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Abstract:

This paper outlines the basic steps in the design and implementation of a feature based Transmis-
sion Electron Microscopy (TEM) image registration application and highlights some of the imple-
mentation details, such as the detection of features, feature descriptor design, robust filtering of
mismatched descriptors, and transform estimation. Although the approach chosen is based on the
Scale Invariant Feature Transform (SIFT) method, it is optimized for the TEM image registration.



Implementation of an automati slie-to-slie registration toolPavel A. Koshevoy, Tolga Tasdizen, and Ross T. WhitakerApril 27, 2006AbstratThis paper outlines the basi steps in the design and implementation of a feature based TransmissionEletron Mirosopy (TEM) image registration appliation and highlights some of the implementationdetails, suh as the detetion of features, feature desriptor design, robust �ltering of mismathed desrip-tors, and transform estimation. Although the approah hosen is based on the Sale Invariant FeatureTransform (SIFT) method, it is optimizied for the TEM image registration.1 MotivationThe goal of this projet is to provide a fully automati tool for slie-to-slie image registration of severalhundred slies assembled from high-resolution tile images. This tool is aimed at researhers working withTransmission Eletron Mirosopy images. The hallenges lay in the fat that eah slie is arbitrarily orientedin the imaging plane, and may have been warped independently from all other slies.2 Problem statementGiven an ordered sequene of slies (e.g. S0, S1,... Sn) a transform must be onstruted for eah adjaentslie pair that would map from the image spae of slie Si to the spae of slie Si+1. This task will beaddressed within a feature mathing framework. The problem an be partitioned into several sub-problemsoutlined below:
• For eah slie, a gradient vetor image pyramid and a Di�erene-of-Gaussian image pyramid must beonstruted.
• The extrema points of the DoG pyramid must be determined.
• The dominant gradient vetor orientation(s) in the neighborhood of eah extrema point must be de-teted.
• A desriptor for every deteted gradient vetor orientation of the extrema point must be generated.
• For eah pair of adjaent slies, mathing desriptors must be found.
• Given the mathing desriptors, a transform that best maps the extrema points from the image spaeof slie A into the image spae of slie B must be alulated.3 Implementation detailsThe spei�s of the onstrution of the image pyramids are thoroughly overed by David G. Lowe[2℄ andwill not be repeated here. Su�e it to say, that a pyramid is a olletion of otaves, where eah otaverepresents a redution of image resolution by a fator of 2. Eah otave is partitioned into a set of saleswhere eah suessive image is onvolved with a Gaussian �lter of inreasing sigma value. The details ofe�ient implementation of this are overed by Lowe[2℄.1



3.1 Deteting extrema pointsThe extrema points are the loal minima and maxima points of the Di�erene-of-Gaussian image pyramids.Lowe[2℄ proposed looking for an extrema point in a 3×3×3 neighborhood within a DoG pyramid. However,experimentation has shown that this tehnique does not yield strit extrema points that are greater than orless than all of the neighbors. Relaxing the extrema riteria to allow the extrema point to be equal to itsneighbors yields a large number of adjaent extrema points. Therefore, an alternative method of extremadetetion is proposed.Let D1 be a non-boundary image within the DoG pyramid. Let D0 be the image preeeding D1 in thepyramid, and D2 the sueeding image. Assuming there are minima points within the D0, D1, D2 slies ofthe pyramid, alulate
Amin = D0 − D1

Bmin = D2 − D1The resulting images Amin and Bmin are thresholded to remap the negative values to zero. The minimapoint image is alulated as
Emin = Amin × BminThe maxima point image is alulated analogously.

Amax = D1 − D0

Bmax = D1 − D2Again, Amax and Bmax are thresholded to remap the negative values to zero. The maxima point image isalulated as
Emax = Amax × BmaxThe resulting extrema point images Emin, Emax are thresholded to isolate strong maxima, and an 8-onneted lustering algorithms is used to detet the peaks. For eah luster, the key point is positioned atthe enter-of-mass of the luster.3.2 Deteting desriptor orientationsThe desriptor has to be rotationally invariant, therefore it is neessary to selet a onsistent frame of refer-ene for sampling the neighborhood around the extrema point. The method that is urrently implementedin the appliation follows the one desribed by Lowe[2℄. Essentially, the neighborhood gradient orientationangles are aumulated into a 1D histogram. Eah ontribution is weighed by the gradient magnitude anda 2D Gaussian weighting funtion entered at the extrema point. The peaks of the histogram de�ne thefeature vetor orientation angles.3.3 Generating the desriptorsDuring experimentation, several di�erent desriptor generators were evaluated, inluding 2 versions of thedesriptor reommended by Lowe[2℄. All of them share the following properties:

