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Abstract:

We propose a new geometric multigrid solver for anisotropic image diffusion. Anisotropic diffusion
in image processing has been widely accepted as a denoising method; however, the large compu-
tation times for large volumes are prohibitive for interactive exploration of the parameter space.
Our approach is able to reduce computation times via a new method for restricting the anisotropic
diffusion operator to coarser grids for the multigrid solver. This operator restriction is based on
computing equivalent conductance between two nodes in an electrical circuit.
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Chapter 1

Introduction

Anisotropic diffusion has been widely accepted as a preprocessing method for reducing noise while
preserving boundaries and edges between different regions of an image. The original form of the
anisotropic diffusion partial differential equation (PDE) was proposed by Perona and Malik [1].
Since then, a considerable amount of research has been done on anisotropic diffusion and various
modifications to the original equation have been made for different applications; for a more in depth
study of anisotropic diffusion, we refer the reader to [2, 3].

One of the main drawbacks of PDE based image processing methods, including anisotropic diffu-
sion, has been their relatively large computational burden. With the ever increasing speed of modern
CPUs, the computational cost for typical 2D images has come down to reasonable levels. With
reasonable levels, we mean that a user can, in a single session, set the parameters of the PDE, let
it run for a short amount of time (typically less than a few minutes), look at the results, adjust the
parameters and repeat this as necessary. However, the same can not be said of the much larger 3
dimensional images that are becoming commonplace.

One of the important application areas of anisotropic diffusion has traditionally been medical image
analysis, such as the filtering of magnetic resonance imaging (MRI) data [4]. MRI and other medical
images are typically large 3D volumes that require significant computational expense to filter with
PDE based methods. In this technical report, we introduce a novel multigrid solver for obtaining
very fast solutions to anisotropic diffusion PDEs.

Multigrid methods [5] have been used commonly in many areas. In the field of image processing,
they have been used to solve relaxation problems [6, 7] and the Perona and Malik (P&M) anisotropic
diffusion equation [8]. Acton was able to provide significant computational savings over the regular
solution methods [8]. Our approach differs from Acton’s in one important aspect: Acton solves the
nonlinear P&M anisotropic diffusion PDE using a full approximation scheme while we linearize the
equation in time and solve the resulting semi-implicit formulation. Our method provides significant
computational savings over Acton’s approach due to the linearization. Furthermore, our approach is
applicable to several other anisotropic diffusion equations which can not be solved with the methods
described in [8].
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Chapter 2

Anisotropic Diffusion

Let
���������	�

be an image, then the general form of the anisotropic diffusion PDE on 
 can be
written as � 
�
������������� 
���� (2.1)

where � ��� � ���
denotes the spatially varying diffusion coefficients. In general, the diffusion

coefficients can be arbitrary. In the P&M anisotropic diffusion PDE the diffusion coefficients are a
function of the gradient of 
 . more specifically, Perona and Malik proposed

��� �"! � �$#�%'&)(+*-,/.1032"(4 5�6
(2.2)

in their original paper [1]. The parameter 7 controls the extent of edge preservation. Many variations
to this choice of the diffusion coefficient function have been proposed, but all of these are functions
of the gradient of 
 . The methods proposed in this work are not restricted to any specific choice of
the diffusion coefficients, they apply to the more general case described in (2.1). In the rest of this
report, we will consider diffusion coefficients given by (2.2). More general cases will be discussed
in future research papers.

2.1 Finite Difference Discretization

A typical spatial discretization of (2.1) uses 8:9 -point neighborhood stencil where 9 is the dimen-
sionality of the image. The PDE at point !<; � �

is discretized as� 
 �"! ��-� �>=8:9
? �@ A BDC �

A �+! � � 
 �+! A �FEG
 �+! �H�I� (2.3)

where ! A enumerate the 8J9 neighbors of ! . Also, � A denotes the diffusion coefficient of the connec-
tion between ! and ! A . Then, a simple choice for � A in accordance with (2.2) is

� A �"! � ��#�% &�K ,L.M0/2ON),L.M0LPQ24 5 6:R
(2.4)
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2.2 Explicit vs. Implicit Solutions

After the spatial discretization discussed in Section 2.1, the most straightforward way to solve (2.1)
is to employ a time step discretization. Let 
 � denote the image function 
 after the k’th time step.
Starting with the inital image function 
�� , we define


