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Abstract

We present a manifold learning approach to dimension-

ality reduction that explicitly models the manifold as a map-

ping from low to high dimensional space. The manifold is

represented as a parametrized surface represented by a set

of parameters that are defined on the input samples. The

representation also provides a natural mapping from high

to low dimensional space, and a concatenation of these two

mappings induces a projection operator onto the manifold.

The explicit projection operator allows for a clearly defined

objective function in terms of projection distance and re-

construction error. A formulation of the mappings in terms

of kernel regression permits a direct optimization of the ob-

jective function and the extremal points converge to princi-

pal surfaces as the number of data to learn from increases.

Principal surfaces have the desirable property that they, in-

formally speaking, pass through the middle of a distribu-

tion. We provide a proof on the convergence to principal

surfaces and illustrate the effectiveness of the proposed ap-

proach on synthetic and real data sets.

1. Introduction

Finding a low dimensional representation of a high di-

mensional data set is a task with applications in many ar-

eas of computer vision. Common approaches are principal

component analysis (PCA) or factor analysis if the data is

assumed to exhibit a linear structure. In recent years re-

searchers proposed various approaches to tackle the nonlin-

ear case, generally referred to as nonlinear dimensionality

reduction or manifold learning. Manifold learning refers to

the assumption that the data lies on or near a low dimen-

sional manifold embedded in a high dimensional space.

Several applications of dimensionality reduction require

the projection of new data points onto the manifold or the

reconstruction of the high-dimensional data from manifold

coordinates. For such applications it is natural to quantify

the performance of the learned manifold by projection dis-

tance, and yet this is seldom considered by state-of-the-art

methods. For instance, neither isomap nor Laplacian eigen-

maps produce any explicit mappings between the coordi-

nate systems of the manifold (the parametrization), C , and

the ambient data space, D . Researchers usually resort to

a (weighted) nearest neighbor averaging [24], but there is

nothing in the construction of manifolds from these meth-

ods that gives any assurances about the quality of these ap-

proximations.

Based on these observations we propose an approach to

manifold learning that explicitly provides mappings for em-

bedding and reconstruction and specifically optimizes the

projection distance. The mappings are computed by ker-

nel regression on manifold coordinates defined on the input

data. The coordinates determine the shape of the manifold.

Thus we can evaluate and, by adjusting the manifold coordi-

nates, optimize the manifold in terms of projection distance.

We call this approach the Kernel Map Manifolds (KMMs).

In this paper we show that KMMs are, formally, principal

surfaces [12]. We show that KMMs can easily be used in

conjunction with and improve on existing global methods

and readily extend to n-dimensional principal surfaces.

2. Background

The research on nonlinear dimensionality reduction is

extensive, we give a brief summary of work that is most

relevant to the proposed approach.

Much recent research in manifold learning builds on the

ideas of isomap [28], Laplacian eigenmaps [3] and local lin-

ear embedding [25]. These methods are often used in prac-

tice and they offer global solutions that do not rely on any

initial estimates of the manifold. Many other techniques are

closely related to or explicitly build on these three meth-

ods [9, 33, 31, 30, 6]. We call these methods spectral

approaches or global methods, because they are based on

quantifying the local structure of the input data but solve

the problem in a global fashion. Hence these methods have

a closed form solution that entails computing the spectral

decomposition of a matrix that captures this local informa-

tion. Out of sample extensions to these methods have been

proposed [4] but there is nothing in the construction of man-

ifolds from these methods that guarantees the quality of the

manifold fit in terms of projection distance.
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Another area of related research is the work on principal

surfaces [12]. Principal surfaces are a conceptual exten-

sion of PCA to the nonlinear case. Intuitively a principal

surface passes through the middle of a distribution. There

are variations [29, 15] of the original definition proposed

by Hastie as well as various heuristically motivated algo-

rithms [20, 26, 16, 19]. For instance, probabilistic princi-

pal surfaces (PPS) [7] use generative topographical map-

ping (GTM) to compute principal surfaces. However none

of these approaches comes with theoretical guarantees and

few extend beyond one and two dimensional manifolds.

