EUROGRAPHICS 2007 STAR - State of The Art Report

State of the Art in Ray Tracing Animated Scenes

Ingo Wald-2 ~ William R. Mark® Johannes Giinther Solomon Boulo3 Thiago 1zé-2
Warren Hunt ~ Steven G. Parkér Peter Shirley

1: SClI Institute, University of Utah 2: Intel Corp 3: Univessitf Texas at Austin ~ 4: MPI Informatik, Saarbriicken 5: SchafdComputing, University of Utah

Abstract

Ray tracing has long been a method of choice for off-line rendering, aditionally was too slow for interactive
use. With faster hardware and algorithmic improvements this has recerahgeld, and real-time ray tracing is
finally within reach. However, real-time capability also opens up new probléhat do not exist in an off-line
environment. In particular real-time ray tracing offers the opportunity toratgively ray trace moving/animated
scene content. This presents a challenge to the data structures that eemedbveloped for ray tracing over
the past few decades. Spatial data structures crucial for fast ray tratingt be rebuilt or updated as the scene
changes, and this can become a bottleneck for the speed of ray tracing.

This bottleneck has received much recent attention by researcherbabaesulted in a multitude of different
algorithms, data structures, and strategies for handling animated sc&@heseffectiveness of techniques for ray
tracing dynamic scenes vary dramatically depending on details suchea& smmplexity, model structure, type
of motion, and the coherency of the rays. Consequently, there is s@fapproach that is best in all cases,
and determining the best technique for a particular problem can be a clggldn this STAR, we aim to survey
the different approaches to ray tracing animated scenes, discussiitgsttengths and weaknesses, and their
relationship to other approaches. The overall goal is to help the realleose the best approach depending on
the situation, and to expose promising areas where there is potential forithigac improvements.

1. Introduction ing effects that require such queries. Off-line rendering has
One of the main elements of a rendering technique is the primarily used ray tracing instead of rasterization for these
visibility algorithm. For example, to produce an image itis reasonsTL04, CFLBOg. Unfortunately, ray tracing is com-
necessary to determine which surfaces are visible from the putationally demanding and has not yet benefited from spe-
eye point, which surfaces are visible from the light(s) and cial purpose hardware, and consequently could not be sup-
hence not in shadow, and, if global illumination effects are ported at interactive frame rates until very recently.
being computed, which surfaces are visible from points on ~ With advances in CPU hardware and increased availabil-
other surfaces. The two most commonly used approaches toity of parallel machines, combined with equivalent advances
the visibility problem are rasterization-based approaches and in algorithms and software architectures, ray tracing has
ray tracing based approaches. The performance of this visi- reached a stage where it is no longer limited to only off-line
bility algorithm is critical for interactive applications. rendering. In fact, while the first interactive ray tracers either
Rasterization-based approaches are limited to determin- required large supercomputetH95, Muu95 PMS*99] or
ing visibility for many rays sharing a single origin. They were limited to small resolutions§SBWO1] and/or simple
also operate in object order (the outer loop is over objects). shading effectsRSHOY, there now exists a variety of dif-
These algorithms can be supported very efficiently on spe- ferent interactive ray tracing systems, many of which tackle
cial purpose hardware (GPUs), and with hardware and soft- problems that are not easily possible using a rasterization-
ware advancements, GPUs routinely obtain real-time perfor- based approactilK*07, WBS02 BEL*07, PSL*98].
mance for visibility from an eye point or point light even for
highly complex models. In addition, they enable a wide ar- 1.1. The need for handling animated scenes
ray of techniques to produce highly compelling graphics ef- The key to fast ray tracing lies in the use of data structures
fects at real-time rates. Consequently, virtually all of today's such as kd-trees, grids, and bounding volume hierarchies that
real-time graphics uses GPU-based rasterization, delivering reduce the number of ray-primitive intersections performed
highly compelling imagery at real-time rates. per ray. For a long time, ray tracing research concentrated
Ray tracing algorithmsWhi80, CPC84, on the other mostly on the effectiveness of these data structures (i.e., how
hand, support arbitrary point-to-point visibility queries and effective each is in reducing the number of primitive op-
are arguably more powerful for computing advanced light- erations), and on the efficiency of the traversal and primi-

© The Eurographics Association 2007.

Wald et al. / State of the Art in Ray Tracing Animated Scenes

tive intersection operations (i.e., how fast these operations few characters moving through an otherwise static game en-

can be executed on particular hardware). The timéad-

vironment, or an editing application where small portions of

ing these data structures has typically been ignored — since the scene are moving at any given time.

it is usually insignificant in off-line rendering — and conse-

quently, ray tracing evolved into a field that used data struc-
tures and build algorithms that were clearly non-interactive
except for trivially simple scenes. Consequently, as ray trac-

The actual motion of the primitives can either be hierar-
chical, semi-hierarchical, or incoherent: motiomisrarchi-
cal if the scene’s primitives can be partitioned into groups of
primitives such that all of the primitives of a given group are

ing started to reach interactive rendering performance, itwas subject to the same linear or rigid-body deformation. Each

initially only applicable to walk-throughs of static scenes, or
to very limited kinds of animations.

With the advent of ray tracers running at real-time frame

such group we will call ambject The exact opposite of hi-
erarchical motion isncoherent motionwhere each primi-
tive moves independently of all others; a hybrid situation is

rates for certain kinds of static scenes (especially Reshetov’s semi-hierarchicalmotion, in which the scene can be parti-

2005 MLRT paperRSHO03), it has become clear that build
times can no longer be ignored: with up to a hundred million

tioned into objects whose motion is primarily hierarchical,
plus some small amount of incoherent motion within each

rays per second on a desktop PC, ray tracing has the potentialobject (similar to a flock of birds or a school of fish).

to be used for truly interactive applications like games, but

In addition to the motion of each primitive, animations

these depend on the ability to perform significant changes to can also differ in the way that animation affects the scene

the scene geometry every frame.

