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resonance (MR) images that relies on a very general, adaptive statistical model of
image neighborhoods. The method models MR-tissue intensities as derived from
stationary random fields. It models the associated higher-order statistics nonpara-
metrically via a data-driven strategy. This paper describes the essential theoreti-
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equally well on T1-weighted MR data with or without nonuniformity correction.
The method minimizes an information-theoretic metric on the probability density
functions associated with image neighborhoods to produce an optimal classification.
It automatically tunes its important internal parameters based on the information
content of the data. Combined with an atlas-based initialization, it is completely
automatic. Experiments on real, simulated, and multimodal data demonstrate the
advantages of the method over the current state-of-the-art.
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1 Introduction

Tissue classification in magnetic resonance (MR) images of human brains is
an important problem in biomedicine. The fundamental task in tissue classi-
fication is to classify the voxels in the volumetric (3-dimensional) MR data
into gray-matter, white-matter, and cerebrospinal-fluid tissue types. This has
numerous applications related to diagnosis, surgical planning, image-guided
interventions, monitoring therapy, and clinical drug trials. Such applications
include the study of neuro-degenerative disorders such as Alzheimer’s disease,
generation of patient-specific conductivity maps for EEG source localization,
determination of cortical thickness and substructure volumes in Schizophre-
nia, and partial-volume correction for low-resolution image modalities such as
positron emission tomography.

Manual classification of high-resolution 3D images is a tedious task, making it
impractical for large amounts of data. Because of the complexity of this task,
such classifications can be very error prone and exhibit nontrivial inter-expert
and intra-expert variability [1]. Fully automatic or unsupervised methods, on
the other hand, virtually eliminate the need for manual interaction. Therefore,
such methods for brain-tissue classification have received significant attention
in the biomedical image processing domain.

Recent developments in automatic brain-tissue classification have led to state-
of-the-art systems that typically incorporate the following strategies: (a) para-
metric statistical models, e.g. Gaussian, of voxel grayscale intensity for each
tissue class, (b) Markov-random-field models to enforce spatial smoothness on
the classification, (c) methods to correct for the nonuniformity that is inherent
to MRI, and (d) using probabilistic-brain-atlas information in the classifica-
tion method. However, several biomedical factors continue to pose significant
challenges to the state of the art, such as:

(1) The intensities and contrast in MR images varies significantly with the
pulse sequence, and several other variable scanner parameters. The qual-
ity of MR data also shows a certain amount of variation when produced
at multiple sites with different MR scanners.

(2) Magnetic resonance imaging (MRI) acquisition artifacts, intensity nonuni-
formity (bias field), the Rician nature of the noise in magnitude-MR data
[2], and partial voluming effects [3] can cause the data to significantly de-
viate from the Gaussian models, thereby compromising the quality of the
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classification.
(3) Most methods treat the nonuniformity as multiplicative noise and explic-

itly correct the MR intensities to reduce its effect. However, for certain
kinds of data, e.g. neonatal brain MRI, the nonuniformity correction can
pose a serious challenge because of higher intensity variability for each
tissue class as well as lower intensity contrast [4].

To address these issues in an effective way, unsupervised classification ap-
proaches need to adapt to the data. One adaptation strategy is to automat-
ically learn the underlying image statistics from the data and construct a
classification strategy based on that model.

This paper presents a novel method for MRI brain-tissue classification that
incorporates an adaptive nonparametric model of neighborhood statistics. It
is a more complete version of some of our previous work [5]. The strategy is
to learn the image-neighborhood/Markov statistics from the input data itself
using nonparametric density estimation. We show that this approach enables
the method to perform well without any explicit nonuniformity correction. In-
corporating the information content in the neighborhoods in the classification
process virtually eliminates the need for explicit smoothness constraints on
the classification, and provides optimal regularization. The method produces
an optimal classification by minimizing an entropy-based metric defined on
the higher-order Markov probability density functions (PDFs). It adjusts all
its important internal parameters automatically using a data-driven approach
and information-theoretic metrics. Combined with an atlas-based initializa-
tion, it is fully automatic. It incorporates the atlas information in the classi-
fication process in a straightforward manner. Experiments on real, simulated,
and multimodal data demonstrate the significant advantages of the method
over the current state-of-the-art.

The rest of the paper is organized as follows. Section 2 discusses works in
MR-image classification and nonparametric Markov modeling and their rela-
tionship to the proposed method. Section 3 presents the mathematical basis
of the proposed method, which relies on an adaptive Markov-random-field im-
age model. Section 4 formulates the classification as an optimal-segmentation
problem associated with an information-theoretic goodness measure on higher-
order image statistics. Section 5 focuses on the application of the proposed
method to brain-tissue classification. It explains why the method does not re-
quire explicit nonuniformity correction, and describes the usage of the atlases
during initialization and classification. Section 6 gives the validation results
and analysis on numerous real and simulated images. Section 7 summarizes
the contributions of the paper and presents ideas for further exploration.
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2 Related Work

This section discusses works in MR-image classification and nonparametric
Markov modeling along with their relationships to the proposed method. It
compares and contrasts the proposed strategy, in brief, with the key ideas
around which the classification strategies have evolved such as: (a) decision
based on voxel grayscale intensity, (b) use of regularization schemes based
on local interactions among voxels in the classification, and (c) incorporating
spatial priors based on probabilistic atlases.

Early approaches for tissue classification typically used segmentation-based
methods that did not explicitly account for the effect of noise in the data.
Such approaches used image-denoising methods in a pre-processing step, e.g.
Gerig et al. [6] use a non-linear diffusion technique. Current strategies incor-
porate more effective schemes that perform classification, without such pre-
processing, while dealing with the noise and nonuniformity in the data.

Wells et al. [7] present a method that couples tissue classification with nonuni-
formity correction based on maximum-likelihood parameter estimation. They
use the expectation-maximization (EM) algorithm of Dempster et al. [8] to
simultaneously estimate the unknown bias field and the classification. Leem-
put et al. [9,3] extend this approach by posing the problem in the context of
mixture density estimation to estimate the grayscale intensity PDFs for each
tissue type. They apply the EM algorithm to estimate these PDFs as well
as the bias and, in turn, the classification. Their approach assumes that the
tissue-intensity distribution conforms to a parametric Gaussian PDF whose
parameters are obtained via the EM algorithm.

