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Dynamic contrast-enhanced (DCE) MRI is a powerful tech-
nique to probe an area of interest in the body. Here a tem-
porally constrained reconstruction (TCR) technique that re-
quires less k-space data over time to obtain good-quality
reconstructed images is proposed. This approach can be
used to improve the spatial or temporal resolution, or in-
crease the coverage of the object of interest. The method
jointly reconstructs the space-time data iteratively with a
temporal constraint in order to resolve aliasing. The method
was implemented and its feasibility tested on DCE myocar-
dial perfusion data with little or no motion. The results ob-
tained from sparse k-space data using the TCR method were
compared with results obtained with a sliding-window (SW)
method and from full data using the standard inverse Fourier
transform (IFT) reconstruction. Acceleration factors of 5 (R !
5) were achieved without a significant loss in image quality.
Mean improvements of 28 " 4% in the signal-to-noise ratio
(SNR) and 14 " 4% in the contrast-to-noise ratio (CNR) were
observed in the images reconstructed using the TCR method
on sparse data (R ! 5) compared to the standard IFT recon-
structions from full data for the perfusion datasets. The method
has the potential to improve dynamic myocardial perfusion imag-
ing and also to reconstruct other sparse dynamic MR
acquisitions. Magn Reson Med 57:1027–1036, 2007. © 2007
Wiley-Liss, Inc.
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Dynamic contrast-enhanced (DCE) MRI is used to track
changes over time in an object of interest by acquiring a
series of images. A contrast agent is injected and the data
are acquired in k-space for each time frame. Rapid acqui-
sitions are required to track the quickly changing contrast
in the object. One application of DCE-MRI is myocardial
perfusion, which is an important tool for assessing coro-
nary artery disease. In DCE-MRI for myocardial perfusion,
contrast agents such as gadolinium (Gd)-DTPA are injected
and images are acquired using ECG-gated sequences to
track the uptake of the contrast agent by the myocardium
at high temporal resolution.

To reduce the data acquisition time of dynamic MRI, a
number of techniques have been developed. These meth-
ods acquire a fraction of k-space in each time frame and
reconstruct images based on a priori information about the
dynamic data. Methods such as keyhole imaging (1,2) and
reduced-encoding MR imaging with generalized-series
reconstruction (RIGR) (3!5) assume that in a dynamic
sequence only the low-frequency data change and the
high-frequency data remain static. Thus full data can be
acquired for a single frame in the sequence and only low-
frequency data need to be acquired for the remaining
frames. This assumption of static high frequencies is not
always accurate.

View-sharing-type methods (6–9) assume that the dy-
namics in an image sequence change only by a small
amount from frame to frame. Thus only a fraction of data
can be acquired for each frame and the missing data can be
obtained from the adjacent frames. Such data-sharing is
equivalent to linear interpolation in time and can reduce
temporal resolution.

More recently, Madore et al. (10) proposed the una-
liasing by Fourier-encoding the overlaps using the tem-
poral dimension (UNFOLD) method for cardiac cine
imaging and functional MRI (fMRI). UNFOLD uses effi-
cient encoding of the k-t space to reduce the number of
acquired lines in the phase-encode direction for each
time frame. The method achieved a speed-up factor of 2
for cardiac cine imaging. The k-t broad-use linear acqui-
sition speed-up technique (BLAST) proposed by Tsao et
al. (11) uses spatiotemporal correlations and low-reso-
lution training data to achieve net acceleration factors of
4.1– 4.3 (12,13) for 3D cardiac cine imaging. Further-
more, k-t BLAST and UNFOLD can be combined with
parallel imaging techniques (14,15) based on multiple
receive coils to improve image quality or acquisition
speed (11,16).