 ��� C �+! � � 
 � �"! ����� � =8J9
? �@ A B C � �	�

A �+! � � 
 � �"! A � E 
 � �"! �L� � (2.5)

where � � is the time increment per step. A maximum allowed value for � � � = 
 8:9 can be derived
from XXX conditions []. Then, to obtain the solution after time � � we repeat (2.5) 7 � � � 
 � �
times. We use the notation � ��� A to clarify that the values of the diffusion coefficients are recomputed
at each time step from 
 � .
The formulation given by (2.5) is effective for small values of � � where only a few time steps
need to be taken; however, it becomes computationally costly for finding solutions to larger � � . A
computationally attractive alternative is to linearize the PDE and use an implicit formulation. First,
given the diffusion coefficients at time 7 , the right hand side of (2.4) can be rewritten as a linear
operator 
 � acting on 
 � 
 ���DC � 
 � ��� � 
 � 
 � R (2.6)

As shown in [9], we can transform the explicit time step equation (2.5) into an implicit equation
using a backward Euler approximation


 ���DC � 
 � ��� � 
 � 
 ���DC (2.7)
 ���DC E�� � 
 � 
 ���DC � 
 � (2.8)��� E�� � 
 � � 
 ���DC � 
 � (2.9)
 ���DC � ��� E�� � 
 � � % C 
 � R (2.10)

This implicit formulation allows for much larger time step � � . Of course, directly inverting the very
large linear system in (2.10) is not feasible. Therefore, other methods such as a conjugate gradient
solver or a multigrid solver must be used. The solution of this equation with multigrid methods is
the topic of the next chapter.
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Chapter 3

Geometric Multigrid Solver for
Anisotropic Diffusion

Multigrid methods provide a computationally efficient way to solve linear systems of the form (2.9).
This equation can also be solved at the finest level using methods such as conjugate gradient or
Jacobi iterations. These methods indirectly obtain the solution (2.10) by minimizing reducing the
residual � � 
 � E � � E�� � 
 � � 
 ���DC (3.1)

via iterative updating of 
 ���DC . The motivation for multigrid methods comes from the following
observation Jacobi and Gauss-Seidel iterations quickly kill the high spatial frequency portions of the
residual image

�
while lower frequency components take much longer to reduce. A low frequency

signal at the finest level will appear to have higher frequency if the image is downsampled. Then,
the basic premise of multigrid methods is to move the problem to coarser grids to take advantage of
this property. For a in depth review of multigrid methods we refer the reader to [5].

In the rest of this report, we will drop the time step subscript 7 ; 
 � will be used to denote the initial
image,

�
will denote the operator, and 
 will be used to denote the solution. We rewrite (2.9) at a

specific grid level (spacing) � as & � E � � 
�� 5 
�� � 
��� R (3.2)

Higher values of � correspond to coarser grids. A multigrid solver consists of one or more v-cycles
shown in Figure 3.1. Each v-cycle starts at the finest grid � . For the first v-cycle the initial solution
 is set to be equal to 
 � . Then, � C Gauss-Seidel relaxation operations are performed to iteratively
reduce the residual. We have found that Gauss-Seidel relaxation outperforms Jacobi relaxation in
our problem. Details on relaxation methods can be found in [5]. The relaxation iterations result in
some 
 at the finest grid level � . The residual is computed at this grid level accoring to the equation�

� � 
�� E & � E � � 
�� 5 
��� R (3.3)

Then, the residual is restricted to grid level 2h. The residual restriction
�
�

�E � � ? � is discuseed in
Section 3.1. We also need to restrict the operator 
 � to the coarser grid. The operator restriction

4



Figure 3.1: Multigrid v-cycle

is different than the residual restriction. in this report, we introduce a new approach to restricting
the anisotropic diffusion operator that improves performance over standard restriction methods, see
Section 3.2.

A two level multigrid method would work by computing a correction term 
 ? � such that

& � E � � 
 ? � 5 
 ? � � � ? � R (3.4)

If we have an exact correction term, we can simply upsample it to the finest grid level and add it back
onto 
 � ; however, in practice, the grid level 8 � is still too complex to solve analytically. Multigrid
methods overcome this problem by getting an approximate correction using relaxation operations
and repeating the residual restriction and relaxation operations until a grid level simple enough to
allow an exact solution is reached. In Figure 3.1, this level is

� � .

Once a level where an exact solution can be obtained in a computationally feasible manner is reach,
we start send the corrections back up the grid hierarchy. In the example shown in Figure 3.1, we

start by prolongating the correction term 
�� � . Let 
�� � ���� � denote the prolongation of the correction
term. The prolongated correction from

� � is then added to the correction term that was obtained at
lebel 	 � : 
 � ��
 
 � � � 
 � � ���� � R (3.5)

Next, Gauss-Seidel relaxation is applied � ? times on the equation

& � E � � 
 � � 5 
 � � � � � � R (3.6)
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Figure 3.2: Full weight coarsening.