The EM-classification algorithm does not impose any smoothness constraint
on the classification and, therefore, it is susceptible to outliers in the tissue in-
tensities. Several authors [10,11,9,3,12,13] have extended the EM-classification
algorithm to incorporate spatial smoothness via Gibbs/Markov priors on the
label image. For instance, Kapur et al. [10] use spatially-stationary Gibbs pri-
ors to model local interactions between neighboring labels. Typically, these
methods modify single-voxel tissue-probabilities based on energies defined
on local configurations of classification labels. They assign lower energies to
spatially-smooth segmentations and, therefore, make them more likely. How-
ever, such strong Markov models can over regularize the fine structured inter-
faces, e.g. the one between gray matter and white matter. Hence, it is often
necessary to impose additional heuristic constraints [11,9,3]. Ruf et al. [14]
extend the EM approach to perform spatial regularization by incorporating
the spatial coordinates of the voxels, in addition to their grayscale intensities,
in the feature vector. They model each tissue class spatially by a constrained
Gaussian-mixture model on the coupled feature space. Identical to previous
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EM-based approaches, for each class, they constrain every Gaussian to have
exactly the same mean in the intensity subspace.

Researchers have also used active contour models [15,16] to impose smoothness
constraints for segmentation. These methods typically attempt to minimize
the area of the segmentation boundary, an approach that can over regularize
interfaces. Furthermore, the results obtained using these models are typically
quite sensitive to some internal contour parameters. Hence, these methods
typically entail careful manual parameter-tuning.

Classification techniques based on anatomical atlases have been widely stud-
ied in the literature [17–19]. These techniques convert the classification prob-
lem into a deformable-registration problem between the MR-image and the
anatomical brain atlas. Once the registration is done, the method uses the
resulting transformation to map the anatomical structure from the atlas onto
the data to produce a segmentation. However, such methods rely heavily on
the availability and accuracy of the anatomical atlas as well as the quality of
the deformable registration.

The proposed method, in contrast to typical EM-based strategies, does not im-
pose any parametric model on the tissue intensities. Instead, it automatically
adapts to a model well-suited to the data via a data-driven nonparametric
density estimation scheme. It exploits Markovity for regularization, but it ap-
plies the Markov model to the intensity data without any explicit smoothness
constraints on the classification. Learning the Markov model from the input
data itself, it provides optimal regularization for the segmentation. Moreover,
this approach enables the method to perform well without any explicit bias
correction. It does not use anatomical atlases but rather incorporates prior
information via probabilistic atlases for the initialization and during the op-
timization.

Learning higher-order Markov statistics nonparametrically entails estimation
of PDFs in high-dimensional spaces. For instance, for a first-order local neigh-
borhood having 6 voxels, i.e. 2 neighbors along each cardinal axis, we need to
estimate PDFs on a 7-dimensional space (center voxel along with its neigh-
bors). Researchers analyzing the statistics of natural images in terms of lo-
cal neighborhoods draw conclusions that are consistent with Markov image
models. Lee et al. [20] as well as Silva and Carlsson [21] analyze the statis-
tics of 3-pixel × 3-pixel neighborhoods in images, in the corresponding high-
dimensional spaces, and find the data to be concentrated in clusters and low-
dimensional manifolds exhibiting nontrivial topologies.

The literature presents some examples of algorithms that learn the statistics
of image neighborhoods. Popat and Picard [22] were among the first to use
nonparametric Markov sampling in images. Their approach models the higher-
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order nonlinear image statistics via cluster-based nonparametric density esti-
mation. They apply it to image restoration, image compression, and texture
classification. However, their approach relies on a training sample, which lim-
its its practical use—the proposed method learns the Markov statistics of the
signal directly from the input data.

The method in this paper and [5] builds on our previous work in [23,24],
which lays down the building blocks for unsupervised learning of higher-order
image statistics and proposes entropy reduction on higher-order statistics for
restoring generic gray scale images. This paper describes the essential theo-
retical aspects underpinning adaptive, nonparametric Markov modeling and
the theory behind the consistency of such a model. It also provides a differ-
ent perspective towards the optimal choice of parameters in the associated
nonparametric density estimation.

The literature dealing with texture synthesis also sheds some light on the prin-
ciples underlying the proposed method. Texture-synthesis algorithms rely on
image statistics from an input image to construct novel images that bear a
qualitative resemblance to the input [25–27]. Although this is a different appli-
cation, and these algorithms do not rely on information-theoretic formulations,
they demonstrate the power of neighborhood statistics in capturing essential
aspects of image structure. For some of these applications, Levina [28] proves
that the empirically-learned Markov statistics converge asymptotically to the
true texture statistics. This proof of convergence is also applicable towards
the nonparametric learning of the Markov statistics in the proposed method.

3 Adaptive Image Modeling via Nonparametric Markov Random
Fields

This section presents the statistical foundation of the proposed segmentation-
based classification method, which relies on an adaptive Markov-random-field
image model.

A random field [29] is a family of random variables X(Ω; T ), for some index
set T , where, for each fixed T = t, the random variable X(Ω; t) is defined
on the sample-space Ω. If we let T be a set of points defined on a discrete
Cartesian grid and fix Ω = ω, we have a realization of the random field called
the digital image, X(ω, T ). In this case T is the set of voxels in the image.
For two-dimensional images t is a two-vector. We denote a specific realization
X(ω; t) (the intensity at voxel t), as a deterministic function x(t).

For the formulation in this paper, we assume X to be a Markov random
field. This implies that the conditional PDF of a random variable X(t) at
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voxel t given all other voxel intensities is exactly the same as the conditional
PDF conditioned on only the voxel intensities in the neighborhood or spatial
proximity of voxel t. Essentially, this enforces the concept of local statistical
dependence of voxel intensities during image formation. A formal definition of
Markovity relies on the notion of a neighborhood, which we define next.

