
1

Automatic Assembly of TEM Mosaics and Mosaic

Stacks Using Phase Correlation

Pavel A. Koshevoy, Tolga Tasdizen, Ross T. Whitaker

UUSCI-2007-004

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

April 20, 2007

Abstract:

This paper discusses automatic Transmission Electron Microscopy (TEM) image registration,
TEM slice assembly via tile mosaicking, and TEM volume assembly via slice to slice registration.
Several algo- rithms are presented, including an algorithm for mosaic layout of an unordered set of
tiles, an algorithm for distortion correction, and an image processing algorithm for a coarse edge
and blob detection.



Automatic assembly of TEM mosaics and mosaic stacks using

phase correlation

Pavel A. Koshevoy, Tolga Tasdizen, Ross T. Whitaker

April 19, 2007

Abstract

This paper discusses automatic Transmission Electron Microscopy (TEM) image registration, TEM
slice assembly via tile mosaicking, and TEM volume assembly via slice to slice registration. Several algo-
rithms are presented, including an algorithm for mosaic layout of an unordered set of tiles, an algorithm
for distortion correction, and an image processing algorithm for a coarse edge and blob detection.

1 Motivation

Transmission Electron Microscopy (TEM) brings several challenges to automatic image registration.
An electron microscope rarely has a large enough �eld of view to cover the region of interest with rea-

sonable detail. Therefore, the region of interest has to be imaged as a sequence of tiles, following some
overlapping tile pattern. The imaging process introduces distortion into each tile. Unfortunately, the distor-
tion is typically not the same from tile to tile, therefore each tile has to be unwarped individually.

A bigger issue with the slice to slice registration arises from the fact that each slice actually represents a
di�erent cross section of tissue, therefore adjacent slices are not expected to match exactly. Additionally, each
slice may undergo a di�erent distortion during cutting, and some slices may be destroyed during cutting.
To make matters worse, tile distortion correction during the slice mosaic re�nement introduces arti�cial
warping into each slice. Slices are arbitrarily oriented when they are put under the electron microscope,
which means that slice to slice registration has to �nd the correct orientation, translation and distortion
correction parameters between arbitrarily oriented warped images of di�erent tissue slices.

Also, as the tissue slices have to be stained with a contrast agent, the images often have di�erent contrast
from slice to slice, and in some cases the contrast may be so poor that a traditional contrast enhancement
algorithm CLAHE would introduce artifacts into the image making the slice to slice registration impossible.

Dealing with any of the above issues manually is a daunting task.

2 Problem statement

Given a large number of tiles speci�ed in no particular order, a slice mosaic must be constructed and
individual tiles must be corrected for distortion. This is the global problem that can be split up into slightly
more manageable sub-problems:

• Find pairs of matching tiles.

• Build a rough estimate of the mosaic without distortion correction.

• Re�ne the mosaic by unwarping all tiles simultaneously.

Slice to slice registration presents a slightly di�erent set of sub-problems:

• Find a rough estimate of the slice to slice registration.

• Keep one section �xed and unwarp the other section.

Once all the slice to slice pairs are registered, they must be stacked into a volume by cascading the slice to
slice transforms.

1



3 Description of the mathematics and algorithms

3.1 Matching pairs of tiles

Finding matching tiles amounts to �nding tiles with highest cross-correlation. The method for �nding
matching tiles implemented in this application is based on a Phase Correlation technique described by Girod
and Kuo[1]. The technique is very straight forward, but it has an important prerequisite - it requires that
the width and height of the two tiles must match. If that is not the case, one or both of the tiles must be
padded on the bottom and on the right side with zeros until both of the tiles have matching dimensions
as follows: given unpadded tiles U0 and U1, padded tiles S0 and S1 are generated such that width (S0) =
width (S1) = max (width (U0) , width (U1)) and height (S0) = height (S1) = max (height (U0) , height (U1)).

Having satis�ed the prerequisite by padding the tiles, the tiles are transformed into the frequency domain
by Discrete Fourier Transform F0 = F {So} and F1 = F {S1}. The Discrete Fourier Transform functionality
is provided by the FFTW[4] library. Once the tiles have been transformed, the cross power spectrum between
S1 and S0 is calculated as

Φ10 = F1 × F ∗
0

where F ∗
0 is the complex conjugate of F0. The the cross power spectrum is normalized as follow

P =
Φ10√

Φ10 × Φ∗10 + ε

where ε is a small number greater than zero added to avoid division by zero. The Girod and Kuo paper
addresses a slightly di�erent problem than the one targeted by our application. The technique described in
the paper is intended for tracking a moving object. One of the di�culties of the tracking problem is that the
background behind the object changes. The mosaicking problem typically does not su�er from this obstacle.
During early experimentation we attempted to use the non-normalized cross power spectrum directly as
P = Φ10. This was found to be unacceptable because the peaks in the cross correlation image are poorly
de�ned. The comparison of the phase correlation and cross correlation can be seen in �gure 1.