For myocardial perfusion, higher acceleration factors
usually cannot be achieved using UNFOLD due to the
large amount of variation of contrast in images, which
requires more temporal bandwidth. k-t BLAST has been
used predominantly to speed up cardiac cine imaging
(11!13,17,18) and is typically used with additional
training data to capture correlation information. In ad-
dition, the UNFOLD and k-t BLAST methods are typi-
cally used for data undersampled in an interleaved
fashion. To overcome some of the limitations of the
previously proposed methods in terms of temporal
bandwidth and requiring additional training data, and
to further improve the reconstruction from sparse data,
we propose an inverse problem approach (19) with tem-
poral constraints.
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MATERIALS AND METHODS

Temporally Constrained Reconstruction (TCR) Method

The standard approach to reconstructing dynamic images
from full k-space data is to apply a 2D inverse Fourier
transform (IFT) on each time frame of data. Acquiring less
data in k-space for each time frame (k-t space) results in
aliasing in the image space and temporal frequency spec-
trum (x-f space). Pixels from different positions in x-f
space overlap onto a single pixel, making the problem of
reconstruction ill posed. If general a priori information is
known about the data, this can be incorporated into an
iterative reconstruction to resolve the aliasing. The main
idea of the TCR method proposed here is to use an appro-
priate temporal model as a constraint on the reconstruc-
tion in order to remove the artifacts from undersampling
and to preserve or increase the signal-to-noise ratio (SNR).

The theory presented here parallels the regularization
theory that is often used to solve ill-posed inverse prob-
lems. The standard discrete IFT reconstruction from full
k-space data can be mathematically represented as

d ! Fm [1]

where d represents the full data acquired in k-space for
different time frames; m represents complex image data,
which is the corresponding series of images for the time
frames; and F represents the 2D-FT on each time frame in
the dynamic sequence. When full k-space data d are un-
dersampled, and only sparse data, d̃, are acquired, aliasing
occurs in the x-f space (11). A solution, m̂, that resolves the
aliasing can be obtained by finding a balance between
fidelity to the acquired sparse data and incorporating an
additional constraint in terms of a temporal model that is
satisfied by the full data. Reconstruction can be performed
by minimizing the cost function C, given by

m̂ ! minm̃"C# ! minm̃"$"m̃# " %&"m̃## [2]

In the above equation, m̃ is the current image data esti-
mate; $"m̃# is the data fidelity term; &"m̃# is the temporal
constraint term (also known as a regularization term),
which quantifies how well the reconstruction matches the
temporal model; and % is the weighting factor or regular-
ization parameter that determines how much to weight the
constraint. The data fidelity term $"m̃# is given by

$"m̃# ! !WFm̃ # d̃!2
2 [3]

where d̃ is the undersampled data in k-space, W is a binary
sparsifying pattern (which represents the phase-encode
lines that are sampled) to obtain d̃ from d, and
! ! !2 indicates the L2 norm.

Depending on the kind of dynamic imaging data ob-
tained, different temporal constraint terms for & can be
chosen. For the current application, dynamic myocardial
perfusion imaging, the temporal constraint chosen was
based on the fact that for the complex image space data
obtained from full k-space without motion, the time curves
for each pixel are generally smoothly varying. Not only are
the magnitude time curves smoothly varying, but the real

and imaginary components also vary smoothly. This con-
straint was implemented with a maximum smoothness
functional given by

&"m̃# ! "
i'1

N

!(tm̃i!2
2 [4]

In the above equation (t is the temporal gradient oper-
ator, m̃i is the time curve for each pixel i in the estimated
complex image space, and N is the total number of pixels
in each time frame. The above model penalizes time
curves with high temporal gradients, making the curves
smooth in time.

Reconstruction was performed by minimizing the cost
functional given by

m̂ ! minm̃)!WFm̃ # d̃!2
2 " %"

i'1

N

!(tm̃i!2
2* [5]

In Eq. [5] the final solution m̂ is the set of all time curves
that show a good balance between having fidelity to the
measured data and satisfying the constraint term. The
amount of temporal smoothness desired in the solution
can be varied by changing %.