Gaussian process latent variable models (GPLVM) [17]

provide a probabilistic generative model of the data. Similar

to the proposed method the manifold can be modeled as the

mean of a learned Gaussian process. However GPLVM do

not provide a direct approach to project unseen data points

onto the manifold.

Minimizing reconstruction error is also the objective of

auto encoders [5, 22, 13] from the neural network literature.

Obtaining good minima can be difficult and the reliance on

neural networks prevents making theoretical connections to

principle surfaces [7]. The recently proposed optimization

method of Hinton [13], for training deep neural networks,

is very promising. However, because KMMs explicitly op-

timize manifold parameters, we can solve for KMMs using

initial estimates from one or more of the global methods.

Manifold learning has been successfully applied to a

wide variety of applications in computer vision. Etyngier et

al. [10] compute shape manifolds used as segmentation pri-

ors. In [18, 11] the manifold structure of posture and view-

point is exploited to enhance tracking performance. In face

recognition manifold based approaches are used to account

for pose and illumination [1]. Pless [23] uses isomap to ex-

plore video sequences. In medical image analysis manifold

learning is used to enhance registration and segmentation

tasks [32]. In [17, 27] applications of manifold learning to

motion capture data are illustrated.

3. Kernel Map Manifolds

We begin with some notation. We denote an input data

point y ∈ D where D ⊂ R
D (open and continuous). We

let x ∈ C , where C ⊂ R
d , be the low dimensional repre-

sentation with xi corresponding to the manifold coordinates

of the projection of a data point yi onto the manifold, and

we assume that d < D. Because we are also concerned with

finding mappings between these spaces, we denote the map-

ping to the manifold as f : D 7→ C , and we call this the co-

ordinate mapping. We denote with g : C 7→ D the mapping

from manifold coordinates to the higher dimensional data

space, and we call this the reconstruction mapping. The im-

age of g is, barring degeneracies, a d-dimensional manifold

in D , which we denote M .

We model the input data as a set of random samples from

a density function p(y) defined on D . Our goal, therefore,

is to define a low-dimensional representation of p(y). Prin-

ciple surfaces require a projection operator, and we can ob-

tain such a projection by a composition of the two mappings

g◦ f , which maps every point y ∈ D onto M . The coordi-

nates f (y) correspond to positions on the manifold M . The

definition of principal surfaces [12] requires a specific form

for g(x), which must be the expectation of all points y that

have position x on the manifold. Thus we have

g(x) =
∫

D

yδ ( f (y)− x)p(y)dy (1)

where δ (·) is the Dirac-delta distribution. Given this, we

have only to define f (y), which in order to satisfy the prin-

cipal surface constraints, must be an orthogonal projection

onto manifold M . Our strategy is to represent f (y) using

a kernel regression of parameters z that are defined on the

input data points.

Let Y = {yi ∈ D} be a set of random samples, of

size N, drawn from p(y), and we assign a set of parame-

ter Z = {zi = φ(yi) ∈ C } to each input data point, where

φ : Y → Z is a mapping defined on the discrete set Y . Using

kernel regression on these samples we have the coordinate

mapping

f (y) =
N

∑
j

Ky(y− y j)

∑N
k Ky(y− yk)

z j =
N

∑
j

Ky(y− y j)

∑N
k Ky(y− yk)

φ(y j) (2)

with Ky a kernel function. It is important to notice that the

set Z is not the coordinate mapping of y itself, because of

the effect of kernel regression. Instead we can think of Z as

a finite set of parameters that describe the coordinate map-

ping f . As required in equation (1) we define g : C 7→ D

as the conditional expectation of Y given f (Y ) = x using

Nadaraya-Watson kernel regression

g(x) =
N

∑
j

Kx(x− f (y j))

∑N
k Kx(x− f (yk))

y j, (3)