If we associate with T a family of voxel neighborhoods N = {Nt}t∈T such
that Nt ⊂ T , t /∈ Nt, and u ∈ Nt if and only if t ∈ Nu, then N is called
a neighborhood system for the set T . Voxels in Nt are called neighbors of
voxel t. We define a random vector Y (t) = {X(t)}t∈Nt corresponding to the
set of intensities at the neighbors of voxel t. We also define a random vector
Z(t) = (X(t), Y (t)) to denote image regions, i.e. voxels coupled with their
neighborhoods. For notational simplicity we use the short hand for random
variables X(t) as X and their realizations x(t) as x, dropping the index t.
Based on this general notion of a neighborhood, Markovity implies that

P
(
X(t)|{X(s) = x(s)}s∈T\{t}

)
= P (X(t)|Y (t) = y(t)) . (1)

3.1 Unsupervised Learning of Higher-Order Markov Statistics

The proposed method exploits the Markovity property in images. However,
we know neither the functional forms nor the parameter values for the joint or
conditional Markov PDFs. MR images obtained with varying MRI-parameter
values, e.g. T1, T2, and PD, or varying noise/bias fields belong to different
Markov models. For a segmentation method to be easily applicable in all
such cases we need an adaptive Markov model that we learn from the input
data itself. To achieve this goal, we model images using a piecewise-stationary
(or piecewise-homogenous) Markov model, and then employ a data-driven
nonparametric-density-estimation technique to estimate the unknown Markov
PDFs.

A stationary region is one where the higher-order Markov PDFs are exactly the
same for all voxels in that region [29]. This is an instance of the shift-invariance
property. For brain MR images, the Markov statistics in individual parts of the
brain, such as white matter or gray matter, are similar for all voxels and, hence,
the piecewise-stationary model holds. Indeed, the successful high-quality clas-
sifications produced by the proposed method corroborate this claim. Exploit-
ing stationarity, where we have many observed voxel/neighborhood intensi-
ties derived from a single higher-order PDF, we can employ a nonparametric
Parzen-window density estimation scheme to estimate the higher-order PDF.

This approach has significant advantages. The proposed method automatically
learns the Markov model from the data and constructs a segmentation strat-
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egy based on that model, making it adaptive. As discussed later in Section 6,
the method performs well for low noise levels where some state-of-the-art tech-
niques using parametric intensity models break down due to partial-voluming
effects. That section also shows that incorporating neighborhoods in the seg-
mentation strategy inherently provides optimal regularization, thereby elim-
inating the need for explicit regularization. Moreover, this approach enables
the method to perform well without any explicit bias correction.

3.2 Nonparametric Parzen-Window Density estimation

The estimation of higher-order Markov PDFs introduces the challenge of high-
dimensional, scattered-data interpolation, even for modest-sized image neigh-
borhoods (7 dimensional space in this paper). High-dimensional spaces are
notoriously challenging for data analysis (regarded as the curse of dimen-
sionality [30,31]) because they are so sparsely populated. Despite theoretical
arguments suggesting that density estimation beyond a few dimensions is im-
practical, the empirical evidence from the literature is more optimistic [31,22].
The results in this paper confirm that observation. Furthermore, stationarity
implies that the random vector Z = (X, Y ) has identical marginal PDFs, thus
lending itself to more accurate density estimates [31,30]. The proposed method
also relies on the neighborhoods in natural images having a lower-dimensional
topology in the multi-dimensional feature space [20,21]. Therefore, in the fea-
ture space, locally, the PDFs of images are lower dimensional entities that
lend themselves to better density estimation.

We use the Parzen-window nonparametric density estimation technique [32,33]
with an n-dimensional Gaussian kernel Gn(z, Ψn), where Ψn is the covariance
matrix. Having no a priori information on the structure of the PDFs, we
choose an isotropic Gaussian, i.e. Ψn=σIn, where In is the n × n identity
matrix. For a stationary process, the Parzen-window estimate is

P (Z = z(t)) ≈ 1

|At|
∑

u∈At

Gn(z(t) − z(u), Ψn), (2)

where the set At is a small subset of T chosen at random for each voxel t
from voxels in the spatial proximity of t. We refer to this sampling strategy
as local sampling (more details later in Section 5.5.1). The local sampling
strategy enables the proposed method to learn the higher-order Markov PDF
in the stationary region. In Section 6.1, we show that this sampling strat-
egy enables the proposed method to perform equally well on both biased and
unbiased MR-data without explicit bias correction. The random selection re-
sults in a stochastic approximation for the PDFs that alleviates the effects of
spurious local maxima introduced in the finite-sample Parzen-window density

8

Preprint: Under review at Medical Image Analysis (MedIA) Journal, 2006



estimate [34].

The Parzen-window estimation technique possesses good convergence proper-
ties. For an infinite sample size, the Parzen-window density estimate converges
to the true PDF irrespective of the value of the kernel parameter σ [32,33] .
This suggests that with increasing data we get progressively better density es-
timates. However, with a finite sample size, which is precisely the case in real
life, the density estimate varies with the kernel parameter value. In this case,
using optimal values of the Parzen-window parameters is critical for success,
and manually tuning the value can be difficult in high-dimensional spaces.
Section 3.3.1 describes a data-driven technique to estimate an optimal kernel
parameter value.

3.3 Markov Consistency for the Adaptive Model

The convenience of the Markovity property on the random field comes with ad-
ditional constraints. Besag was among the pioneers who analyzed the stochas-
tic models for systems of spatially-interacting random variables. Via his proof
of the Hammersely-Clifford theorem [35], also known as the Markov-Gibbs
equivalence theorem, Besag showed that the conditional Markov PDFs P (X(t)|Y (t))
must be restricted to a specific form in order to give a consistent structure
to the entire system. A consistent system is one where we can obtain each
conditional PDF, using rules of probabilistic inference, from the joint PDF
P ({X(t)}t∈T ) of all the random variables in the system.