Figure 1: phase correlation vs. cross correlation

phase correlation cross correlation

2



The phase correlation is the inverse Fourier transform of the normalized cross power spectrum.

PDF (x, y) = <
(
F−1 {P}

)
The phase correlation corresponds to the probability density function (PDF ) that tile S1 matches with tile

S0 displaced by vector [x y]T . We will refer to this function as the displacement PDF . Thus, in order to

�nd the displacement vector it is necessary to �nd the coordinates [xmax ymax]T of the global maximum of
this function.

Finding the maximum of the displacement PDF is non-trivial. This is due to the fact that for most
electron microscopy images the PDF is very noisy. Also, the PDF may contain several peaks of comparable
magnitude. This may happen for mismatched images as well as for matching images due to the repetitive
texture of the microscopy images. The technique described in the Girod and Kuo paper mentions a simple
thresholding method used to suppress the negative and insigni�cantly small values of the PDF . The method
currently implemented in the mosaicking application is similar, but has several important features that are
worth pointing out.

Early experimentation with the PDF has shown that identifying the maxima becomes signi�cantly easier
after blurring the PDF to remove the high-frequency noise. The blurring is carried out in the frequency
domain, where it corresponds to a multiplication by a low-pass �lter

PDF (x, y) = <
(
F−1 {P × Filter (r, s)}

)
where r ∈

[
0,
√

2
]
and s ∈ [0, r]. When s = 0 the �lter behaves exactly like the ideal low-pass �lter, passing

una�ected frequencies in the range [0, r] and attenuating completely frequencies in the range (r,∞). When
s > 0 the �lter passes frequencies in the range [0, r − s] completely una�ected, frequencies in the range
(r + s,∞) are completely attenuated, and frequencies in the range (r − s, r + s] are attenuated according to
the function

attenuation (f) =
1 + cos

(
π f−(r−s)

2s

)
2

which provides a smooth transition from zero attenuation at f = r− s to full attenuation at f = r + s. This
low-pass �lter results in zero total power loss in the frequency range [0, r], because the attenuation incurred
in range [r − s, r] is canceled out by the power leakage from range [r, r + s] due to aliasing.

More experimentation has shown that blurring the tiles prior to calculating their corresponding PDF
reduces the number of false maxima in the PDF . The tiles are blurred in the frequency domain as follows

F0 = F {S0} × Filter (r, s)
F1 = F {S1} × Filter (r, s)

and the rest of the calculations are carried out as described above. The parameters r and s used for blurring
the tiles and the PDF can be tuned. In the current implementation the values r = 0.5 and s = 0.1 are used
for the tiles, and r = 0.4 and s = 0.1 for the PDF .

Having blurred the PDF , it is necessary to select a good threshold value in order to isolate a set of
pixels corresponding to the global PDF maximum. We assume that the number of pixels belonging to the
maximum is approximately 1% of the total number of PDF pixels, but it may not be less than 5 pixels or
greater than 64 pixels. The lower bound restriction is imposed in order to avoid thresholding values where
only one maximum pixel is left. One pixel does not carry enough information about the rest of the structure
of the PDF . When 5 pixels are grouped together, it is fairly obvious that there is only one strong maximum
in the PDF . If the pixels are scattered across the PDF , it is likely the PDF does not have a well de�ned
maximum. The lower bound on the number of pixels belonging to the PDF maximum is necessary in order
to deliver the information regarding the distribution of these pixels within the PDF . One or two pixels do
not carry enough information. The upper bound on the number of pixels applies to larger images. If too
many pixels are allocated to the PDF maxima, the computational burden involved in the classi�cation of
the clusters increases. The upper limit of 64 pixels guarantees that no PDF could ever contain more than
64 maxima. Thus

pixelsmaxima = min
(

64,max
(

5,
area (PDF )

100

))

3



where area (PDF ) corresponds to the total number of pixels in the PDF image.
To �nd the threshold value that would provide this number of pixels, it is necessary to build a cumulative

histogram of the PDF pixel values. The current implementation uses 1024 histogram bins. Although the
importance of this parameter has not been explored in the context of our application, we can assume that
more bins will give us a more accurate estimate of the threshold value. The cumulative histogram is searched
for the bin containing at least

area (PDF )− pixelsmaxima

number of pixels. The minimum pixel value associated with that bin is the optimal threshold value that we
need.