Both f and g are examples of Nadaraya-Watson kernel re-

gression, and they converge as N → ∞ to the conditional

expectation, E[·|·], of the underlying variables. For g this is

an approximation to E[Y | f (Y ) = x]. Likewise f is an ap-

proximation to E[φ(Y )|Y = y] = φ(y).
Measuring projection distance is now immediate by

‖g( f (y))− y‖. The residual

J[ f ] =
∫

D

‖g( f (y))− y‖2 p(y)dy (4)

gives a measure for the quality of the low-dimensional rep-

resentations in terms of projection distance. In the discrete

setting the residual can be approximated by

J[ f ] = ∑
i

‖g( f (yi))− yi‖
2
. (5)



Since f is defined in terms of Z and by expanding g we can

write the residual as

J(Z) =
N

∑
i

∥

∥

∥

N

∑
j

Kx( f (yi)− f (y j))

∑N
k Kx( f (yi)− f (yk))

y j − yi

∥

∥

∥

2

. (6)

Notice that the use of kernel regression also gives imme-

diate rise to an estimated density in the low as well as in the

high dimensional space.

4. Optimizing Kernel Map Manifolds

Minimizing the residual (4) leads to a solution with min-

imal projection distance. In case of a Gaussian noise model

this corresponds to a maximum likelihood estimate of the

manifold. Note that (4) is by no means convex and has po-

tentially many local minima. Thus, the effectiveness of the

approach depends on the minimization strategy. We pro-

pose to use a global scheme such as isomap to initialize Z,

and then refine these initial estimates with a gradient de-

scent on the residual.

4.1. Optimization

We optimize the KMM with respect to Z = {z1, . . . ,zN}
using a gradient descent on the energy defined on 5. The

gradient for a single zr is

∇zr J(Z) =
N

∑
i

2(g( f (yi))− yi)∇zr(g◦ f )(yi) (7)

where ∇zr(g ◦ f )(yi) is the gradient of the function g ◦ f :

D → M with respect to each component zr[k] of zr evalu-

ated at yi.

∇zr(g◦ f )(yi) =









∂ (g◦ f )1(yi)
∂ zr [1] · · · ∂ (g◦ f )1(yi)

∂ zr [d]
...

...
...

∂ (g◦ f )D(yi)
∂ zr [1] · · · ∂ (g◦ f )D(yi)

∂ zr [d]









(8)

which is

∇zr(g◦ f )(yi) =

N

∑
j

[∂Kx( f (yi)− f (y j))

∂ ( f (yi)− f (y j))

∂ ( f (yi)− f (y j))

∂ zr

N

∑
k

Kx( f (yi)− f (yk))

−Kx( f (yi)− f (yk))
N

∑
k

∂Kx( f (yi)− f (yk))

∂ ( f (yi)− f (yk))

∂ ( f (yi)− f (yk))

∂ zr

]

y j
(

∑N
k Kx( f (yi)− f (yk))

)

2

(9)

with
∂Kx( f (yi)− f (y j))

∂ ( f (yi)− f (y j))
the derivative of the kernel function and

∂ ( f (yi)− f (y j))

∂ zr

=
Ky(yi − yr)

∑N
k Ky(yi − yk)

−
Ky(y j − yr)

∑N
k Ky(y j − yk)

(10)

Each iteration of this procedure is O(n3dD), where n =
|Y | the number of points, and D and d are the dimensions

of the data and manifold, respectively. This heavy compu-

tational burden stems from the fact that we must compute

the gradient for each data point. The gradient computation

for each point entails, as equation (7) shows, a summation

over all points, where each summand is the matrix vector

multiplication (g( f (yi))− yi)∇zr(g ◦ f )(yi), which is itself

O(dD). Computing the matrix ∇zr(g◦ f )(yi) for each sum-

mand entails again a summation over all points as can be

seen in equation (9) (the inner summations can be precom-

puted). The kernel allows us to reduce the computational

cost by only using points that are within in a certain dis-

tance, e.g. for a Gaussian kernel with three standard devia-

tions which amounts for more than 99 percent of the prob-

ability density. This reduces the number of matrix-vector

multiplications as well as for computing the gradient ma-

trix ∇zr(g ◦ f )(yi) to a small subset of size c of the origi-

nal points. The size of c is only dependent on the kernel

bandwidth and not the number of data points. Hence the

computational cost is reduced to O(nc22dD).