The higher-order Markov PDFs that the proposed method learns empirically
from the data do, indeed, yield a consistent system asymptotically i.e. as the
amount of data tends to infinity. The previous section explained that the
Parzen-window density estimate gives the true PDF estimate as the sam-
ple size becomes infinite. This convergence holds when the observations in the
sample are independently generated from a single underlying PDF. The obser-
vations, in our case, are the neighborhood-intensity vectors. The stationarity
of the Markov random field implies that all observations are derived from a
single PDF. Using a subset U of the entire voxel-set T , such that no two vox-
els in the subset have overlapping neighborhoods (∀a, b ∈ U : Na ∩ Nb = φ),
produces independent observations ({z(u)}u∈U) and such a scheme achieves
consistency asymptotically. However, the constraint of non-overlapping neigh-
borhoods leads to a wastage of a large amount of data ({z(t)}t∈T\U ). It turns
out that we can indeed use the data at all the available (overlapping) neigh-
borhoods ({z(t)}t∈T ) and yet converge to the true PDF asymptotically, as
proved by Levina [28].
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3.3.1 Optimal Parzen-Window Kernel Parameter

Besag analyzed the problem for estimating parameters of PDFs for a paramet-
ric Markov random field [36] that also concerned the use of overlapping neigh-
borhoods described in the previous section. A maximum-likelihood estimate
of the parameter requires independent observations, thereby implying non-
overlapping neighborhoods. However, Besag suggested a maximum pseudo-
likelihood scheme that used overlapping neighborhoods giving better esti-
mates [36]. Geman and Graffigne [37] later proved that the maximum-pseudo-
likelihood parameter estimate did indeed converge to the true maximum-
likelihood estimate asymptotically. We use a similar strategy to estimate the
optimal Parzen-window kernel parameter, i.e. we choose the maximum pseudo-
likelihood value of the Gaussian standard-deviation, σ, kernel parameter. We
observe that this maximum-likelihood choice is equivalent to the choice that
minimizes the entropy of the higher-order Markov statistics for the entire im-
age. The optimal σ is

argmax
σ

∏
t∈T

P (z(t)) = argmax
σ

∑
t∈T

log P (z(t)) = argmin
σ

(
−∑

t∈T

log P (z(t))

)
(3)

With this maximum-likelihood strategy, treating the entire Markov random
field as a single stationary and ergodic random field, the optimal σ is an
approximation to

argmin
σ

∑
z∼P (Z)

(− log P (z)) = argmin
σ

EP (Z) [− log P (Z)] = argmin
σ

h(Z), (4)

where z ∼ P (Z) means that z is randomly generated from the PDF P (Z),
and h(Z) is the entropy of the random variable Z. Indeed, the relationship
between log-likelihood and entropy has been well known and has been utilized
in some other works, such as [34].

4 Optimal Segmentation via Mutual-Information Maximization on
Higher-Order Statistics

This section formulates the classification problem as an optimal-segmentation
problem associated with an information-theoretic goodness measure. It be-
gins by forming a connection between information-theoretic measures, such as
mutual information and entropy, and optimal segmentation.

Mutual information between two random variables measures the mutual de-
pendence between them [38]. Independent random variables convey no infor-
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mation about each other, and so their mutual information is zero (minimal).
Functionally dependent random variables, on the other hand, contain all the
information about each other. That is, knowing the value of one random vari-
able tells us exactly the value of the other random variable. These ideas apply
well to the problem of image segmentation [39]. For a good segmentation,
knowing the voxel neighborhood uniquely tells us the voxel class. Also, know-
ing the voxel class gives us a good indication of what the voxel neighborhood
is.

Consider a random variable L(t) associated with each voxel t ∈ T . Then L(t)
gives the class that voxel t belongs to. We define the optimal segmentation as
the one that maximizes the mutual information between L and Z, i.e.

I(L, Z) = h(Z) − h(Z|L) = h(Z) −
K∑

k=1

P (L = k)h(Z|L = k). (5)

The entropy of the higher-order PDF associated with the entire image, h(Z),,
is a constant for an image and we can ignore it during the optimization.
Let {Tk}K

k=1 denote a mutually-exclusive and exhaustive decomposition of the
image domain T into K regions such that Tk = {t ∈ T : L(t) = k}. Then, for
a region Tk, (5) treats the entropy of the higher-order statistics in that region
to quantify its goodness measure.

Entropy is a measure of randomness or uncertainty associated with a PDF [38].
Regions having low entropies for higher-order PDFs possess a strong homo-
geneity in their higher-order statistics. Such homogeneity is characteristic of
regions that comprise voxels of a single tissue type, e.g. white matter or gray
matter. On the other hand, regions comprising voxels of multiple tissue types
exhibit decreased regularity leading to increased randomness and, in turn,
higher entropy. Letting Pk(Z(t) = z(t)) be the probability of observing the
voxel neighborhood z(t) given that the voxel t belongs to the region k, i.e.

Pk(Z(t) = z(t)) ≈ 1

|At|
∑

u∈At,At⊂Tk

Gn(z(t) − z(u), Ψn), (6)

where the set At is a small subset of Tk chosen at random for each voxel t
from voxels in the spatial proximity of t. The entropy, in turn, is

h(Z|L = k) = −
∫
�d

Pk(Z(tk) = z(tk)) log Pk(Z(tk) = z(tk))dz, (7)

where d = |Nt|+ 1 is the neighborhood size, and tk is any voxel in region k—
∀tk ∈ Tk, the PDF Pk(·) remains the same due to the stationarity assumption.
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Equation (5) implies that the optimal segmentation is the one that minimizes
a weighted average of entropies associated with the set of K PDFs. With the
present mutual-information-based energy, reducing entropies of larger regions
in the image is given more importance or weight in direct proportion to their
size—the weights are the probability of occurrence of the classes P (L = k) in
the given image. Equations (5) and (7) give the optimal segmentation as

{T ∗
k }K

k=1 = argmin
{Tk}K

k=1

(
K∑

k=1

P (L = k)h(Z|L = k)

)
(8)