• The desriptors are based on extrema point neighborhood properties derived from the image (suh asthe gradient vetor image, or the extrema image).
• The neighborhood is sampled within a loal oordinate system based on the desriptor orientationangle.
• The radius of the sampling window has to be large enough (in pixels) to apture the neighborhoodproperties.
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The major di�erene between the alternate desriptor generators and the design proposed by Lowe rests inthe way the sampling window is partitioned. Lowe reommends that the desriptor onsist of a 4×4 ell gridof 8-bin gradient orientation histograms, whih leads to a 128 dimensional desriptor vetor. The downsideof this design is that it disards information that falls outside the grid. The alternative design partitions theneighborhood into a set of onentri annuli, where eah annulus is partitioned into a set of ells of equalarea. Eah ell may hold an orientation histogram as suggested by Lowe, or some other information (suhas the average extrema intensity values extrated from Emin and Emax, or dominant gradient vetor angle).Unfortunately, experimentation with alternative desriptor designs has not shown performane improvementover the design proposed by Lowe. The performane was evaluated in terms of the number of known mathingdesriptors being orretly mathed using brute fore mathing.3.4 Mathing desriptorsThe mathing proess is slightly di�erent from the one outlined by Lowe. Lowe addresses a more generalomputer vision problem, where detetion of the same objet at di�erent sales is important. The eletrontransmission mirosopy images are typially taken at the same sale, and undergo minor deformation on theglobal sale, making the sale invariant feature mathing unneessary. Therefore, for the purposes of TEMimage registration, the desriptors are mathed against other desriptors seleted from the same otave andsale of the pyramid. In order to ahieve sale invariane, all that is required is the mathing of desriptorsfrom any otave and sale of a pyramid against any other otave and sale of the other pyramid. This would,of ourse, inrease the number of mismathes.A brute fore implementation of desriptor mathing is not unreasonable for the purposes of this projet.However, following in Lowes footsteps the urrent implementation uses an optimized kd-tree[5℄ with a best-bin-�rst nearest neighbor searh algorithm[3℄.3.5 Filtering out bad mathesLowe has suggested two �ltering stages for removing poorly mathed desriptors.The �rst stage is based on the thresholding of the ratio of Eulidian distane (in desriptor spae) betweenthe query desriptor and its losest math to the distane between the query desriptor and its seond losestmath. This is founded on the observation that a well mathed desriptor is usually distint enough fromthe seond losest math that the ratio of distanes would fall below 0.5, where as the ratio of distanes fora mismathed desriptor and its seond losest math is typially greater than 0.5.Unfortunately, our experimental results on mathing TEM images have shown that the ratio of thedesriptor distane ratio between losest and seond losest math is not nearly as well separated for orretmathes and mismathes, therefore this property an not be used for �ltering out bad mathes, as it disardspratially all of the orret mathes as well.The seond stage proposed by Lowe is based on lustering with the Hough transform[7℄, whih will notbe overed here. Su�e it to say that in our implementation it was not as e�etive as the alternative methoddesribed below. The performane of the two �lters was ompared in terms of the ratio of the detetedorret mathes to the number of mathes in the �ltered set.An alternative �lter that appears to be extremely e�etive for TEM images is based on the ratio ofthe distane (in image spae) between nearest extrema points in image Si, to the distane between theirmathing points in the image Si+1. This �lter relies on the assumption that the sales of the images beingmathed are the same, whih is true for the TEM images. Sine the sales are the same, the distane betweennearest neighbors in one image and the mathing image should be nearly idential. If the ratio of the twodistanes deviates signi�antly from 1.0, it an be assumed that one of the mathes is wrong. When it isdetermined that one of the points is mismathed, both of the mathes are disarded. The downside of this�ltering approah is that for every disarded mismath, it may also be disarding a good math as well.3.6 Estimating the transformThe remaining set of mathes may still ontain some mismathes, whih presents a problem for a LeastSquares solution. Matthew Brown[4℄ proposed the use of RANSAC[6℄ to selet a set of mathes that de�ne3