4.2. Initialization

The energy (5) has potentially many local minima. This

requires a good initialization scheme in order for gradient

descent to find an acceptable solution. Our strategy is to

use a global manifold learning formulation as an initial es-

timate of parameters Z. The advantage of the formulation,

however, is that we can use the projection error in (5) for

selecting from among the various dimensions and parame-

ters of these global approaches. For this discussion, and the

subsequent results, we restrict our attention to isomap—but

the strategy is applicable with any global method.

The isomap algorithm relies on geodesic distances rather

than derivatives. Geodesic distances on the manifold are ap-

proximated by shortest paths in the k-nearest-neighbor con-

nectivity graph constructed from the input data. This allows

to compute all pair wise distances between the data points.

Multidimensional scaling [8] (low rank approximation of

the centered pair wise distance matrix) on this pairwise dis-

tance matrix yields a minimal distortion embedding. The

connectivity graph is constructed from nearest neighbors of

the high dimensional data y. The shortest path computa-

tions can be sensitive to the number of nearest neighbors,

k, used in building the graph. This can be prone to create

shortcuts in the presence of noise or low sampling density,

as described in [2]. Isomap uses residual variance as a mea-

sure for the goodness of a low-dimensional representation,

a measure of distortion. This measure can indicate a good

low dimensional representation for a graph even if the topol-

ogy of the manifold is not correct, for example if there are

shortcuts in the graph.

In essence Isomap is a graph layout technique, and be-
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Figure 1. A 2-dimensional isomap embedding (b) using 10 nearest

neighbors for the noisy swissroll (a), both colored by angle. Short-

cuts in the graph lead to folds in the isomap embedding. Residual

variances from isomap (c) and residuals from KMM (d) as a func-

tion of the number of dimensions for the swissroll in (a) with 4,

6, 8 and 10. The KMM provides an accurate estimate of intrinsic

dimensionality even if the isomap embedding has folds.

cause there is no intrinsic relationship between the graph

topology and the manifold topology, Isomap can give mis-

leading results. This is demonstrated on the swissroll in

figure 1, where the residual variance is not necessarily in-

dicative of a good low dimensional representation. In fig-

ure 1 it is easy to asses the quality of the low dimensional

representation visually, but this visual assessment is, not

feasible beyond 3-dimensional data. However, the residual

from KMM provides an independent measure of the quality

of the underlying manifold. Thus, we can select the num-

ber of nearest neighbors k by constructing KMMs obtained

from isomaps with varying k and choose the k that yields a

minimal residual KMM. Figure 1 illustrates that the KMM

residual is a more reliable indicator for the intrinsic dimen-

sionality of the manifold.

4.3. Kernel Bandwidth and Stopping Criteria

The general formulation for KMMs does not specify the

kernels for f and g. In our experiments we use a Gaussian

kernel because of its differentiability, although a compact

kernel could potentially save some computation.

Virtually all kernels for nonparametric regression in-

clude a bandwidth that influences the smoothness of the

resulting estimate. For KMMs the bandwidths of kernels

used in representing f and g interact. We gain some infor-

mation by looking at the degenerate cases. For instance,

as we let the bandwidth of f go to infinity, the coordinate

mapping collapses to a single point. The reconstruction is

therefore the mean of the data set, which is the zero dimen-

sional principal surface. If the bandwidth of f is finite the

coordinates x will not coincide. During optimization f can

potentially spread the coordinates x further apart. Because

the bandwidth of g is fixed, the corresponding manifold can

be more curved. Thus, we see that KMMs could poten-

tially over fit the data. The coordinates x can spread so far

apart that g degenerates to a mapping onto the original data

points. This can immediately be seen for a zero bandwidth

for f , e.g. f is simply the initial discrete mapping φ . By

pushing the coordinate mapping parameters Z apart we have

that Kx( f (yi)− f (yk)) = Kx(zi − zk) → 0 except for i = k.