Once the PDF is thresholded, a small fraction of the pixels belonging to the maxima are isolated into
one or more clusters. Next, pixels are classi�ed into clusters based on an 8-connected neighborhood stencil.
Once all of the clusters have been identi�ed, the clusters that are broken up across the PDF boundary are
merged together. This step is required because the Discrete Fourier Transform assumes that the signal is
periodic; therefore, the PDF is also periodic. After all of the pixel clusters are identi�ed, the coordinates
of the PDF maxima are calculated as the centers of mass of the corresponding clusters. The value of each
maximum is calculated as the total mass of the cluster divided by the number of pixels in that cluster.
This process results in a list of several maxima with varying coordinates and values. The list is sorted in
descending order, so that the highest maximum is at the head of the list.

Given a list of maxima points present in a particular PDF , a simple heuristic is applied to decide whether
the tiles that produced this PDF in fact match. Matching tiles would ideally produce only one maximum.
However, due to the inaccuracy in the selection of the thresholding value, it is very likely that there will be
several maxima. This is also the case when the tiles being matched have undergone a distortion. During
experimentation an important observation was made that mismatching tiles produce a PDF with several
maxima points at roughly the same value, while the PDF of two matching tiles produces one maximum
signi�cantly higher than the rest. This result suggests a very simple algorithm to decide whether the PDF
corresponds to two matching tiles. The dissimilarity of the PDF maxima with respect to the best PDF
maximum is calculated as

dissimilarity =
maxbest (PDF )
maxi (PDF )

− 1

The dissimilarity of two perfectly similar maxima is equal to 0. Whenever dissimilarity exceeds a given
threshold the corresponding maximum is removed from the list. In current implementation, the dissimilarity
threshold is set to 1; thus, maxima which are more than 2 times smaller than the highest maxima in the
list are discarded. If the list contains only one maximum, we assume that the tiles match and proceed to
calculate the corresponding displacement vector. If there is more than one maximum left in the list after
this �ltering, it is very likely that the tiles do not match, or one of the tiles is self-similar and may match
the other tile in several places. Due to distortion, it is possible that no matching tiles will be found with
exactly one maximum. In that case the match with the fewest number of maxima is considered. Signi�cantly
distorted tiles typically have 2 to 4 valid maxima corresponding to small shifts from the true displacement
vector. The current implementation of the mosaicking application considers at most 3 maxima per match.

In order to �nd the displacement vector, it is not enough to simply �nd the maximum of the displacement
PDF . The coordinates [xmax ymax]T are always positive, yet the displacement vector may very well have
negative components. As mentioned earlier, the Discrete Fourier Transform assumes that the signal is
periodic, therefore the cross-correlation between the tiles corresponds to cross-correlation of two periodic
tiles. Once the coordinates of the maximum [xmax ymax]T are known, there are four possible permutations
of the displacement vector that could produce the corresponding high cross-correlation between the tiles.
The permutations are

T00 =
[

xmax

ymax

]
T10 =

[
xmax − width (S0)

ymax

]
T01 =

[
xmax

ymax − height (S0)

]

4



T11 =
[

xmax − width (S0)
ymax − height (S0)

]
The current implementation of the application chooses the best permutation based on the normalized

cross correlation image metric. The best permutation corresponds to the lowest metric value (the least
mismatch between the tiles). The metric is evaluated against unpadded tiles U0 and U1, yet the displacement
permutations are based on the dimensions of the padded tiles S0 and S1, which means that some of the
permutations may not overlap the unpadded tiles at all. In consequence, permutations can be discarded
early based on the amount of overlap between the tiles. The amount of overlap is computed as the ratio of
the area of the overlap region to the area of the smaller of the two tiles. Thus, when one tile overlaps another
entirely, the overlap is equal to 1. Displacement vectors resulting in less than 5% of overlap are discarded
without further consideration. This decision is based on the fact that typical tiles will have 20% to 30% of
overlap along the edges of the tile, and approximately 10% to 5% of overlap at the corners.