This prolongation/addition/relaxatiom procedure is repeated until the solution at the finest grid level
 � has been updated, which completes the v-cycle. Typically, a single v-cycle is not sufficient to
lower the norm of the residual

�
� to acceptable leveles, and it is necessary to perform multiple v-

cycles. In this case, the result 
 � of a v-cycle becomes the initialization for the next, and everything
else (the operator 
 and the right-hand side 
 � ) remain the same.

The number of relaxation iterations on the down and up legs of the v-cycle, � C and � ? , are parameters
of the algorithm. In [5], the authors suggest using � C � �

and � ? ��� for most applications.

3.1 Residual Restriction

We consider two options for residual restriction: injection and full-weight averaging. In either case,
the image at the coarser resolution has pixel locations that correspond to every other pixel in every
axis direction of the finer resolution image. With the injection method, the residual image at the
coarser resolution is simply defined as

� ? ��� � ����� � �
�	� 8 � �/8
��� . On the other hand, the full weighting

approach uses the averaging kernel shown in Figure 3.2 to compute the value of the pixel at coarse
resolution (the center black pixel in the figure) from the pixels at the fine resolution. Both methods
easily extend to 9 dimensions. The relative advantages of the two methods will be examined in
Chapter 4.

3.2 Conductance Restriction in 2D

The multigrid approach requires solving linear systems defined on different grids as in (3.4). There-
fore, the operator 
 has to be defined for all grids. A simple approach is to use the same methods as
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residual restriction (Section 3.1) for the operator restriction as well. In this work, we propose a novel
approach that will be shown to speed up convergence of the multigrid algorithm to the solution, see
Chapter 4.

The attractiveness of the Perona & Malik anisotropic diffusion PDE is its ability to denoise images
while preserving edges. If the anisotropic diffusion operator 
 � is coarsened with injection or full
weighting restriction, the edges in the image are inevitably weakened at the coarser grid. Bound-
aries between regions of an image appear as a thin layer of low conductance values separating high
conductance regions. The full weighting kernel, Figure 3.2, will average the low conductance values
with higher values, resulting in progressively weaker edges as we move down the multigrid hierar-
chy. Similarly, injection methods can completely lose the low conductance boundary values. Even
though, both of these operator coarsening strategies still work as will be shown in Chapter 4, they
waste computational effort by solving for systems at coarser grids that do not correspond well to the
system on the fine grid.

The multigrid solution to the Laplace equation with spatially varying weights requires non-standard
restriction and prolongation operators. The suggested approach in geometric multigrid literature
is to design the restriction operations to downsample within strongly coupled nodes, and to avoid
downsampling across loosely coupled ones [5]. This approach assumes that node connections can
be labeled as strong or loose as a preprocessing step and that they vary smoothly over the compu-
tationally domain. In our segmentation problem, labeling loose connections corresponds to edge
detection. These edges can not be labeled until we solve the equation, and we can not solve the
equation until we label the edges.

In our approach, to ensure that edges in the image are maintained at coarser resolutions, we propose
a novel way of restricting the edge weights of the L operator to the coarser levels. Figure 3.3(a)
illustrates a ��� � part of the 2D image at the fine grid resolution. At the coarser grid level, the nodes
marked as A and B will remain, while the rest of the nodes will be eliminated. The connections
between nodes A and B (restricted to the ��� � part of the domain) can be seen as an electrical cir-
cuit. Each edge is associated with a conductance value. Then, the problem is reduced to computing
the effective conductance between A and B which can be assigned as an edge weight in the coarse
grid. We can first eliminate the corner nodes to obtain the circuit illustrated in Figure 3.3(b). The
conductances for each of the four diagonal corner connections are computed from the series com-
bination of two conductances in the original circuit. Then, using � -Y conversions from electrical
circuit theory, we eliminate node 1 from the circuit in Figure 3.3(b) resulting in the circuit shown in
Figure 3.3(c). The conductances for the new connections are computed according to the � -Y rule.
Repearting the same procedure for the bottom part of the circuit, we obtain the circuit illustrated
in Figure 3.3(d). Finally, an effective conductance value between nodes A and B can be computed
using standard series and parallel circuit computations. The extension of this method to 3D will be
discussed in Section 3.4.