The solution degenerates to the original point cloud and the

residual goes to zero.

To circumvent these dangers, we propose to use cross

validation, either a leave-one-out scheme or with a distinct

cross validation data set. We stop the optimization before

it reaches steady state, i.e. when the projection error on

the cross validation data set stops decreasing. We choose

a bandwidth for f and g automatically, using the average

distance between k-nearest neighbors of the original data

and the initial KMM, respectively. For k we use the number

of nearest neighbors from the initialization (e.g. isomap)

that gives the lowest projection error for an initial set of

parameters Z.

5. Kernel Map Manifolds and Principal Sur-

faces

The formulation of the mappings as a kernel regression

leads to some important properties that hold asymptotically.

In this section we show that optimal KMMs converge to

principal surfaces as the number of points goes to infinity.

Definition 1. Principal Surface [12]: Let Y be a D di-

mensional random variable and h : C → D denote a d-

dimensional surface, M in D parametrized by x ∈ C . Let

xh(y) = maxx{x : ‖y−h(x)‖ = infµ‖y−h(µ)‖} the coordi-

nate mapping (in [12] called projection index). The prin-

cipal surfaces of Y are the set H of functions h that fulfill

the self consistency property E[Y |xh(Y ) = x] = h(x). Alter-

natively h is a principal surface of Y if and only if h is an

extremal point of E[‖Y −h(xh(Y ))‖2].

Note that the second condition implies h(xh(y)) is an or-

thogonal projection of y onto h. In particular it is the min-

imal orthogonal projection. This formalizes the notion of a

manifold passing through the middle of a distribution.

We introduce a second weaker formulation:

Definition 2. Weak Principal Surface. As before let Y be

a D dimensional random variable and h : C → D denote

a d-dimensional surface in D parametrized by x ∈ C . Let

x̃h(y) = {x : (y−h(x))D(h)(x) = 0} be the coordinate map-

ping. D(h)(x) denotes the Jacobian matrix of h evaluated

at x. The weak principal surfaces of Y is set H̃ of functions



h that fulfill the self consistency property E[Y |x̃h(Y ) = x] =
h(x).

A weak principal surface enforces the self consistency

but does not require the distance from each point to the man-

ifold to be globally minimal. H is a strict subset of H̃ .

Weak principal surfaces formalize the notion of a manifold

passing through the middle of a distribution, but allow for

misassignments of data to the manifold in cases where the

shape of the manifold generates ambiguities in the direction

of the projection.

Theorem 5.1. Local minima of the energy (5) are weak

principal surfaces as |Y | → ∞.

Proof. The self consistency follows immediately from our

definition of g as Nadaraya-Watson Kernel regression. This

estimator g converges to the conditional expectation g(x)→
E[Y | f (Y ) = x] as the size of the data goes to infinity [21].

Now if g( f (y))− y is a orthogonal projection then g( f (y))
is a weak principal surface. Here the key is that f is also

defined as Nadaraya-Watson kernel regression. Hence,

f (y) =
N

∑
j

Ky(y− y j)

∑N
k Ky(y− yk)

φ(y j) → E[φ(Y )|Y = y] = φ(y).

(11)

Taking the first variation of the energy (4), with the limit

f (y) → φ(y), and setting it equal to zero gives

∂J[φ ]

∂φ
=

∫

2(g(φ(y))− y)
∂g(φ(y))

∂φ(y)
dy = 0. (12)

From the fundamental lemma of the calculus of variation

this has to hold point wise

(g(φ(y))− y)
∂g(φ(y))

∂φ(y)
= 0,∀y. (13)

This implies that g(φ(y))−y has to be orthogonal to the tan-

gent plane at g(φ(y)). Therefore g(φ(y)) is an orthogonal

projection onto g.