3.2 Initial mosaic layout

Prior to deducing the tile layout it is necessary to �nd pairs of matching tiles. The runtime complexity of
the current algorithm for �nding the matching tiles is O

(
n2

)
. The performance of this algorithm may be

improved, but not without sacri�cing some robustness in �nding the correct tile matches and rejecting the
mismatches. Why this is the case will become more clear after the current algorithm is explained in greater
detail.

The algorithm tries to �nd the best possible mapping from the image space of one tile into any other
tile. This is accomplished by cascading the mappings via intermediate tiles. For example, there may exist
a mapping U0 : U1 between tiles U0 and U1, and another mapping U1 : U4 between tiles U1 and U4. A
mapping U0 : U1 : U4 between tiles U0 and U4 can be created via the intermediate tile U1. The number
of intermediate steps in a mapping from one tile to another will be referred to as the cascade length from
now on. Given n tiles, there may be at most n− 2 intermediate steps in a mapping between any 2 tiles. Of
course, this is only the upper bound on the cascade length. There are no guarantees that a mapping with a
given cascade length exists between any 2 tiles. However, the fact that there may be redundant mappings
between any 2 tiles presents a great opportunity to select the best mapping possible.

The algorithm proceeds as follows. First, pairs of matching tiles are found. Finding just one match for
every tile is not enough, because that does not provide any redundant mappings between the tiles. This is
the reason why the algorithm has O

(
n2

)
run time complexity. One way to speed up the algorithm is to limit

the number of redundant mappings to some �xed maximum number per tile. Allowing a maximum of just
2 mappings per tile may introduce enough redundancy to correct for mismatches while also speeding up the
matching process.

The mappings between the tiles are stored as connections in a graph of tiles. Each mapping (connection)
is weighed according to the normalized cross correlation image metric. Next, redundant mappings with
cascade length 1 to n− 2 are found. There may be more than one such mapping, therefore it is useful if the
process is explained with an example. Assume there exists a function

C (Ui : Uj) = cost

that evaluates the cost of a mapping between tiles Ui and Uj . Given the following sample mappings

C (U0 : U1) = 278
C (U0 : U2) = 311
C (U1 : U4) = 160
C (U2 : U4) = 121
C (U0 : U4) = 3419

it is most likely that the mapping U0 : U4 is mismatched. There are 2 possible alternative mapping from tile
U0 to U4. The cost is set to the maximum cost of the intermediate mapping costs. In the context of this
example, this means that

C (U0 : U1 : U4) = max (C (U0 : U1) , C (U1 : U4)) = 278

5



C (U0 : U2 : U4) = max (C (U0 : U2) , C (U2 : U4)) = 311

The mapping with the least cost (in this case U0 : U1 : U4) is preferred even when it has greater cascade
length.

In order to generate the mosaic, it is necessary to select the target tile into which every other tile will be
mapped. This is done by considering the total cost of the target tile candidates. The total cost is calculated
as the cumulative cost of the mapping from the target tile to every other tile in the mosaic. The candidate
with the lowest total cost becomes the target tile.

3.3 Distortion correction

In order to correct for distortion each tile has to be unwarped.
During the earlier stages of the development, several continuous polynomial transforms were explored,

in particular a bi-variate cubic Radial Distortion transform and a bi-variate cubic Legendre polynomial
transform. These transforms su�er from a trade-o� where the stability of the transform is related inversely
to the degree of the polynomial. Higher degree polynomial transforms may explode even when they are
properly normalized and centered, while lower degree polynomial transforms limit the amount of distortion
correction that may be achieved. Bi-variate polynomial transforms of degree greater than one may not
have an analytic inverse, therefore an iterative numeric inverse calculation must be used[2]. Simultaneous
numerical optimization of several polynomial transforms is computationally expensive.

Our latest approach uses a discontinuous transform. Each tile is sampled onto a coarse uniform triangle
mesh. Each vertex in the mesh stores two sets of coordinates � the local tile coordinates and the mosaic space
coordinates. The image is warped by changing the mosaic space coordinates directly. Anyone familiar with
texture mapping in OpenGL will readily recognize the similarity here. The tile space coordinates correspond
to the OpenGL texture coordinates, and the mosaic space coordinates correspond to the OpenGL triangle
vertex coordinates.

To map a coordinate from the mosaic space into the tile space, the tile mesh is searched for the triangle
containing the given mosaic space point. This is similar to ray/triangle intersection operation carried out
in Raytracing. The barycentric coordinates of the intersection point are used to calculate the corresponding
tile space point by interpolating the tile space vertex coordinates. Acceleration datastructures commonly
used in Raytracing are also applicable here. The current implementation uses a trivial 2D grid acceleration
datastructure.