Minimization of the functional in Eq. [5] was performed
using an iterative gradient descent approach with finite
forward differences (20). The series of image frames were
updated iteratively according to

m̃n+1 ! m̃n # ,C-"m̃n#;n ! 0,1,2· · · [6]

where , corresponds to the step size of the gradient de-
scent, n corresponds to the iteration number, and C-"m̃#
corresponds to the Euler-Lagrange derivative of the func-
tional in Eq. [5] with respect to m̃, given by

C-"m̃# ! 2*"F!1"WFm̃# # F!1"d̃# # %(t
2m̃# [7]

where (t
2 represents the temporal Laplacian and operates

on the complex data. The initial estimate for Eq. [6], m̃0,
was taken as the series of images obtained by computing
the inverse 2D-FT on each time frame of acquired sparse
data. Other initial estimates (e.g., all zeros) gave similar
results; however, we note that methods such as the sliding-
window technique can be used for initialization for faster
convergence.

Choosing the appropriate weighting factor, %, for the
temporal constraint term is important to obtain the best
results for reconstruction. The weighting factor has to be
chosen such that there is a good balance between the
fidelity to the acquired data and satisfying the constraint.
In this work the L-curve method proposed by Hansen (21)
was used to determine the optimum weighting factor. The
norm of the data fidelity term was plotted against the norm
of the temporal constraint term on a log-log plot for differ-
ent values of the weighting factors, and the optimum value
of the weighting factor was given by the corner of the
L-curve.
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Acquisition

The reconstruction method using Eq. [5] was tested on
perfusion data from four different patients with minimal
respiratory motion. All patients provided informed con-
sent in accordance with the University of Utah Institu-
tional Review Board. Short-axis slices were acquired for
every heartbeat in each patient on a Siemens 3T scanner
using an eight-channel cardiac coil. Gd doses varied be-
tween 0.022 and 0.096 mmol/kg. A turbo fast low-angle
shot (TurboFLASH) saturation recovery sequence with
scan parameters TR ' 140–175 ms, TE ' 0.98–1.36 ms,
and slice thickness ' 7–8 mm was used. The acquisition
matrix for different scans varied between (128–192) .
(95–128). The acquired pixel size varied between (1.7–
2.2) . (2.5–3) mm2. Two of the datasets were obtained at
rest and two were obtained during adenosine stress.

Full k-space data obtained from each coil were sparsi-
fied by selecting phase-encode lines in two different ways
to determine which undersampling pattern performed bet-
ter. An interleaved sampling fashion and a variable den-
sity (VD) sampling fashion were used. Figure 1a shows the
interleaved sampling pattern of the full k-space data. In
Fig. 1a the k-axis represents the phase-encode direction
and the t-axis represents the time direction. The black dots
represent the phase encodes that are kept. The frequency-
encode direction is perpendicular to the plane of the pa-
per. In the figure the data are sparsified by a factor of 4 (for
the first time frame phase-encode lines 1, 5, 9. . . are cho-
sen, for the second time frame phase-encode lines 2, 6,
10. . . are chosen, and so on).

Figure 1b shows the alternative sampling pattern using a
VD pattern to sparsify the full k-space data. A few phase-
encode lines around the center of k-space for each time
frame are kept. Phase-encode lines further from the center
on both sides are acquired with a lower acceleration factor,
RL, in an interleaved fashion. The remaining k-space data
are sampled in an interleaved fashion with a higher accel-
eration factor, RH. For the perfusion datasets four phase-
encode lines around the center of k-space were sampled
for each time frame, and four lines on either side were then
sampled in interleaved fashion with RL ' 2. The remain-
ing data were sampled with higher accelerations in the

interleaved fashion depending on the number of phase
encodes, so that 20% of the full k-space data was sampled
in total.

Analysis

Reconstruction using the TCR method was performed on
the sparse data and the results were compared with those
obtained using IFT reconstruction of full k-space data.
Reconstructions from the TCR method were also compared
with those obtained by the sliding-window (SW) recon-
struction method from sparse data. In the SW reconstruc-
tion, a missing phase-encode line in a current time frame is
replaced by using the corresponding phase encodes from
the nearest-neighbor frame. Averaging of a phase encode
from two different time frames was done if two nearest-
neighbor frames had the same missing phase-encode line
(11). The weighting factor for the temporal constraint term,
%, was obtained using the L-curve method. Comparisons
were made between the results obtained from a single coil
and those obtained by combining the reconstructions from
multiple coils with the square root of sum of squares
(SOS). Root mean square error (RMSE) values were com-
puted for the images reconstructed from sparse data by
comparing them to the full data reconstructions using IFT.
The mean signal intensity time curves for regions in the
left ventricular (LV) blood pool and myocardium in the
reconstructed images were compared with those obtained
from full k-space data. SNRs and contrast-to-noise ratios
(CNRs) for the reconstructed images were also compared.
For a given dataset the SNR was computed for a single time
frame, picked from the center of the perfusion sequence,