Corollary 5.2. Global minima of Equation (5) converge to

principal surfaces as |Z| → ∞.

Proof. This follows directly from equation (4) and the pre-

vious proof. The projection distance is locally optimized,

because it is globally minimal. Thus we have all of the con-

ditions for the weak principle surface and additionally that

the projections are minimal.

Globally optimal KMMs are in fact principal surfaces

with minimal variance projections, and therefore the gener-

alized equivalent of projecting onto the dominant principal

components.

6. Experimental Results

First we quantitatively compare isomap [28], probabilis-

tic principal surfaces (PPS) [7] and the proposed approach

on synthetic data.

Isomap does not provide a projection method of unseen

data points, hence we project by nearest neighbors interpo-

lation. We select the number of nearest neighbors in two

ways—by visual inspection of of isomap residual plot (IM)

and by cross validation (IM-CV).

For PPS we use the Matlab implementation from the au-

thors [7]. We augmented the code with a isomap initializa-

tion and cross validation and stop the optimization, as for

the KMM, when the MSE on the cross validation data set

stops decreasing.

The PPS initialization with isomap is done by scaling

the isomap embedding to the latent node grid. For each la-

tent node the nearest neighbors in the isomap embedding are

computed and the PPS output nodes are temporarily initial-

ized by weighted averaging of the input data corresponding

to these nearest neighbors. Based on the temporary out-

put nodes assignments the weight matrix W is initialized by

solving a linear least squares system to minimize the map-

ping of the latent nodes by W to the ambient space with

respect to the temporary output nodes. The final initializa-

tion of the output nodes of the PPS is then resulting from the

mapping of the latent nodes with W obtained by linear least

squares. Figure 2 shows that it is essential to initialize PPS

with a global method to obtain an accurate parametrization

of the manifold.

Input Data PPS PPS-I KMM

Figure 2. Manifolds obtained by applying PPS, PPS-I and KMM

to the input data sampled from the underlying manifold, the

corkscrew and the swissroll corresponding to results 6 and 10 in

table 1 respectively. The manifolds are colored by the second di-

mension of the learned parametrization (manifold coordinates) and

the original parameter for the input manifold.

We compare against the original (PPS) implementa-

tion and the isomap initialized version (PPS-I). We experi-

mented with various settings of the parameters of the PPS,

namely the number of latent nodes M, the number of la-

tent basis function L and the α value and report the best

results. The number of latent basis functions L effectively

constrains the smoothness of the manifold as illustrated in



figure 3.

To quantify how well each of the approaches captures

the idea of a principal surface we set up a 2 dimensional

manifold sampled with added Gaussian noise orthogonal to

the manifold. This allows to construct a ground truth data

set on the manifold and a test data set by adding Gaus-

sian noise to the ground truth data set. Note that, due

to orthogonal Gaussian noise, the underlying manifold is

truly a principal surface of the distribution the data is sam-

pled from. We then measure how well the principal sur-

face is approximated by the distance between ground truth

and the projection of the test data set onto the manifold

learned by each approach. This test is performed on the

corkscrew and swissroll manifold depicted in the first and

second row of figure 2 . The corkscrew is a parametric sur-

face s(l,h) = (l,sin(απl)h,cos(απl)h)t , where α controls

the number of twists. We set α = 1
20

and sample l and h

uniformly on [0,40]. We performed tests with n = 1000 and

n = 2000 samples with different levels of normal N(0,σ2)
distributed noise orthogonal to the corkscrew surface, e.g.

sn(l,h) = s(l,h)+N(0,σ2)

∂ s(h,l)
∂ l

× ∂ s(h,l)
∂h

‖ ∂ s(h,l)
∂ l

× ∂ s(h,l)
∂h

‖
(14)

Similarly the swissroll is the parametric surface s(r,h) =
(r sin(r),h,r cos(r))t . We sampled r uniformly on [1,4π]
and h uniformly on [0,20]. Again we performed tests with

n = 1000 and n = 2000 samples with different levels of nor-

mal N(0,σ2) distributed noise orthogonal to the swissroll

surface.