The mapping from tile space into mosaic space is trivial due to the uniform structure of the triangle
mesh in the tile space. One has to �nd the mesh quad containing the tile space point and perform a bi-linear
interpolation between the mosaic space coordinates of the quad vertices.

At each vertex in the mesh, a small image neighborhood of the tile is sampled in the mosaic space. A
corresponding neighborhood is sampled from all of the tile neighbors in the mosaic. The neighborhood has
to be only as large as necessary to capture a meaningful amount of image texture for phase correlation to
work. Currently, we downscale tile images by a factor of 8 (roughly 400 × 500 pixels) and the use 96 × 96
pixel neighborhoods. The mesh nodes are spaced at approximately one third of the neighborhood size, so a
typical microscopy tile is covered by a 13× 16 vertex mesh (420 triangles).

The two neighborhoods are matched as described in section 3.1 on page 2. The displacement vectors
produced by this matching are used to correct the mosaic space coordinates of the vertex. One vertex neigh-
borhood may be matched with more than one neighbor tile, which means the displacement vectors for that
vertex would have to be combined. Because we are trying to warp all tiles simultaneously, the displacement
vectors computed for neighboring tiles will overlap, causing the distortion correction to overshoot. This
means that the displacement vectors have to be scaled down according to the number of the overlapping
neighbors at that point, scale = 1/ (1 + NumberOfDisplacements).

Since it is possible for tile matching to produce mismatches, the displacement vectors calculated at each
vertex are �ltered using a median �lter to remove the outliers. Holes in the displacement vector image are
�lled in using dilation. The displacement vectors are further denoised with a Gaussian smoothing �lter.
All this post-processing necessitates several passes of the algorithm to ensure convergence. For our current
datasets we've found 2-3 passes to be su�cient. Actually, even a single pass of this algorithm produces
better results than our best e�ort using the traditional ITK style mean pixel variance metric optimization
of several Legendre polynomial transforms simultaneously.

6



3.4 Slice to slice registration

Slice to slice registration is very similar to distortion correction except for two di�erences. Since the orien-
tation of the slices is arbitrary we cannot use image correlation to estimate the image to image translation
parameters. Instead, we perform a brute force search for tile translation/rotation parameters at a very coarse
scale by downscaling the slices to tiny thumbnails about 128× 128 pixels each.

When the slices are downscaled to tiny thumbnails virtually all image texture is lost, even when the images
were contrast enhanced. Therefore, the brute force slice to slice registration is carried out on preprocessed
images. The blob enhancement algorithm enhances features at coarse scales such that they would not get
washed out when downscaling the image, see �gure 2, and �gure 3 on the next page for illustration.

The blob enhancement algorithm is as follows:

1. The image is partitioned into a regular cell grid of roughly 17× 17 pixels per cell.

2. Mean pixel variance is calculated within each cell.

3. The cell variances are sorted and the median variance is selected.

4. The algorithm iterates through all image pixels, and for each pixel calculates mean pixel variance
within the local 17× 17 pixel neighborhood centered at the pixel. The output pixel value is computed
as min(3, (medianV ariance + 1)/(localV ariance + 1)).

The result of this algorithm is that it enhances regions with greater than median variance � the edges, which
become black in the output image. The algorithm also enhances regions with lesser than median variance �
the �at spots (blobs) which become white in the output image.

Figure 2: blob enhancement

original tile 48691 blob enhanced tile 48691

7



Figure 3: CLAHE vs blobs, adjacent slices scaled down by a factor of 64

CLAHE blobs
When scaled down by a factor of 64, the texture in the CLAHE processed slices is washed out, while the
coarse texture properties brought out by the blob enhancement algorithm remain visible. The dark blobs
correspond to the high variance texture regions, and the white blobs correspond to the �at spots (low
variance).

The brute force search is accelerated using the phase correlation to determine slice to slice translation
parameters. The moving slice is rotated in increments on 1 degree and matched against the �xed slice as
described in section 3.1 on page 2. The quality of the match is evaluated via the normalized cross correlation
image metric. The rotation and translation parameters corresponding to the best brute force match metric
are used to initialize the mesh transform of the moving slice. The transform is then re�ned as explained in
section 3.3 on page 6, except the displacement vectors are applied to the moving slice only.