according to
SLV

/Noise
, where SLV was obtained by computing

the mean signal from a region in the LV blood pool, and
/Noise was obtained by computing the standard deviation
(SD) of noise from a region in the background. The CNR
between the LV blood pool and myocardium was com-

puted as
"SLV # SMy0#

/Noise
, where SMyo was obtained by comput-

ing the mean signal from a region in the myocardium on
the time frame picked from the center of the temporal
sequence.

FIG. 1. a: Interleaved sparsifying pattern used to sample 25% of full k-space data. The k-axis represents the phase encodes and the t-axis
represents the time frames. The frequency-encode direction is perpendicular to the plane of paper. The black dots represent the phase
encodes sampled. b: k-t Space showing the VD sampling pattern. The k-axis represents phase encodes and the t-axis represents time. The
frequency-encode direction is perpendicular to the plane of the paper. The black portion represents the data sampled. A few phase-encode
lines around the center of k-space, represented by the black band in the center, are acquired for each time frame. Phase-encode lines a
little further from the center on both sides are sampled in an interleaved fashion with an RL. The remaining phase-encode data are sampled
with an RH in an interleaved fashion.
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RESULTS

In this section, reconstructions obtained using the TCR
method in Eq. [5] are presented. Interleaved, and VD sam-
pling patterns are compared.

Interleaved Sampling

The sparsifying pattern in which phase-encode lines were
removed in an interleaved fashion, as shown in Fig. 1a,
was used to sample 25% of full data (R ' 4). The recon-
structed results are shown in Fig. 2. Figure 2a shows a time
frame in a typical perfusion sequence obtained from full
k-space data by using the IFT. Figure 2b shows the corre-
sponding time frame reconstructed using the IFT on 25%
of the full data. Figure 2c shows the corresponding time
frame reconstructed using the SW technique. The arrow in
the image points to a residual artifact in the reconstruc-
tion. Figure 2d shows the results of the TCR method ob-
tained from sparse data. Figure 2e shows that for all of the
time frames TCR has reduced RMSEs as compared to the
SW method. Similar trends were seen when a region con-
fined to the heart was used to calculate the RMSE. The
SNR and CNR computed for the TCR-reconstructed image
shown in Fig. 2d were 22.1 and 9.9, respectively, while the
corresponding values reconstructed from full data using
IFT were 18.3 and 8.3, respectively. Mean improvements
of 27.4(07.6)% in the SNR and 24.4(07.1)% in the CNR
were observed over the four datasets.

VD Sampling

Figure 3 shows the results obtained by using only 20%
(R ' 5) of full k-space data sparsified in the VD fashion on
a dataset obtained during adenosine stress. Figure 3a
shows two time frames reconstructed from a full dataset
using the IFT. Figure 3b shows the corresponding time
frames reconstructed from 20% of full k-space data using
the SW method. The arrows in the time frames point to
residual artifacts that are not resolved by the method. The
corresponding time frames reconstructed using the TCR

approach are shown in Fig. 3c. Figure 3d shows that the
RMSE values for the sparse data reconstructions are al-
ways lower using TCR as compared to the SW method.
Note that the R ' 5 factor was achieved even though a full
unaliased field of view (FOV) was not acquired initially.

Figure 4 compares the mean intensity time curves for
different regions in the blood pool and myocardium for the
TCR and SW reconstructions. Figure 4a shows a region in
the LV blood pool, and the myocardium segmented into
six equiangular regions. Figure 4b compares the mean
intensity time curves for the region in the LV blood pool
obtained from the images reconstructed from full data
using IFT and images reconstructed from R ' 5 data using
the TCR and SW methods. Figure 4c–e compare the mean
intensity time curves for region numbers 1, 2, and 6 in the
myocardium, respectively. The time curves obtained from
TCR matched with the full data reconstructions more
closely than those obtained from the SW method.