= argmin
{Tk}K

k=1

⎛
⎜⎝− K∑

k=1

P (L = k)
∫
�d

Pk(Z(tk) = z(tk)) log Pk(Z(tk) = z(tk))dz

⎞
⎟⎠ . (9)

Treating entropy as the expectation of negative log-probability and approxi-
mating the expectation, in turn, by the sample mean [38], we get

{T ∗
k }K

k=1 = argmin
{Tk}K

k=1

(
−

K∑
k=1

P (L = k)EPk(Z) [log Pk(Z(tk))]

)
(10)

= argmin
{Tk}K

k=1

⎛
⎝− K∑

k=1

P (L = k)
1

|Sk|
∑

z∼Pk(Z(tk)),z∈Sk

log Pk(z)

⎞
⎠ , (11)

where |Sk| equals the size of the k-th sample Sk, and z ∼ Pk(Z(tk)) means
that z is randomly generated from the PDF Pk(Z(tk)).

Assuming ergodicity [29], in addition to stationarity, enables us to approximate
ensemble averages with spatial averages. Hence we have

{T ∗
k }K

k=1 ≈ argmin
{Tk}K

k=1

⎛
⎝− K∑

k=1

P (L = k)
1

|Tk|
∑
t∈Tk

log Pk(z(tk))

⎞
⎠ , (12)

where | · | is an operator giving the cardinality of sets. Taking P (L = k) =
|Tk|/|T | gives

{T ∗
k }K

k=1 ≈ argmin
{Tk}K

k=1

⎛
⎝−1

|T |
K∑

k=1

∑
t∈Tk

log Pk(z(tk))

⎞
⎠ . (13)

To minimize the energy we manipulate the regions Tk using a gradient-descent
optimization strategy. Section 5.1 gives the details.
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5 MR-Image Brain Tissue Classification

We now focus on classifying brain-MR images. Our goal is to segment the
image into 4 regions corresponding to the (a) white matter, (b) gray matter,
(c) cerebrospinal fluid, and (d) every other tissue type. This section starts
by giving a high-level version of the proposed classification algorithm. It then
explains why the method performs well without an explicit bias correction
mechanism. It also describes a few ways of incorporating the information in
the probabilistic atlases into the proposed method.

5.1 High-Level Classification Algorithm

Based on the PDFs estimated using an initial classification, we need to decide
which PDF/region each voxel should belong to. We can see that the energy
in (13) can be reduced if each voxel t is assigned to the class k that maxi-
mizes the probability Pk(z(t)). This is an iterative process where the PDFs
define a classification that, in turn, redefines the PDFs. Because the PDFs
get implicitly redefined after every iteration, via the updated classification,
the PDF estimates lag, so to speak, behind the classification. This is a widely
used standard numerical optimization scheme. (Some recent work [40] focuses
on avoiding the lag in the PDFs by introducing additional terms, but is not
the focus of this paper.)

Given a classification {T m
k = {t ∈ T : Lm(t) = k}}K

k=1 at iteration m, the
algorithm iterates as follows:

(1) ∀k, t: Estimate P m
k (z(t)) nonparametrically, as described in Section 3.2.

(2) ∀t : Lm+1(t) = argmaxk P m
k (z(t)).

(3) Stop upon convergence, i.e. when |T m+1
k −T m

k |2 < δ, ∀k, where δ is a small
threshold.

5.2 Implicit Bias-Field Handling

Typical MR images are characterized by a slowly-varying multiplicative field
that is known as the bias field. This bias field is inherent to MRI and is caused
by equipment limitations and patient-induced electrodynamic interactions [9].
It can lead to significant performance degradation of intensity-based classi-
fication techniques. Most methods treat the bias field as multiplicative noise
and explicitly correct the intensities, e.g. as a pre-processing step or iteratively
during the segmentation [9], to reduce the effect of the bias field. However, for
some applications, such as neonatal brain MRI, the bias correction can pose
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a serious challenge [4]. This is because such images, as compared to adult MR
images, exhibit higher intensity variability for each tissue class as well as lower
intensity contrast.

The proposed method, in contrast to typical classification strategies, does not
rely on explicit bias correction. Along with learning the Markov statistics,
it implicitly accounts for the bias field as well, treating it as a part of the
Markov statistics, and then bases the classification on these statistics. The
local sampling, as described previously in Section 3.2, plays a critical role in
this process. It bases the classification-update decision on the local statistics
which are corrupted almost identically with the bias field, thereby effectively
eliminating the effect of the bias field on the classification. The results in
Section 6 confirm this observation.

5.3 Using Probabilistic Atlases for Initialization

The classification algorithm described in Section 5.1 needs an initialization
{T 0

k }K
k=1. We use co-registered probabilistic atlases for the white matter, gray

matter, and the cerebrospinal fluid for the purpose. We obtain these atlases
from the ICBM repository [41], which also provides an average-T1 image reg-
istered with these atlases. These atlases give the a priori probability for a
voxel belonging to one of these tissue types. We define the initialization as
the maximum-a-priori estimate. To obtain this estimate the atlases need to
be registered to the data. Hence, we first register the average-T1 image to
the data using an affine transformation and then use the transformation to
resample the three atlases. The algorithm is:

(1) Perform affine registration between the average-T1 image associated with
the atlas and the data.

(2) Resample the white-matter, gray-matter, and cerebrospinal-fluid atlases
based on the transformation obtained in the previous step.
Let P a

k (t), k = 1, 2, 3 be the a priori probability, given by the atlas, for
the t-th voxel belonging to the k-th tissue type.

(3) Compute the probabilities for the class (say class k = 0) comprising all
the non-brain tissue types: ∀t : P a

0 (t) = 1 −∑3
k=1 P a

k (t).
(4) ∀t : L0(t) = argmaxk P a

k (z(t)).

