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Abstract. This paper investigates an approach to model the space of
brain images through a low-dimensional manifold. A data driven method
to learn a manifold from a collections of brain images is proposed. We
hypothesize that the space spanned by a set of brain images can be
captured, to some approximation, by a low-dimensional manifold, i.e.
a parametrization of the set of images. The approach builds on recent
advances in manifold learning that allow to uncover nonlinear trends in
data. We combine this manifold learning with distance measures between
images that capture shape, in order to learn the underlying structure of
a database of brain images. The proposed method is generative. New
images can be created from the manifold parametrization and existing
images can be projected onto the manifold. By measuring projection
distance of a held out set of brain images we evaluate the fit of the
proposed manifold model to the data and we can compute statistical
properties of the data using this manifold structure. We demonstrate
this technology on a database of 436 MR brain images.

1 Introduction

Recent research in the analysis of populations of brain images shows a pro-
gression: from single templates or atlases [1], to multiple templates or stratified
atlases [2], mixture models [3] and template free methods [4–6] that rely on a
sense of locality in the space of all brains. This progression indicates that the
space of brain MR images has a structure that might also be modeled by a rela-
tively low-dimensional manifold as illustrated by Figure 1. The aim of this paper
is to develop and demonstrate the technology to learn the manifold structure of
sets of brain MR images and to evaluate how effective the learned manifold is
at capturing the variability of brains.

Manifold learning [7] refers to the task of uncovering manifolds that de-
scribe scattered data. In some applications this manifold is considered a genera-
tive model, analogous to a Gaussian mixture model. In this context, we assume
that the data is sampled from a low-dimensional manifold embedded in a high-
dimensional space, with the possibility of noise that sets data off the surface.
For this work, we consider the space of all images which can be represented as
smooth functions. Virtually all manifold learning techniques published to date
assume that the the low-dimensional manifold is embedded in a Euclidean space.
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Fig. 1. (a) Illustration of image data on a low-dimensional manifold embedded in a
diffeomorphic space. (b) A set of images consists of random length/position segments
form a spiral. (c) The Fréchet mean in the diffeomorphic space is not like any example
from the set. (d) Fréchet mean on data-driven manifold reflects the image with average
parameter values.

Nearby samples lie in the tangent space of the manifold, and thus their differ-
ences can be evaluated by Euclidean distance in the ambient space. The space
of brain images on the other hand does not fit directly into this paradigm. A
great deal of research on brain image analysis shows that the L2 distance is
not suitable for measuring shape changes in images [8], but that the metric for
comparing brain images should account for deformations or shape differences be-
tween images. For example, computational anatomy, used for population analysis
and atlas building, is based on a metric between images derived from coordinate
transformations [2, 9, 3].

The low-dimensional manifold of brain images we aim to learn is embed-
ded not in Euclidean space, but in the space of images with a metric based
on coordinate transformations. For this work we adapt the image metric based
on diffeomorphic coordinate transformations [10–12] to manifold learning. Often
the stratification induced by the diffeomorphic image metric is described as a
manifold—in this paper we refer to the manifold of brain images as described by
the data. Our hypotheses are that the space of brain images is some very small
subspace of images that are related by diffeomorphisms, that this subspace is
not linear, and that we can learn some approximation of this space through a
generalization of manifold learning that accounts for these diffeomorphic rela-
tionships. Figure 1 illustrates these concepts on a simple example.

A manifold learning algorithm of particular interest to this work is isomap [13].
Isomap is based on the idea of approximating geodesic distances by the construc-
tion of piecewise linear paths between samples. The paths are built by connecting
nearest neighbors, and the geodesic distance between two points is approximated
on the the linear segments between nearest neighbors. Thus, isomap requires only
distances between nearby data points to uncover manifold structure in data sets.



The reliance on only nearest neighbor distances is important for this paper. The
tangent space to the space of diffeomorphic maps is the set of smooth vector
fields. Thus, if the samples from the manifold are sufficiently dense, we can com-
pute the distances in this tangent space, and we need only to compute elastic
deformations between images.

Isomap, and several other manifold learning algorithms, assign parameters to
data points that represent coordinates on the underlying manifold. This paper
introduces several extensions to this formulation, which are important for the
analysis of brain images. First is an explicit representation of the manifold in the
ambient space (the space of smooth functions). Thus, given coordinates on the
manifold, we can construct brain images that correspond to those coordinates.
We also introduce a mechanism for mapping previously unseen data into the
manifold coordinate system. These two explicit mappings allow to project images
onto the manifold. Thus we can measure the distance from each image to the
manifold (projected image) and quantitatively evaluate the efficacy of the learned
manifold. In comparison with previous work, on brain atlases for example, this
work constructs, from the data itself, a parametrized hyper-surface of brain
images, which represents a local atlas for images that are nearby on the manifold.