The SNR and CNR values computed for the image re-
constructed from sparse data using the TCR method were
18.6 and 11.8, respectively, while the corresponding val-
ues reconstructed from full data using the IFT were 16.5
and 10.1, respectively. For all of the four datasets recon-
structed using the TCR method from data sparsified by a
factor of 5 in the VD fashion, SNR and CNR values im-
proved over those computed using the standard IFT recon-
structions from full data. Mean improvements of
27.7(04.3)% in SNR and 14.1(03.7)% in CNR were ob-
served.

Comparison of Interleaved and VD Sampling

Figure 5a shows the regions of interest (ROIs) defined in
the LV blood pool and myocardium defined on a single
time frame for the dataset in Fig. 3. The mean signal
intensity time curves obtained from the regions in the LV
blood pool region and the myocardium are compared in
Fig. 5b and c, respectively. In Fig. 5b and c, the curve
labeled “IFT recon-Full data” represents the mean inten-
sity time curve obtained from images reconstructed from

FIG. 2. Comparison of reconstructions from
full data and R ' 4 data using TCR and SW
methods. a: A time frame reconstructed
from full k-space data using IFT. b: Corre-
sponding time frame reconstructed from
sparse R ' 4 data using the IFT. c: Corre-
sponding time frame reconstructed using
the SW technique. The arrow in the image
points to residual artifacts in the SW
method. d: Corresponding time frame re-
constructed using the TCR method. The ar-
tifact present in c is reduced. e: Plot of
RMSE values for each time frame computed
for the SW and TCR methods.
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full k-space data using the IFT, the curve labeled “TCR-
VD” represents the mean intensity curve obtained from
images reconstructed from 20% of full k-space data sam-
pled in VD fashion using the TCR method, and the curve
labeled “TCR-interleaved” represents the mean intensity
curve obtained from images reconstructed from 20% of
full data sampled in an interleaved fashion using the TCR
method. The time curves obtained from data that are spar-
sified in VD fashion match well with those obtained from
full data. The interleaved data did not reconstruct as well
as the VD data when R ' 5 was used.

Use of All Coils

The TCR method (Eq. [5]) was also applied independently
to sparse data obtained from each of the eight coils. Full
data from each coil were undersampled by a factor of 5 in
VD fashion. The reconstructions from each coil were then
combined using the SOS method, and the results for the
dataset from Fig. 3 are shown in Fig. 6. Figure 6a shows
zoomed versions of two time frames obtained from the
SOS reconstructions from full data for each coil using the
IFT, and Fig. 6b shows the corresponding time frames
obtained from sparse data for each coil using the TCR

approach. Figure 6c shows the corresponding difference
images.

Weighting Factor

The L-curves obtained for sparse datasets (R ' 4) from four
patients are shown in Fig. 7. The norm of the data fidelity
term (Eq. [3]) was plotted against the norm of the temporal
constraint term (Eq. [4]) for different values of %. The
optimum regularization parameter for each of the four
datasets is close to 0.04.

To demonstrate the effect of different values of %, Fig. 8a
shows an ROI defined in the LV blood pool on a single
time frame of a perfusion dataset. Figure 8b–d compare the
time curves obtained from the reconstructed sparse dataset
(undersampled in VD fashion by a factor of 5) using Eq. [5]
and choosing different values of %, and those obtained
from full k-space data using the IFT. From the figures we
see that choosing a value of % that is much less than the
optimum value produces non-smooth time curves, while
choosing a % value that is much greater than the optimum
value produces overly smooth curves. More on the choice
and robustness of % is included in the Discussion section
below.