5.4 Using Probabilistic Atlases as Priors During Classification

Probabilistic atlases have utility in the proposed classification algorithm as
well. Instead of using data-driven probabilities alone for the classification up-
dates, we can employ a Bayesian estimation strategy to compute the probabili-
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ties. Here, the likelihood term is the same as the data-driven probabilities that
we have computed so far. The posterior is the likelihood multiplied by a prior
that we derive from the probabilistic atlas. In contrast, we can also derive prior
terms from global priors that provide no spatial probabilistic information. In
this paper, however, the focus is on probabilistic atlases.

For the proposed method, empirical evidence suggests that using the atlas
directly as a prior can strongly dominate over the likelihood. For instance,
for regions where the prior probability is zero or near zero, the likelihood can
have little effect. In such a case, the final segmentation would be very much
like the initialization that we obtain via registration. Section 6.2 discusses the
effect of different priors on the proposed method in more detail. To increase
the effect of the data-driven likelihood term, we need to weaken the prior. We
have investigated two ways of achieving the same and we discuss both of them
next.

(1) One way of weakening the atlas prior is to use the atlas for discriminat-
ing only between two tissue types, namely brain and non-brain tissue.
Here, we sum the atlas probabilities for the white matter, gray matter,
and cerebrospinal fluid to create one composite atlas that only gives the
spatial probability for any kind of brain tissue. That is,

For k = 1, 2, 3, ∀t : P a
k (t) = 1 − P a

0 (t) (14)

We call this as the 2-class prior.
(2) Another way of reducing the strength of the prior is to voxel-wise rescale

the atlas probabilities in such a way that the probabilities continue to
add up to one but are less discriminating between the tissue types. We
have used the following function for the desired effect.

∀k, t : P a
k (t) = (1 − v)/4 + vP a

k (t), (15)

where v ∈ [0, 1] is a parameter. For the redefined prior probabilities
∀t :

∑4
k=1 P a

k (t) = 1. A value of v = 1 makes no change to the atlas
probabilities, whereas v = 0 makes every class equiprobable. In this paper
we experiment with a moderate value of v = 0.5. We call this the scaled-
atlas prior.

5.5 Implementation Issues

5.5.1 Local Sampling

The samples At used to estimate the PDFs Pk(z(t)) should consist of voxel
neighborhoods that are spatially nearby voxel t. This enables the method
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to learn the Markov statistics for piecewise-stationary images along with the
bias field (explained previously in Section 5.2). To achieve this, we choose a
unique sample for each voxel, randomly, distributed according to an isotropic
3-dimensional Gaussian PDF on the image coordinates, centered at the voxel
in question. Thus, the set At is biased and contains more voxels near the
voxel being processed. Some of our previous work [23,24] explains this in more
detail. In case of anisotropic MR data, we must weight the Gaussian variances
along cardinal directions, making sampling more isotropic. To achieve this,
we divide the σ along each axis by the grid spacing along that axis. This
strategy gives consistently better results than uniform sampling. We have used
a Gaussian PDF with a pre-weighted variance of 225 voxels-squared. However,
we have found that it performs well for any choice of variance that encompasses
more than several hundred voxels. The empirical results in Table 1 (shown in
Section 6.1) confirm that the performance of the proposed method degrades
gracefully for suboptimal values of this parameter.

5.5.2 Neighborhood Size and Shape

In this paper, while working with 3D MR data, we use a neighborhood compris-
ing 6 voxels which correspond to the two voxel neighbors in each of the three
cardinal directions. In case of anisotropic MR data we must weight the intensi-
ties, making neighborhoods more isotropic. We incorporate such fuzzy weights
by using an anisotropic feature-space distance metric, ‖z‖M =

√
zT Mz, where

M is a diagonal matrix with the diagonal elements being the appropriate
weights on the influence of the neighbors on the center voxel. Some of our
previous work [23,24] explains this in more detail. We select the weight for
each neighbor to be reciprocal of the grid spacing along its associated axis.

5.5.3 Data-Driven Choice for the Sample Size

Section 3.3.1 described that we choose the maximum pseudo-likelihood (or,
equivalently, minimal entropy) value of the Gaussian standard-deviation, σ,
kernel parameter. We have found [23,24] that for sufficiently large |At|, the
choice of σ is not sensitive to the value of |At|, thereby enabling us to auto-
matically set |At| to an appropriate value before the classification begins. We
have implemented the Newton’s method [42] to find the optimal parameter
value. Thus, given the Markov neighborhood and the local-sampling Gaussian
variance, the method chooses the critical Parzen-window kernel parameters
σ and |At| automatically in a data-driven fashion using information-theoretic
metrics.
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6 Results and Validation

This section gives validation results on real and synthetic brain-MR images
along with the analysis of the method’s behavior. It also provides quantitative
comparisons with a current state-of-the-art classification method. The pro-
posed method sets |At|, for all voxels t, to be about 500, based on the method
explained in Section 5.5.3. For each iteration, it has a computational com-
plexity of O(K|At||T |) and, with |At| = 500, it takes about 45 minutes for
processing a 181 × 217 × 181 volume on a standard single Pentium processor.
The algorithm scales linearly with the number of processors on a shared-
memory, e.g. dual-processor, machine. The classification typically takes about
4 to 7 iterations depending on the noise/bias level. The implementation in this
paper relies on the Insight Toolkit [43].

Section 3.3.1 described a method to obtain an optimal Parzen-window ker-
nel parameter σ by minimizing the entropy of Z. This parameter σ, essen-
tially controls the smoothing on the data in the high-dimensional space (7-
dimensional in our case) of neighborhood intensity vectors. The method of
Parzen-window density estimation with single-scale isotropic kernels is, per-
haps, one of the simplest such schemes. Empirical studies suggest that such
a σ can be too small for the purpose of MR-image classification, splitting
the high-dimensional space and, in turn, the image into many more spatial
regions Tk than what may be appropriate. Table 1, later, shows that the per-
formance is poor. Hence, in this paper, we multiply the σ obtained after the
optimization by a factor of ten. Better techniques for Parzen-window density
estimation that choose kernels adaptively to accommodate the signal or noise
might alleviate the need for such a factor. The choice of the precise value of
this multiplicative factor is not critical and Table 1 in the next section confirms
that the algorithm is quite robust to small changes in this parameter.