2 Related Work

The tools for analyzing or describing sets of brain image demonstrate progres-
sively more sophisticated models. For instance, unbiased atlases are one mech-
anism for describing a population of brains [14–16]. Blezek et al. [2] propose
a stratified atlas, in which they use the mean shift algorithm to obtain mul-
tiple templates and shows visualizations that confirm the clusters in the data.
In [3] the OASIS brain database is modeled through a mixture of Gaussians. The
means of the Gaussians are a set of templates used to describe the population.
Instead of assuming that the space of brain images forms clusters, we postulate
that the space of brains can be captured by a continuous manifold.

An important aspect of our work is the ability to measure image differences
in a way that captures shape. It is known that the L2 metric does not ade-
quately capture shape differences [8]. There are a variety of alternatives, most of
which consider coordinate transformations instead of, or in addition to, inten-
sity differences. A large body of work [10–12] has examined distances between
images based on high-dimensional image warps that are constrained to be dif-
feomorphisms. This metric defines a infinite dimensional manifold consisting of
all shapes that are equivalent under a diffeomorphism. Our hypothesis, however,
is that the space of brains is essentially of significantly lower dimension.

Several authors [17, 9, 6] have proposed kernel-based regression of brain im-
ages with respect to an underlying parameter, such as age. The main distinction
of the work in this paper is that the underlying parametrization is learned from
the image data. Our interest is to uncover interesting structures from the image
data and sets of parameters that could be compared against underlying clinical
variables.



Zhang et al. use manifold learning, via isomap, for medical image analysis,
specifically to improve segmentation in cardiac MR images [18]. Rohde et al. [19]
use isomap in conjunction with large deformation diffeomorphisms to embedded
binary images of cell nuclei in a similar fashion to the proposed approach. In
addition to the embedding we provide a generative model that allows to quan-
titatively evaluate the manifold fit.

3 Formulation

We begin with a description of the image metric between nearest neighbors in the
space of smooth images. A diffeomorphic coordinate transformation between two
images is φ(x, 1), where φ(x, t) = x+

∫ t
0
v(φ(x, τ), τ)dτ, and v(x, t) is a smooth,

time varying vector field. The diffeomorphic framework includes a metric on
the diffeomorphic transformation ||φ(x, t)||L =

∫ t
0
||v(x, τ)||Ldτ which induces a

metric d between images yi and yj :

d(yi, yj) = minv
∫ 1

0
||v(x, τ)||Ldτ

subject to
∫
Ω
||yi(x+ φ(x, 1))− yj(x))||22dx = 0

(1)

The metric prioritizes the mappings and, with an appropriate choice of the differ-
ential operator L in the metric, ensures smoothness. We introduce the constraint
that the transformation must provide a match between the two images:

||yi(φ(x, 1))− yj(x)|| =
(∫

Ω

(yi(φ(x, 1))− yj(x))2dx
) 1

2

< ε. (2)

where ε allows for noise in the images.
For two images that are very similar, φ and v are small, and because the

velocities of the geodesics are smooth in time [20], we can approximate the
integrals for the coordinate transform and geodesic distance:

φ(x, 1) ≈ v(x, 0) = v(x), and d(yi, yj) ≈ minv ||v(x)||L,
subject to

∫
Ω
||yi(x+ v(x))− yj(x))||22dx < ε

. (3)

Thus, for small differences in images the diffeomorphic metric is approximated
by a smooth displacement field. In this paper we use the operator L = αI +∇,
where α is a free parameter and the resulting metric is ||v(x)||L = ‖Lv(x)‖2.
To minimize deformation metric for a pair of discrete images, we use a gradient
descent. The first variation of (3) results in a partial differential equation, which
we solve with finite forward differences to an approximate steady state. For
the constraint, we introduce a penalty on image residual with an additional
parameter λ, which we tune in steady state until the residual condition in (2) is
satisfied or until the deformation metric exceeds some threshold that disqualifies
that pair of images as nearest neighbors. We use a multiresolution, coarse to fine,
optimization strategy to avoid local minima.

Next we present a formulation for representing the structure of the manifold
in the ambient space and for mapping unseen data onto this intrinsic coordinate



system. First, we propose the construction of an explicit mapping f : P → A
from the space of manifold parameters P to the high dimensional ambient space
A. Let X = {x1, . . . , xn} be the parameter values assigned to the image data
sets Y = {y1, . . . , yn}; isomap gives the discrete mapping xi = ρ(yi). Inevitably
there will be a distribution of brain images away from the manifold, and the
manifold should be the expectation [21] of these points in order to alleviate
noise and capture the overall trend in the data. That is f(x) = E(Y |ρ(Y ) = x).
In the discrete setting the conditional expectation can be approximated with
Nadaraya-Watson kernel regression:

f(x) = arg min
y

∑
i∈Xnn(x)K(x, xi)d̃(y, yi)∑

i∈Xnn(x)K(x, xi)
, (4)

which we compute, in the context of diffeomorphic image metrics using the
method of [9], which iteratively updates f(x) and the deformation to f(x) from
the nearest neighbors starting with identity transformations. This kernel regres-
sion requires only the nearest neighbors Xnn(x) of xi ∈ X. This constrains the
regressions to images similar in shape since locality in X implies locality in
Y . Using this formulation, we can compute an image for any set of manifold
coordinates, and thus we have an explicit parametrization of the manifold.