FIG. 3. Comparison of reconstructions from
full data and R ' 5 data using the TCR and
SW methods. a: Two different time frames
reconstructed from full k-space data using
IFT (first column). b: Corresponding time
frames reconstructed using SW technique.
The arrows point to residual artifacts in the
SW method (second column). c: Corre-
sponding time frames reconstructed using
TCR method. The artifacts present in b are
reduced (third column). d: Comparison of
RMSE values for each time frame computed
for reconstructions from the SW and TCR
methods.
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DISCUSSION

An iterative TCR technique to reconstruct high-quality
images from sparse k-space data has been presented. The
method achieves high acceleration factors by using appro-
priate temporal model information. Since the method is
based on temporal regularization of the complex image
space data, it is robust to different sparsifying schemes
with no additional computational burden.

Using complex data in the image space rather than mag-
nitude data for the temporal constraint terms in the TCR
method provides complementary information in terms of

real and imaginary components of the data. For example,
consider the maximum smoothness constraint in Eq. [4].
Figure 9a and c show the real and imaginary parts of a
single time frame in complex image space, reconstructed
from full k-space perfusion data. Figure 9b shows the
mean signal intensity time curves for the LV blood pool
region shown in Fig. 9a, obtained from the real part of
complex image space reconstructed from full and sparse
data using the IFT. Figure 9d shows the mean signal in-
tensity time curves for the region in myocardium shown in
Fig. 9c, obtained from the imaginary part of complex image

FIG. 4. Comparison of dynamics of recon-
structions from TCR and SW for different
regions in the blood pool and myocardium
for the dataset shown in Fig. 3. a: Image
showing an ROI in the LV blood pool and six
segmented regions in the myocardium. The
image was reconstructed from full data us-
ing the IFT from a single coil. b: Comparison
of mean intensity time curves for the LV
blood pool region shown in (a) for different
reconstructions from full and sparse data
(R ' 5) undersampled in VD fashion. c:
Comparison of mean intensity time curves
for region 1 in the myocardium shown in (a)
for different reconstructions. d: Comparison
of mean intensity time curves for region 2 in
the myocardium shown in (a) for different
reconstructions. e: Comparison of mean in-
tensity time curves for region 6 in the
myocardium shown in (a) for different
reconstructions.

FIG. 5. Comparison of reconstructions from sparse data obtained using interleaved and VD sampling patterns. a: ROIs defined on a single
time frame for the dataset in Fig. 3 in the LV blood pool and the myocardium. b: Comparison of average signal intensity time curves for the
LV blood pool region shown in (a). c: Comparison of average signal intensity time curves for the region in the myocardium shown in (a). The
reconstructions were obtained from full k-space data using IFT and compared with those obtained from 20% of full data sampled in VD and
interleaved sampling patterns using the TCR approach in Eq. [5].
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space reconstructed from full and sparse data using the
IFT. The sparse data were obtained by sampling 25% of
the full k-space data in an interleaved fashion. The con-
straint in Eq. [4] is satisfied by the time curves for the
pixels in the perfusion images for both real and imaginary
parts, and the curves from the full data are smoother than
those from the sparse data. Consistent with this, it was
found that using the temporal constraint on complex im-

age data performed better than using the constraint only on
magnitude data.

The temporal constraint used here is based on the
assumption that there is little motion in the images. The
results presented here were derived from rest and stress
perfusion datasets with little respiratory motion (12
pixels), where the method performs well. The method
can be applied “as is” on patients with a good breath-
hold, and is likely to be useful in other applications
(e.g., DCE-MRI of some cancers) in which motion is not
a significant issue.

Although some patients can maintain a good breath-
hold, it can be difficult to obtain motion-free data, espe-
cially under stress perfusion. In the presence of respiratory
motion, the TCR method was not able to fully resolve the
artifacts from undersampling. This is likely due to the fact
that motion combines with the adverse aliasing from the
undersampling to produce complicated changes in the
time curves that are not accurately regularized by the TCR
method. The artifacts produced by motion are local in
time, that is, the time frames with significant motion are
affected more than those with less motion. Figure 10a
shows a time frame reconstructed using IFT from full data
that has some motion (22 pixels in both the x and y
directions) in the heart region as compared to its adjacent
time frames, and Fig. 10b shows the corresponding time
frame reconstructed from R ' 4 data with TCR. Figure 10c
shows the corresponding difference image between Fig.
10a and b. Figure 10d shows a different time frame later in
the sequence reconstructed using IFT from full data in
which there is motion in the chest wall (23 pixels) and
heart region (22 pixels) as compared to its adjacent time
frames. The chest wall and heart region are moving in
different directions. Figure 10e shows the corresponding
time frame reconstructed from R ' 4 data with TCR. Figure
10f shows the difference image between Fig. 10d and e. We
can see that artifacts from the undersampling are more