6.1 Validation on Simulated MR Data

This section validates the proposed approach on simulated brain-MR images
with a known ground truth. We use 1 mm isotropic T1-weighted images from
the BrainWeb simulator [44] with varying amounts of noise and bias field.
Figure 1 shows some data along with the classification and the ground truth.
Leemput et al. [3] use the Dice metric [45] to evaluate the classification perfor-
mance of their state-of-the-art approach, based on expectation maximization
and Markov random fields, on images from the BrainWeb simulator. For a
direct comparison, we use the same metric. Let {T̃k}K

k=1 denote the ground-
truth classification and {T ∗

k }K
k=1 denotes the classification obtained from the

proposed method. Then, the Dice metric Dk that quantifies the quality of the
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(a) (b) (c)

Fig. 1. Qualitative analysis of the proposed algorithm with BrainWeb data [44] with
5% noise and a 40% bias field. (a) A coronal slice of the data. (b) The classification
produced by the proposed method. (c) The ground truth.

classification for class k is 2|T ∗
k ∩ T̃k|/(|T ∗

k | + |T̃k|), where | · | is an operator
giving the cardinality of sets.

We first validate on simulated T1-weighted data without any bias field and
with noise levels varying from 0% to 9% . We use the 2-class prior. The Brain-
Web simulator defines the noise-level percentages with respect to the mean
intensity of the brightest tissue class. Figures 2(a) and 2(b) plot the Dice met-
rics for gray-matter (Dgray) and white-matter (Dwhite) classifications for the
proposed algorithm and compare them with the corresponding values for the
current state-of-the-art [3]. We see that the proposed method is consistently
better for the white matter. For a few noise levels for the gray matter, its per-
formance level is slightly below the state-of-the-art. We have found that this is
due to the effect of using the 2-class prior which biases the results against the
gray matter, as compared to the scaled-atlas prior. With the scaled-atlas prior
the results are consistently better than the state-of-the-art for all noise levels.
The next section describes that both priors perform equally well as measured
by the average of the Dice metric for the white matter and gray matter, i.e.
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Fig. 2. Validation, and comparison with the state-of-the-art [3], on simulated
T1-weighted data without any bias and varying noise levels. Here, the proposed
method uses the 2-class prior. Dice metrics for (a) white matter: Dwhite, (b) gray
matter: Dgray, and (c) their average: (Dwhite + Dgray)/2. Note: In the graphs, P:
Proposed method, L: Leemput et al.’s state-of-the-art method [3].
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(Dwhite + Dgray)/2.

Figure 2(c) shows that for the average Dice metric, the proposed algorithm
performs consistently better than the state-of-the-art at all noise levels for
gray matter and white matter. Furthermore, it exhibits a slower performance
degradation with increasing noise levels than the state-of-the-art method. For
3% noise, which is typical for real MRI [3], the improvement in the average
Dice metric is approximately 1.1 %. The performance gain at 9 % noise is
3.8%. The larger gain over the state-of-the-art for large noise levels should
prove useful for classifying noisier clinical fast-acquisition MRI.

Figure 2 shows that for low noise levels, the performance of the parametric
EM-based algorithm drops dramatically. This is because it systematically as-
signs voxels close to the interface between gray matter and white matter to
the class which happens to have a larger intensity variability [3]. This class is,
inherently, the gray matter class. It turns out that, in such low-noise cases,
partial voluming seems to dictate the MR-tissue intensity model which devi-
ates significantly from the assumed Gaussian [3]. Hence, approaches enforcing
Gaussian intensity PDFs on the classes, such as [3,14], would face a serious
challenge in this case. In contrast, the proposed adaptive modeling strategy,
which is based on nonparametric density estimation, does not suffer from this
drawback. Figure 2 clearly depicts this advantage of the proposed method.

Figure 3 shows the validation results with the BrainWeb data having a 40%
bias field with varying noise levels. Even in the absence of an explicit bias-
correction scheme, the method performs equally well on both biased and unbi-
ased MR-data (Figure 2). This is because of the adaptive model of higher-order
statistics underlying the method, as explained before in Section 5.2. To con-
firm the vital role that the local sampling Parzen-window density estimation
strategy plays in enabling the automatic learning of the bias field, we perform
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Fig. 3. Validation, and comparison with the state-of-the-art [3], on simulated
T1-weighted data with 40% bias and varying noise levels. We compare the per-
formance by incorporating explicit bias correction and global sampling (see text).
Dice metrics for (a) white matter: Dwhite, (b) gray matter: Dgray, and (c) their
average: (Dwhite + Dgray)/2. Note: In the graphs, P: Proposed method, BC: Bias
correction, GS: Global sampling, L: Leemput et al.’s state-of-the-art method [3].
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two more experiments. In the first experiment, we use explicit bias correction
with the proposed method (degree-4 polynomial fit to the white-matter inten-
sities iteratively). Figure 3 shows that this method performs approximately
as well, but not any better than without the bias correction. The second ex-
periment replaced the local sampling scheme with a global sampling scheme
that chooses the random Parzen-window sample uniformly over the image as
was done in our previous work [5]. Figure 3 shows that this scheme performs
significantly worse at all noise levels in the absence of bias correction. These
results empirically justify the choice of changing the sampling strategy from
global to local as discussed in Section 5.2.

To study the sensitivity of the variance parameter for the local-sampling
Gaussian associated with Parzen-window density estimation and the Parzen-
window σ multiplicative factor, we measure the Dice metrics for the white
matter and gray matter over a range of values. We use the BrainWeb T1 data
with 5% noise and a 40% bias field. Table 1 gives the results confirming that
the classification performance is fairly robust to changes in the values of these
two parameters, as explained before in Section 5.5.3.

We can extend the proposed method in a straightforward manner to deal with
multimodal data. Multimodal segmentation entails classification using MR im-
ages of multiple modalities, e.g. T1 and PD. It treats the combination of images
as an image of vectors with the associated PDFs in the combined probability
space. Figure 4 shows the classification results for multimodal data using T1

Table 1
The proposed method is fairly robust to changes in the values of the local-sampling
Gaussian variance parameter and the Parzen-window σ multiplicative factor. This
table gives the Dice metrics for the BrainWeb T1 data with 5% noise and a 40%
bias field.