3.3 Prolongation of the correction image

Corrections computed at coarser levels have to be upsampled to the finer levels, this operation is
known as prolongation. Similar to the restriction of the residual, we consider two possibilities for
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prolongation: nearest neighbor and interpolation. The nearest label approach is defined simply as


�� � � ����� � 
 ? � ��� � 8�� � � � 8���� R (3.7)

This can be thought of as the counterpart to injection restriction of the residual.

The interpolation approach uses one of the averaging kernels shown in Figure 3.4 depending on
the position of the pixel on the finer grid. Pixels positioned horizontally between two pixels of the
coarser grid are interpolated using the kernel in Figure 3.4(b). Similarly pixels located vertically
between two coarser grid pixels use the kernel in Figure 3.4(c). For pixel at the center of 4 coarse
grid pixels the larger kernel shown in Figure 3.4(a) is used.

3.4 Conductance restriction for 3D images

Unfortunately, the circuit reduction technique introduced in Section 3.2 does not extend to 3D cir-
cuits in a trivial manner. However, we can compute an approximate equivalent conductance by
enumerating the paths between nodes A and B (that will be kept at the coarser level) on the fine grid
and treating them as parallel pathways. Then, the conductance for each pathway is the serial combi-
nation of the included conductances, and the overall conductance between A and B is approximated
as the parallel combination of each pathway. However, the number of non self crossing paths from A
to B in a � � � � � circuit is too large to allow for efficient computation of the effective conductance
in the manner described above. Therefore, we restrict the possible paths to those including 7 pixels
or less. These paths are enumerated ahead of time and stored as a list.
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(a) (b)

(c) (d)

Figure 3.3: Circuit-reduction based conductance restriction.
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(a) (b) (c)

Figure 3.4: Prolongation kernels.
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Chapter 4

Experiments

We begin this chapter by examining the convergence properties of our multigrid approach. Fig-
ure 4.1(a) shows a typical image used in image processing experiments. Lets assume that our goal
is to obtain a cartoon-like image from this input image. This can be achieved by running Perona &
Malik diffusion for a large amount of time and relatively small values of 7 in (2.2). Figure 4.1(b)
plots the logarithm of the average quadratic norm of the residual given in (3.1) at the finest grid level
against the number of v-cycles performed. We compare out proposed conductance based operator
restriction to the more standard multigrid methods. The result of using injection restriction for the
residual image, nearest neighbor prolongation for the correction image and the proposed conduc-
tance restriction for the anisotropic diffusion operator is shown with the solid line in Figure 4.1(b).
The result of using the same residual restriction and correction prolongation, but a standard aver-
aging restriction for the anisotropic diffusion operator is shown with the dashed line. We observe
that the proposed approach requires fewer v-cycles to reach an acceptable level of residual. The
vertical axis is the logarithm of the norm of the residual, and the original image had a range � � �/8���� � .
Therefore, an acceptable level of residual can be taken as less than � R = . This corresponds to the E =
level in the figure. Our approach requires about 8 v-cycles to reach this level, whereas the standard
approach requires about = � . This corresponds to significant computational savings.

Next, we compare the multigrid and regular approaches to anisotropic diffusion. Figure 4.2 shows
the computation time vs. � � in (3.2). The regular, forward time stepping approach outlined in Sec-
tion 2.2 requires a computational effort that scales linearly with � � . On the other hand, the multigrid
approach has a sub-linear scaling. Hence, the advantages of the multigrid approach become stronger
as we increase � � .
As � � is increased to large values, the approximation to Perona & Malik diffusion given by (3.2)
becomes less accurate. This is due to fixed conductance values used in the linearization (3.2). Let
assume we’d like run Perona & Malik anisotropic diffusion for � � � = ����� . By choosing � � �= ����� in (3.2) and obtaining the solution from a single multigrid step, we can obtain the largest
computational savings. However, the accuracy of the solution will be poor. Instead, a tradeoff
can be obtained by choosing a moderately large intermediate � � value, say 100, which gives a
good approximation to the original non-linear PDE, and repeating the multigrid solver 10 times
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Figure 4.1: Convergence of Multigrid approaches.

(recomputing the conductance values before each of the multigrid solvers).

In conclusion, we have introduced a new multigrid solver for Perona & Malik anisotropic diffusion
that can provide significant computational savings. For future work, we plan to apply the solver to
other PDEs with anisotropic coefficients.
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Figure 4.2: Computation time: Multigrid vs. Regular approaches.
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