For the assignment of manifold parameters to new, unseen images we use
the same strategy. We represent this mapping as a continuous function on the
ambient space, and we compute it via a regression on parameters given by isomap

ρ′(y) =

∑
i∈Ynn(y)K(y, yi)xi∑
i∈Ynn(y)K(y, yi)

, (5)

with Ynn(y) the nearest neighbors of y. The projection of a new image onto the
manifold is the composition of these mappings p(y) = f(ρ′(y)).

For K we use a Gaussian kernel for the mappings with a bandwidth selected
based on average nearest neighbor distances. The number of nearest neighbors
for the regression is selected based on the resulting bandwidth for the kernel K,
such that all points within three standard deviations are included.

4 Results

In section 1 we illustrated the idea of the paper on a simple examples on 2D
images of spiral segments. The image data set used consists of 100 images of
segments with varying length and location of the spiral in Figure 1. Figure 2
shows images constructed by the proposed approach by sampling the learned
manifold representation of the image data. Thus the images depict samples on
the manifold embedded in the ambient space. Figure 1 also shows the Fréchet
means for the diffeomorphic space and for the manifold learned from the data.

We apply the proposed approach to the open access series of imaging studies
(OASIS) cross-sectional MRI data set. The images are gain-field corrected and



Fig. 2. Reconstructed images along the first dimension of the manifold learned from
spiral segments as illustrated in Figure 1.

atlas registered. We use 380 of the 436 images to learn the manifold and evaluate
reconstruction errors on the left out 56 images.

Figure 3 (a) shows axial slice 80 for a 2D parametrization (manifold coordi-
nates) obtained by the proposed method. A visual inspection reveals that the
learned manifold detects the change in ventricle size as the most dominant pa-
rameter (horizontal axis). It is unclear if the second dimension (vertical axis)
captures a global trend. Figure 3 (b) shows reconstruction errors on the held out
images against the dimensionality of the learned manifold. The reconstruction
error is measured as the mean of the distances between the original brain images
and their projection on to the learned manifold scaled by the average nearest

neighbor distance, i.e. error =
∑

i
d(f(ρ′(yi)),yi)∑
i
d(nn(yi),yi)

. The reconstruction errors are

smaller than the average one nearest neighbor distance. An indication that the
learned manifold accurately captures the data. The reconstruction errors sug-
gest that the data set can be captured by a 3D manifold. We do not postulate
that the space of brains is captured by a 3D manifold. The approach learns a
manifold from the available data and thus it is likely that given more samples
we can learn a higher dimensional manifold for the space of brains.
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Fig. 3. (a)2D parametrization of OASIS brain MRI. The insets show the mean (green),
median (blue) and mode (red) of the learned manifold and the corresponding recon-
structed images. (b) Reconstruction errors against manifold dimensionality.

Figure 4 shows axial slices of brain images generated with the proposed
method on a regularly sampled grid on the 2D representation shown in fig-



ure 3(c), i.e. we have sampling of the learned brain manifold. The first dimen-
sion (x1) clearly shows the change in ventricle size. The second dimension (x2)
is less obvious. A slight general trend observable from the axial slices seems to
be less gray and white matter as well as a change in lateral ventricle shape (from
elongated to more circular).
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Fig. 4. Reconstructions on a grid on the 2D representation shown in figure 3(c).

The method is computationally expensive because of the pairwise distance
computations, each requiring an elastic image registration. The registration takes
with our multiresolution implementation about 1 minute on a 128 × 128 × 80
volume. Pairwise distances computations for the OASIS database running on a
cluster of 50, 2Ghz processors, requires 3 days. The reconstruction by manifold
kernel regressions requires about 30 minutes per image on a 2 Ghz processor.

5 Conclusions

Quantitative evaluation illustrates that the space of brains can be modeled by
a low dimensional manifold. The manifold representation of the space of brains
can potentially be useful in wide variety of applications. For instance, regression
of the parameter space with clinical data, such as MMSE or age, can be used to
aid in clinical diagnosis or scientific studies . An open question is whether the
manifolds shown here represent the inherent amount of information about shape
variability in the data or whether they reflect particular choices in the proposed
approach. In particular implementation specific enhancements on image metric,
reconstruction, and manifold kernel regression could lead to refined results.
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