For each configuration we constructed a set of training

data consisting of n samples, a cross validation data set of n
2

samples, each with N(0,σ2) distributed noise orthogonal to

the manifold, a ground truth data set of n samples (without

noise), and a test data set of n samples by adding N(0,σ2)
distributed noise orthogonal to the ground truth data set.

IM IM-CV PPS PPS-I KMM

1. 1.19 0.68 0.31 0.22 0.18

2. 3.01 2.13 1.08 0.57 0.79

3. 7.30 4.84 2.55 1.26 1.63

4. 0.77 0.35 0.12 0.11 0.10

5. 1.63 1.67 0.64 0.48 0.44

6. 4.66 4.40 2.07 0.96 1.24

7. 2.68 1.01 4.73 3.28 0.41

8. 2.96 1.33 5.01 3.64 1.04

9. 1.01 0.53 2.87 0.45 0.15

10. 1.14 0.79 2.82 0.70 0.19
Table 1. Projection errors - mean squared error of projected test

data to ground truth data. Rows 1 to 3 are corkscrews with n =
1000 and σ = 0,1 and 2. Rows 4 to 6 are corkscrews with n = 2000

and σ = 0,1 and 2. Rows 7 and 8 are swissrolls with n = 1000 and

σ = 0 and 0.5. Rows 9 and 10 are swissrolls with n = 2000 and

σ = 0 and 0.5.

Table 1 shows the mean of the squared projection errors.

Isomap with cross validation degenerates to a single near-

est neighbor mapping, which performs quite well in the ab-

sence of noise. On the corkscrew the PPS performs slightly

better than the KMM in some cases. For the swissroll the

KMM performs better than the PPS. The PPS is not capa-

ble of finding a good manifold representation of the swiss-

roll, as figure 2 illustrates, because it failed to converge to a

smooth surface. The reconstruction error of the PPS can be

low, even if the underlying manifold from which the data is

sampled is not properly represented, as the results in table 1

in conjunction with figure 2 demonstrates. This example

demonstrates the general challenge of evaluating manifold

learning algorithms in the absence of visual feedback.

The PPS and the proposed approach, like many other

learning algorithms, are prone to over fitting. Due to the

noncontinuous projection of the PPS stopping by cross val-

idation is not effective. To avoid over smoothing the num-

ber of latent basis functions must be adjusted in a way that

depends on the shape of the manifold and the input data.

We are not aware of any other option than user input (e.g.

visual inspection) for choosing the number of latent basis

functions, which is not feasible beyond 3-dimensional in-

put data. Figure 3 shows PPS-I for 3 settings of latent basis

functions and KMM with 3 different choices for the number

of nearest neighbors which determines the kernel bandwidth

as described in section 4.3. For 3 latent basis functions the

resulting PPS is too smooth, for 5 an accurate manifold rep-

resentation is obtained and with 7 the PPS starts to over fit.

KMM in conjunction with the proposed optimization strat-

egy is very robust with respect to the choice of the kernel

bandwidth.

Input Data PPS-I 3 lbf PPS-I 5 lbf PPS-I 7 lbf

MSE 5.62 MSE 1.51 MSE 2.19

Input Data KMM 15nn KMM 10nn KMM 5nn

MSE 1.87 MSE 1.61 MSE 1.95

Figure 3. Manifolds for the corkscrew 3 in table 1. 1st row: PPS

with isomap initialization and stopped with cross validation for 3,

5 and 7 latent basis functions per dimension. 2nd row: KMM with

15, 10 and 5 nearest neighbors for computing the kernel band-

width.