4 Results

4.1 Tile matching

Figure 4 on the following page shows two matching image tiles. Figure 5 on the next page shows the
displacement PDF corresponding to these tiles, and highlights PDF maxima. There are a total of 50 maxima
isolated in the PDF. Filtering leaves only 2 eligible maxima (highlighted in red and green), which indicates
that the tiles match.

8



Figure 4: matching tiles

tile 48685 tile 48690 mosaic 48685:48690

Figure 5: displacement PDF for matching tiles

PDF 48685:48690 Colormapped PDF maxima.
The colder colored maxima (blue) are �ltered out, leaving only two warm colored (red and green) maxima.
One of the remaining maxima corresponds to the translation vector for matching tiles.

9



Figure 6 shows two mismatched tiles. Figure 7 shows the corresponding displacement PDF and PDF
maxima. There are 59 maxima isolated in this PDF. After �ltering there are still 14 maxima left. Ideally
there would be less than 4 maxima left, therefore this PDF indicates that the tiles do not match.

Figure 6: mismatched tiles

tile 48690 tile 48692

Figure 7: displacement PDF for mismatched tiles

PDF 48690:48692 Color-mapped PDF maxima
There a 14 warm colored PDF maxima left after �ltering, indicating that the tiles do no match.

10



4.2 Tile layout

Figure 8 on the next page illustrates the order in which the tiles are added to the mosaic. The algorithm
lays out new tiles (shown in red) such that they have signi�cant overlap with previous tiles (shown in blue).
The incremental mosaic layout allows us to re�ne the mosaic as each tile is added to it, although currently
we do not exercise this capability.

11



Figure 8: incremental tile layout

4.3 Distortion correction

Figure 9 on the following page illustrates the initial mosaic layout.

12



Figure 9: initial mosaic

The initial mosaic, mean pixel variance is 593.

Figure 10 on the next page illustrates the re�ned mosaic.

13



Figure 10: re�ned mosaic

The re�ned mosaic, mean pixel variance is 213.

4.4 Slice to slice registration

The slices were assembled from the blob enhanced image tiles, and downscaled to about 160 × 160 pixel
thumbnails. The moving slice is rotated in one degree increments, and matched against the �xed slice using
the phase correlation as described in section 4. Figure 11 on the following page illustrates the brute force
registration results.

14



Figure 11: brute force slice to slice registration of blob enhanced images

The mesh transform is initialized from the brute force results. The mesh is re�ned at low resolution
(about 1000× 1000 pixels), again using the blob enhanced images. This stage is meant to capture the large
scale deformations. Figure 12 on the next page illustrates this.

15



Figure 12: re�ned slice to slice registration of blob enhanced images

The transform is re�ned again, this time using the CLAHE enhanced images, at a higher resolution. This
stage is meant to capture the local distortions. The results are illustrated in �gure 13 on the following page.

16



Figure 13: re�ned slice to slice registration of CLAHE enhanced images

4.5 Stacking slices

Once all the slice pairs are registered, the slice to slice transforms are cascaded to map into the space of the
target (�xed) slice. Any slice can be the target slice. Currently we use the �rst slice as the target.

The volume is assembled from fully overlapping regions, meaning that every pixel in any slice maps inside
every other slice in the stack. In other words, every pixel must have a neighbor pixel in all the slices above
and below. Pixels which do not satisfy this condition are cropped from the volume. This is illustrated in
�gure 14 on the next page.

Cascading transforms introduces geometric distortion artifacts in the slices far removed from the target
slice. The slice to slice registration may stretch and squeeze local regions in the warped slice in order to
improve the match with the �xed slice. When the slice to slice registration transforms are cascaded, the
stretching/squeezing may become extreme. Figure 15 on page 19 demonstrates this.

The slice to slice registration is almost good enough for tracking individual features through the volume.
Figure 16 on page 20 shows 12 cropped cross sections from the slice volume, where some features are readily
recognizable in all the sliced.

17



Figure 14: the �rst slice in the volume

18



Figure 15: the last slice in the volume

19



Figure 16: a cropped region from the stacked slice volume

20



References

[1] Girod, B. and Kuo, D. 1989. Direct estimation of displacement histograms. In Proceedings of the Optical
Society of America Meeting on Understanding and Machine Vision, 73�76.

[2] Newton-Raphson Method for Nonlinear Systems of Equations. Numerical Recipes in C, second edition,
379�382.

[3] NLM Insight Segmentation & Registration Toolkit, http://www.itk.org/

[4] Fastest Fourier Transform in the West, http://www.�tw.org/

21