FIG. 6. Reconstruction results from all coils. The phase-encode direction is from left to right and the frequency-encode direction is from
bottom to top. a: Zoomed image frames at two different time points in the perfusion dataset shown in Fig. 3, reconstructed using IFT from
full k-space data for eight coils and combined using the SOS method (first column). b: Corresponding image frames reconstructed from
20% of full k-space data for each coil using the TCR approach. Full k-space data were sparsified by removing phase-encode lines in the
VD fashion. Individual reconstructions from each coil were combined using the SOS method (second column). c: Corresponding difference
images between (a) and (b) (third column). The images are scaled to highlight the differences.

FIG. 7. L-curves for four different datasets shown on a log-log plot
for different values of %. The temporal constraint norm corresponds
to the norm in Eq. [4] and the data fidelity norm corresponds to the
norm in Eq. [3]. The norms for datasets 2–4 are scaled to have a
range similar to that of dataset 1 for illustrative purposes. The values
of % are shown on the L-curve for dataset 1. The other datasets have
the same % values, that is, the seventh sample point from the left
corresponds to % ' 0.04. The arrows on the curves point to the
corners of the L-curves, which are close to 0.04 for all four cases.
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significant in the time frame with motion in both the chest
wall and heart regions.

Incorporating motion-related issues in the TCR method
is not addressed here, and will be the subject of future
work. Artifacts arising from motion can be reduced by
incorporating a priori determined information about the
motion into the reconstruction. One method to handle
respiratory motion is to use calibration scans to identify
the motion of the chest wall and other anatomy from a
training dataset, and then to correlate the movements with

signals from a real-time navigator or respiratory belt so that
motion is measured.

The TCR method was tested by downsampling full k-
space data. While this simulates an acquisition with R ' 5,
actual data acquisition with R ' 5 has not been tested.
This type of downsampling may not provide a true fivefold
acceleration depending on the pulse sequence used. To
achieve the reported R-values for cardiac saturation recov-
ery sequences, pulse sequences such as those proposed in
Refs. 22 and 23 should be used to acquire sparse data for

FIG. 8. Comparison of results of recon-
struction using the TCR approach with dif-
ferent values of %. a: ROI defined in the LV
blood pool on a single time frame recon-
structed using IFT from full k-space data of
the perfusion dataset in Fig. 3. b–d: Com-
parison of the mean intensity time curves for
the region shown in a obtained from the
images reconstructed using IFT from full
data, and using TCR from 20% of the full
data sampled in VD fashion for % ' 0.0004,
% ' 0.04, and % ' 4, respectively.

FIG. 9. Comparison of time curves from real and
imaginary parts of reconstructed complex image
space obtained from full k-space data and sparse
data undersampled by a factor of 4 in interleaved
fashion. a: Real part of a single time frame in com-
plex image space reconstructed from full k-space
data using IFT with an ROI in the LV blood pool. b:
Comparison of the mean intensity time curves for
the region shown in (a) for the real part of the
complex image data reconstructed from full
k-space using IFT, 25% of full k-space data using
IFT, and the TCR approach in Eq. [5]. c: Imaginary
part of the corresponding time frame in complex
image space reconstructed from full k-space data
using IFT with an ROI in the myocardium. d: Com-
parison of the mean intensity time curves for the
region shown in c for the imaginary part of the
complex image data reconstructed from full
k-space using IFT, 25% of full k-space data using
IFT, and the TCR approach in Eq. [5].
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multiple slices. This issue is independent of the type of
reconstruction used.

More complex temporal models, such as B-splines or a
two-compartment model, can also be used as temporal
constraints to achieve high acceleration factors. Alterna-
tively, one can estimate the parameters of such temporal
models, rather than estimating every pixel value at every
time point. We recently applied a two-compartment model
to reconstruct parameterized images from simulated data
(24).