a onsistent transform.Essentially, a few mathes are seleted at random to solve for the transform parameters. The numberof initially seleted mathes depends on the number of transform parameters. For example, a 2nd order(a�ne) bivariate Legendre polynomial transform has 6 parameters, it therefore requires 3 distint mathes.A 4th-order bivariate Legendre polynomial transform has 20 parameters, it requires 10 distint mathes.One a transform has been estimated, the rest of the mathes are veri�ed as inliers or outliers. For eahmath point pair, the point expressed in the spae of image Si is mapped via the transform into the spaeof image Si+1. The distane of the mapped point to its math is used to lassify the math as an inlier oran outlier based on some threshold. The inliers and the original set of mathes are then used to re-estimatethe transform. This an be an iterative proess, where at eah iteration the mathes are lassi�ed as inliersand outliers, until onvergene or a maximum number of iterations is reahed. Sine the goal is to optimizethe number of inliers, the proess is repeated with a new set of initial random mathes, and the best resultsare kept.For further improvement, it is possible to sort the mathes aording to some metri, suh as the Eulideandistane between the desriptors in the desriptor spae. Then, instead of uniform sampling, importanesampling may be used to selet initial mathes for RANSAC.3.7 Further re�nement of the transform estimateGiven a transform estimate, it may be possible to remath the desriptors between the two images byrestriting the set of math andidates to a loal neighborhood within the transform target image spae.For example, an initial set of desriptor mathes may be used to estimate a low order transform (e.g.a�ne) between images Si and Si+1. Given the low order transform, eah desriptor from image Si is mappedinto image Si+1. Only the desriptors that fall within a loal neighborhood of the mapped desriptor areonsidered for mathing. This eliminates a number of potential mismathes that would be inonsistent withthe a�ne transform. One all the desriptors have been re-mathed, RANSAC an be used again to estimatea higher order transform.4 ResultsAn example of typial images that must be proessed by our appliation is given in �gure 1 on the followingpage. A Di�erene-of-Gaussian and a gradient vetor pyramid of 2 otaves with 3 sales per otave wasonstruted for eah image. The extrema of the DoG pyramid are deteted: 2951 points in the left image,2953 points in the right image. For eah deteted extrema point the loal gradient vetor neighborhood isexamined to determine dominant gradient vetor orientations. For eah deteted orientation a desriptor isonstruted. This results in 4732 desriptors in the left image, and 4601 desriptors in the right image. Anillustration of the deteted desriptors is given in �gure 2 on the next page. The desriptors are mathedresulting in 4601 mathes. These mathes are �ltered down to 459 mathes � see �gure 3 on page 6 foran illustration. RANSAC is used to selet inliers onsistent with an a�ne transform whih results in 165mathes illustrated in �gure 4 on page 6. The resulting registration is shown in �gure 5 on page 7.Referenes[1℄ Lindeberg, T. 1994. Sale-spae theory: A basi tool for analysing strutures at di�erent sales. Journalof Applied Statistis, 21(2):224-270.[2℄ Lowe, D.G. 2004. Distintive Image Features from Sale-Invariant Keypoints. International Journal ofComputer Vision.[3℄ Beis, J. and Lowe, D. G. 1997. Shape Indexing Using Approximate Nearest-Neighbour Searh in High-Dimensional Spaes. In Conferene on Computer Vision and Pattern Reognition, Puerto Rio, pp. 1000-1006. 4



Figure 1: Sample slies

Two onseution slies. Eah slie was assembled from 12 high resolution Transmission Eletron Mirosopyimages of a rabbit retina.
Figure 2: The desriptors

Visualization of the unmathed desriptor vetors deteted in the two images: 4732 desriptors in the imageon the left, 4601 � on the right. 5



Figure 3: The �ltered desriptor mathes

Visualization of the �ltered mathes � 459 out of 4601 mathes remain.
Figure 4: RANSAC �ltered mathes

Visualization of the RANSAC �ltered mathes � 165 onsistent mathes are seleted out of 459 remainingmathes. 6



Figure 5: slie to slie registration

Visualization of the slie-to-slie registration results.
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