
methods developed in the present work have straightforward
application to the problem of anisotropic diffusion.

3. MULTIGRID REVIEW

Multigrid methods have proven extremely successful at solv-
ing the systems of equations that arise in the solution of
PDEs with linear complexity [5]. In general, there are two
branches of the method — geometric and algebraic. Alge-
braic multigrid approaches aspire to a “black box” method
that can apply the technique to an arbitrary linear system.
In contrast, geometric methods evolved out of attempts to
solve PDEs on a rectilinear domain (especially elliptic and
parabolic systems) where it may be assumed that coarsened
versions of the operator also represent rectilinear grids.Al-
though discrete in nature, and therefore equally defined on
arbitrary graphs, application of the methods in [6, 2, 4, 3]
to standard images results in a Laplacian operator with a
sparsity structure that represents a grid. For this reason,the
method we develop is a geometric multigrid method.

A review of the steps involved in the multigrid method
is referred to [5]. The main issues that must be addressed in
order to design a multigrid method are:

1. Specifying the restriction operator
2. Specifying the prolongation operator
3. Producing a coarsened operator

Section 4 outlines the design of these operators in the con-
text of inhomogeneous Laplacian operators with internal bound-
ary conditions. We note that design of these operators also
specifies the nested dissection method and therefore allows
the “full multigrid method”.

4. MULTIGRID DESIGN

Acton [1] specifies the restriction operator as simple injec-
tion and the prolongation operator as “traditional interpo-



(a) Coarse-level solution (b) Unweighted projection (c) Weighted projection

Fig. 2. Example of a 1D projection over an object boundary (represented by the vertical dashed line). (a) Current solution at coarse level.
(b) Unweighted projection operator. Note that projected values do not respect object boundary. (c) Weighted projection operator. The
weighted restriction operator is defined naturally as the adjoint of this projection operator.

lation”. These operators may work well enough for calcu-
lating a few iterations of diffusion, but do not offer rapid
convergence for the steady-state (i.e., elliptical) equations
addressed in the present work. One reason for this, we be-
lieve, is that the weight structure of the image is not taken
into account in the operator design. Secondly, there is solid
theoretical foundation [5] for requiring that the prolongation
and restriction operators be formallyadjoint to each other.
To review, two operators,A andA∗, are adjoint if

〈Ax, y〉 = 〈x,A∗y〉 , (6)

is satisfied. For a finite, linear, operator represented by ma-
trix A, the adjoint is given byA∗ = AT [8]. We note that
Acton’s prolongation/restriction operators are not adjoint to
each other.

4.1. Prolongation

Our approach to designing the prolongation/restriction oper-
ators will be to define the prolongation operator (since this
is intuitive) and then specify the restriction operator as its
adjoint.

Bilinear interpolation is a standard prolongation oper-
ator, often termed the “full weighting” operator. Unfortu-
nately, in our case, this operator does not respect the edge
weights and therefore may interpolate over object bound-
aries. Therefore, we propose to use a weighted bilinear in-
terpolation, with weights given by the edge weights. Specif-
ically, the prolongation operator proceeds in three steps for
values at the fine level,x0, and the coarse level,x1. For ease
of exposition, we use north/south/east/west notation to indi-
cate the neighbors of a node and the corresponding weight
between them.

x0(2i, 2j) = x1(i, j) ∀i, j,

x0(2i + 1, 2j) =
(wEx0

E + wWx0
W)

wE + wW

,

x0(2i + 1, 2j + 1) =
wNx0

N + wEx0
E + wSx0

S + wWx0
W

wN + wE + wS + wW

,

(7)

Effectively, the first step injects the coarse-level solution to
the fine grid. The subsequent equations describe a weighted

bilinear interpolation over the remaining fine-level pixels.
We note that for a unity-weighted (i.e., homogeneous) do-
main, this operator becomes standard bilinear interpolation.
In Figure 2 we show 1D projection over an object boundary
(represented by the vertical, dashed line) and the effects of
applying standard and weighted projection.

4.2. Restriction

The restriction operator is defined as the adjoint of the weighted
prolongation operator defined above. This adjoint may be
written in four steps. For ease of exposition (and implemen-
tation) we first modify the fine-level vector. In practice this
would be done with a temporary vector.

x0(2i + 1, 2j) = x0(2i + 1, 2j) +
wEx0

E

dE

+
wW x0

W

dW

,

x0(2i, 2j + 1) = x0(2i, 2j + 1) +
wNx0

N

dN

+
wSx0

S

dS

,

x0(2i, 2j) = x0(2i, 2j) +
wNx0

N

dN

+
wEx0

E

dE

+

wSx0
S

dS

+
wW x0

W

dW

,

x1(i, j) = x0(2i, 2j).

(8)

The factordN denotes the degree of the node to the
north, etc. Effectively, one may think of this operator as
reversing the projection. We note that a unity weighted lat-
tice (i.e., homogeneous domain) would cause the weighted
restriction operator above to be the standard “full-weighting
restriction” given in [5].

4.3. Operator coarsening

The recommended operator coarsening, given an adjoint pro-
longation/restriction operator is

Lk+1 = RLkP. (9)

Unfortunately, such a construction of the coarsened oper-
ator yields a matrix with a sparsity pattern that does not



Fig. 3. Comparison of the conjugate gradient method (with
incomplete Cholesky preconditioner) to the proposed multigrid
method for solving (3) when segmenting images [3]. All images
were square, with the length of one side given by the x-axis.

correspond to a lattice representation, resulting in a lower
efficiency implementation of coarse operations and storage.
Therefore, an effective heuristic to coarsen a fine-levelL

while maintaining the sparsity structure of a lattice is to treat
the vertical/horizontal weights as two(N − 1) × (N − 1)
images, and applying the restriction operator to determine
the weights of the coarse lattice. We employ this proce-
dure, using the weighted restriction/prolongation operators
described above.

In the methods of [3, 4] the marked nodes (i.e., removed
nodes) must also be incorporated into the higher-level op-
erator. This is done by considering a coarse-level node to
be marked if any of its eight fine-level neighbors are also
marked1.

5. VALIDATION AND CONCLUSION

We compared our multigrid approach for solving (3) (ob-
tained from the segmentation problem of [3]) to a conjugate
gradients method with a modified incomplete Cholesky pre-
conditioner [9] on images of increasing size. Figure 3 plots
the relative speed for the two methods and demonstrates that
the proposed multigrid approach has a linear relationship to
data size, and outperforms the conjugate gradient approach
by roughly an order of magnitude. Furthermore, the vari-
ability of computation time for the multigrid method was
also much lower.

We have presented a multigrid method for solving prob-
lems of the form (3) that have recently become important in
image processing applications. Furthermore, our approach
offers an alternative to Acton’s [1] multigrid method for

1We thank Anat Levin for this suggestion.

solving the anisotropic diffusion problem that employs ad-
joint restriction and prolongation operators which respect
the diffusion constants (edge weights). The main feature
of these weighted operators is that they do not smooth or re-
strict over object boundaries (represented by edge weights).

Future work includes extension of the multigrid method
to a 3D lattice and use of an algebraic multigrid technique
to design even more effective prolongation, restriction and
coarsened operators.
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