The TCR technique is independent of coil configurations
and hence can be used in conjunction with parallel imag-
ing techniques (14,15) to achieve higher accelerations or to
further improve the quality of images. Unlike parallel im-
aging techniques, which impose an SNR penalty on the
reconstructed images, the TCR method improves SNR over
the standard IFT reconstructions by taking advantage of
the temporal data correlations.

Although the TCR approach is robust to different spar-
sifying schemes, we observed that a higher acceleration
(R ' 5) for Cartesian undersampling could be achieved
using a VD sampling pattern, compared to R ' 4 for the
interleaved sampling pattern. Figure 5b and c compare the
time curves for the regions shown in Fig. 5a reconstructed
from sparse data obtained using interleaved and VD sam-
pling. The curves obtained using the VD sampling pattern
match better with those obtained from full k-space data.
This is reasonable since the contrast dynamics are mostly
captured by the lines around the center of k-space, and the
high-frequency information can be captured very sparsely
over a number of time frames.

Determining the optimum weighting factor for the con-
straint on each dataset using the L-curve method is time-
consuming due to the computation of the norms of the
solutions for different values of %. However, from the
L-curves for the four datasets in Fig. 7, the weighting factor
does not vary significantly for different datasets, and a
fixed value can likely be used. Also, we found that the TCR
method was robust to perturbations (00.5%) in the opti-
mum value of %. This implies that in practice, a fixed value

of % will be useful for all myocardial perfusion datasets
acquired in this manner. Even better performance may be
possible with a spatially adaptive % parameter that is tai-
lored to reflect how dynamic different regions are expected
to be.

For all of the datasets, a fixed number of iterations (1000)
of gradient descent was empirically chosen to minimize
the TCR functional in Eq. [5]. We found that the cost
functional in Eq. [5] dropped significantly in the first few
iterations and dropped at a slower rate for the later itera-
tions. Figure 11 shows the plot of the loge(cost) and the
total RMSE values (scaled) computed for all of the time
frames vs. the number of iterations. We can see that the
RMSE values also drop significantly in the first few itera-
tions, but do not change significantly for later iterations.

Matlab (The Mathworks, Natick, MA, USA) implemen-
tations for the TCR in Eq. [5] took about 7 min on a

FIG. 10. Example of the effect of respiratory
motion on the TCR method. a: A time frame
in a perfusion sequence reconstructed from
full data using IFT, which has motion of 22
pixels in the x and y directions in the heart
region as compared to its adjacent frames.
b: Corresponding time frame reconstructed
from R ' 4 data (interleaved undersampling)
using the TCR method. c: Image showing
the difference between (a) and (b). d: A dif-
ferent time frame later in the sequence re-
constructed from full data using IFT, which
has motion of 23 pixels in the chest wall in
x direction and 22 pixels in the x and y
directions in the heart region as compared
to its adjacent frames. e: Corresponding
time frame reconstructed using the TCR
method. The arrow points to the residual
artifacts that are not resolved by TCR. f:
Corresponding difference image between
(d) and (e).

FIG. 11. Plots comparing the loge(cost function) in Eq. [5] and total
RMSE values (scaled) for all time frames as a function of the iteration
number.
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machine with an AMD dual core processor and 4GB RAM
to reconstruct a dataset containing 36 time frames from
20% of full data sampled with the VD pattern. TCR was
also implemented using C++ in the ITK (25) framework
and gave equivalent results.

CONCLUSIONS

The TCR method was used to reconstruct sparse dynamic
data, which could allow improved coverage or improved
spatial or temporal resolution. The method achieved ac-
celerations up to a factor of 5 while preserving the quality
of myocardial perfusion datasets that had little respiratory
motion. A mean improvement of 27.7(04.3)% in SNR and
14.1(03.7)% in CNR between the LV blood pool and the
myocardium was observed. The method can be extended
to improve the acquisition speed of other DCE imaging
techniques, such as DCE tumor imaging, where assump-
tions regarding the temporal characteristics of the data can
be similar to the contrast kinetics in the heart.
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