Local-sampling Gaussian variance Gray matter White matter

100 0.9033 0.9386
225 0.9079 0.9427
400 0.9082 0.9422
625 0.9043 0.9368

Parzen-window σ multiplicative factor Gray matter White matter

1.0 0.7634 0.9105
2.5 0.8988 0.9502
5.0 0.9106 0.9487
7.5 0.9095 0.9451
10.0 0.9079 0.9427
12.5 0.9066 0.9411
15.0 0.9058 0.9402
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Fig. 4. Validation on simulated multimodal (T1 and PD) data with varying noise
levels. Dice metrics for (a) white matter: 0% bias, (b) gray matter: 0% bias, and
(c) their average: 0% bias. Dice metrics for (d) white matter: 40% bias, (e) gray
matter: 40% bias, and (f) their average: 40% bias. Note: In the graphs, P: Proposed
method, T1PD: Using both T1 and PD images.

and PD images, both with and without a bias field. The results demonstrate
that incorporating more information in the classification framework, via im-
ages of two modalities T1 and PD, produces consistently better results than
using T1 images alone.

6.2 Validation on Real MR Data

The section shows validation results with real expert-classified MR data. We
obtained this data set from the IBSR website [46]. The data set comprises T1-
weighted brain-MR images for 18 subjects. Figure 5 shows an example from
the data set. We observe that the data has lower contrast and possesses certain
acquisition-related artifacts that makes the classification task more challenging
than that for the BrainWeb dataset. Figure 5 also shows an example of a
classification generated by the proposed method and compares it to the ground
truth.

Figure 6 compares the performance of the proposed method using the two
different atlas-based priors. Figure 6(a) shows that the 2-class prior, relative
to the scaled-atlas prior, biases the classification more in favor of the white
matter. With the 2-class prior, which gives equal weight to all three brain-
tissue types, the Dice metric for the white matter is better than that for the

21

Preprint: Under review at Medical Image Analysis (MedIA) Journal, 2006



(a) (b) (c)

Fig. 5. Qualitative analysis of the proposed algorithm with IBSR data [46]. The
voxel size for this image is 0.9375×0.9375×1(coronal) (a) An axial slice of the data.
(b) The classification produced by the proposed method. (c) The expert-classified
ground truth.

gray matter because of lower inherent variability of the intensities in the white
matter. The scaled-atlas prior imposes a stronger constraint which tends to
shift this bias, as seen in Figure 6(b). Empirical evidence confirms that as
the parameter v varies from 0.0 to 1.0 the bias shifts away from white matter
towards gray matter. Nevertheless, with the average Dice metric, Figure 6(c)
shows that both priors perform equally well.

For the proposed algorithm using the 2-class prior, Table 2 gives the mean, me-
dian, and the standard deviation for the Dice metrics over the entire dataset.
The proposed method yields a higher mean (by a couple of percent) and lower
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Fig. 6. Validation, of the proposed method with two different atlas-based priors,
on IBSR data. Dice metrics for (a) white matter: Dwhite, (b) gray matter: Dgray,
and (c) their average: (Dwhite +Dgray)/2. Note: In the graphs, Prior1: 2-class prior,
Prior2: scaled-atlas prior.

Table 2
Mean, median, and standard deviation for the gray-matter and white-matter tissue
classes in the IBSR data set using the proposed method with the 2-class prior.

Statistical measure White matter Gray matter

Mean 0.8868 0.8074
Median 0.8913 0.8009

Standard deviation 0.0179 0.0426
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standard deviation for the Dice metrics over both white matter and gray mat-
ter classes, as compared to the results reported by Ruf et al. [14] for Leemput et
al.’s state-of-the-art method [3] as well as their own method.

7 Conclusions and Discussion

This paper presents a novel method for unsupervised brain-MRI tissue classifi-
cation by adaptively learning the higher-order image statistics via data-driven
nonparametric density estimation. It also describes the essential theoretical
aspects underpinning adaptive, nonparametric Markov modeling and the the-
ory behind the consistency of such a model. The proposed method relies on
the information content of input data for setting important parameters, and
does not require significant parameter tuning. Moreover, it does not rely on
any kind of training. The adaptive image model enables the method to im-
plicitly account for the bias field and perform equally well on both biased and
unbiased MR-data without requiring any bias correction. Incorporating the
information content in neighborhoods in the classification process virtually
eliminates the need for explicit smoothness constraints on the classification,
and provides optimal regularization.

The results in the paper empirically confirm that the piecewise-stationary
Markov model conforms well to brain-MR images. It shows that it is possi-
ble to construct nonparametric density estimations in the high-dimensional
spaces of MR-image neighborhoods. These results also suggest that the statis-
tical structure in these spaces capture important tissue properties in brain-MR
images. The formulation underlying the proposed method generalizes in sev-
eral different ways. The statistical and engineering components in this paper
are appropriate for any kind of densely sampled medical data. This includes
images with higher-dimensional domains (e.g. sequence of volumetric MR im-
ages over time) and vector-valued data (e.g. multimodal MR data).

The proposed method can be further improved via some engineering advances.
For instance, the method of density estimation with single-scale isotropic
Parzen-window kernels is, perhaps, one of the simplest such schemes. Parzen-
window density estimation can improve by choosing kernels adaptively to
accommodate the signal or noise. The Markov neighborhood in the current
algorithm comprises only first-order neighbors. Using larger neighborhoods
could, potentially, improve the results, but entails longer computation times.
Of course, very large neighborhoods are infeasible because of unavailability of
sufficiently many observations in the higher-dimensional space for the Parzen-
window density estimation. The computation times for the implementation
are impractical for most applications. Improving the computational scheme,
e.g. using methods based on fast Gauss transforms [47], is an important area

23

Preprint: Under review at Medical Image Analysis (MedIA) Journal, 2006



of future work.
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