In summary the proposed approach compares favorably

with the state of the art approaches for manifold learning,

including isomap and PPS. PPS can find very accurate man-



ifold representation with a careful tuning of the parameters

and initialization with isomap. The proposed approach is

more robust with respect to its single input parameter, the

number of nearest neighbors for the kernel bandwidth. The

kernel bandwidth for the KMM in the coordinate space has

a similar effect as the latent basis functions in the PPS, con-

trolling the smoothness of the manifold. By optimizing Z

in the coordinate space the KMM approach is adjusting to

the smoothness of the underlying manifold — spreading out

the free parameters Z in the coordinate space has a virtu-

ally the same effect as decreasing the kernel bandwidth. As

mentioned in section 4.3 this is prone to over fitting, but

the strategy proposed with stopping based on cross valida-

tion proves very effective. The theoretical results for KMMs

give further assurance that for sufficiently large sample sets

the resulting manifolds are good approximations to the data.

Next we applied the KMM to the the Frey faces data set

of 1965 images of various facial expressions of the same

person. The images are 20 × 28 pixels with an intensity

range from 0 to 255. The isomap residual variance as well

as the KMM projection errors indicate that the facial ex-

pressions can be captured by approximately 3 degrees of

freedom. Therefore we have a 3 dimensional manifold in

a 20× 28 dimensional space. We split the 1965 images at

random into a training set of 1000 images, a cross valida-

tion set of 500 images and a test set of 565 images. To each

set we add normal distributed noise with zero mean and σ2

variance. Figure 4 shows projections of the noisy test im-

ages onto the learned manifold by KMM.

Figure 4. KMM on facial expressions image data set. From top

to bottom: original images, noisy images σ = 40 and images pro-

jected by KMM.

Figure 5 shows the coordinate space of the KMM learned

from the facial images with σ = 20 noise added. New im-

ages are generated by reconstruction from samples in the

coordinate space.

Figure 6 shows an application to motion capture data.

The KMM approach is applied to sequences of the different

walking styles of subject 132 from the CMU mocap data
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Figure 5. Coordinate space of KMM for Frey faces. Reconstructed

images from equally spaced samples along the red line(top), green

line (bottom) and blue line (left).

base — a data set of 5000 samples in a 56 dimensional

space. Figure 6 shows the coordinate space of the KMM.

The KMM accurately captures the different walking styles

as illustrated by the reconstructed poses from samples in the

coordinate space.
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Figure 6. Coordinate space of KMM for motion capture data.

Reconstructed poses from equally spaced samples along the red

line(top), blue line (bottom) and green line (left).

7. Conclusion

The proposed method for manifold learning, called ker-

nel map manifolds provides an explicit formulation of coor-

dinate and reconstruction mapping and allows one to mea-

sure projection distance and reconstruction error for a man-



ifold. Many state of the art manifold learning methods of-

ten perform validation based on visual inspection. Others

validate performance by characterizing classification tasks

on the low dimensional representation. The construction of

KMMs from an existing representation is straightforward

and effective for manifolds of any dimensionality. We fur-

thermore proved that KMMs are in a strict, statistical sense

principal surfaces. The experiments show that KMMs are

useful in a variety of applications and compare favorable

with other methods.

The KMM approach presented provides numerous areas

of further improvement. For initialization a recent theorem

[14] on parametrization of manifolds by Laplacian eigen-

functions suggest an interesting approach. The theorem

states that there exists a set of eigenfunctions of the Laplace-

Beltrami operator on a manifold which will in a local neigh-

borhood parametrize the manifold. This result invites to se-

lect eigenvectors locally that give low projection error and

use those for initialization. In the optimization stage more

sophisticated approaches could be employed, for example a

simulated annealing related approach with decreasing ker-

nel bandwidth during optimization. Another

Acknowledgments. This work was supported by the
NIH/NCBC grant U54-EB005149 and the NSF grant CCF-
073222.

References
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