In fact, this situation opened up an entirely new research
challenge for consideration in ray tracing: to create build al-
gorithms that were fast enough and flexible enough to be
used at interactive frame rates. While originally, ray trac-
ing data structures were only considered for their effective-
ness and efficiency in rendering, now the build time had to
be considered as well. This not only affects which build al-
gorithm is the “best” for any given data structure, but also

which data structure to use in the first place. Consequently,

topology: Often, an object is stored as a triangle mesh, and
animation is performed by moving only the triangle vertices
while leaving the connectivity unchanged. We call this spe-
cial case aleformablescene, whereaarbitrary changes to

the scene topologgan also include the change of triangle
mesh connectivity, or even the addition or deletion of primi-
tives'. Often, only certain parts of the scene are deformable
(e.g., each skinned monster is a deformable mesh), while the
scene’s overall animation is more complex.

In practice, different applications use different kinds of

many ray tracing data structures are receiving renewed inter- animation. For example, a design review application is likely
est even though they had previously been discarded as beingto employ either static scenes or semi-hierarchical animation

too inefficient. In many ways, lessons learned in the early

days of batch rendering are being revisited, where the accel-

eration structure must now pay for itself (with a reduction
in rendering time) within the few milliseconds available for

of complete auto or airplane parts; potentially including the
addition or removal of complete objects from time to time,
but with no non-hierarchical motion at all. A particle sim-
ulation, on the other hand, may use completely incoherent

a given frame, rather than over several minutes. In fact, the motion with frequent addition and removal of primitives, or
challenge is even greater than in a batch renderer since inter-even completely unrelated primitives every frame. Games, in
active systems use comparatively few samples per pixel and fact, can employ all kinds of motion at the same time: a flight

typically do not have the opportunity to customize the scene
for particular viewpoints as is often done in batch rendering.

1.2. Types of animations

simulator or first-person shooter, for instance, may contain
some static geometry, as well as completely incoherent parts
— like explosions. In games there usually are individual ob-
jects with mostly hierarchical animation (like airplanes or
monsters), but there may be many of them. The motion of the

One issue that makes it challenging to compare the differ- many objects may itself be an example of incoherent motion
ent approaches to animated ray tracing is that the term “an- (e.g. characters appearing and disappearing). In addition, the
imated” scene is not well-defined, and covers everything characters themselves are often skinned, providing a good
from a single moving triangle in an otherwise static scene, example of semi-hierarchical motion. It is likely that no one

to scenes where no two successive frames have anything intechnique will handle all kinds of motions equally well.
common at all. For the remainder of this report, we will use

the following terms: Astatic scene is one whose geome-
try does not change at all from frame to frame partially
static scene is one in which a certain amount of the primi-
tives are moving, while other parts remain static, such as a

2. Problem environment

The problem we target — real-time ray tracing of animated
scenes — actually consists of two competing concerns: real-
time ray tracing, and handling animated scenes. With the

T A deformable scene doesthave to consist of only a single con-
nected object, it can also consist of multiple separategieameshes
as long as the overall connectivity does not change

T Note that we only consider geometric changes — camera, lghtin
or shading information do not affect the efficiency data dtmes,
and so will not be considered.

© The Eurographics Association 2007.

Wald et al. / State of the Art in Ray Tracing Animated Scenes

goal of interactivity, approaches must be able to generate of saving only through implicit amortizations and SIMD
real-time performance for tracing rays. Ultimately, this re- processing, these techniques go one step further: they use
quires the use of acceleration data structures such as kd-much larger packets than packet tracing, and explicitly avoid
trees, grids, or bounding volume hierarchies. The relative traversal steps or primitive intersections based on conserva-
effectiveness for ray tracing (in particular, for animated tive bounds of the packet of rays. For triangle intersection,
scenes) of these acceleration structures varies dramaticallythis concept was first proposed by Dmitriev et 8IHS04,
depending on many factors, which we discuss below. who used the bounding frustum to eliminate triangle inter-
This combination of real-time ray tracing with support for ~ sections for cases where the full packet misses the triangle.
animated scenes raises a lot of new issues that we discuss inFor traversal, the concept was first proposed by Reshetov
detail over the course of this report. For static scenes, the et al. RSH0J who applied it to kd-tree traversal, and used
choice of a data structure and build algorithm can be deter- interval arithmetic-based “inverse frustum culling” to cull
mined by looking only at the final rendering performance, complete subtrees during traversal. The basic concept was
since the build cost is not incurred during the interactive ses- later extended to grid4§IK *06] and BVHs WBS07, and
sion. However, as soon as interactivity for dynamic scenes a large number of modified applications are possible (see,
is attempted, the the time for building or updating the data €.9., BWS0(for a more complete overview). Though more

structure can no longer be ignored. research is required in how such techniques interact with less
N coherent rays, packet- and frustum techniques are currently
Exploiting ray coherence for fast ray traversal Much of the methods of choice for targeting real-time performance.

this report will focus on the methods for building and/or

updating ray tracing acceleration structures for animated
scenes. However, ray traversal performance is also critica
in animated ray tracing systems, especially in systems that
trace large numbers of secondary rays. In this section we re-
view an important class of techniques used to provide fast
traversal performance in all modern interactive ray tracers.

In a beam tracer, rays are not explicitly represented except
| perhaps in a final sampling step. Instead, a beam tracer eval-
uates exact area visibility. Overbeck et &DRMO7] have
recently demonstrated that for scenes composed of moder-
ate to large size triangles, beam tracers are competitive with
frustum-based ray tracers for eye rays and soft shadow rays.
They achieved this performance through new techniques for

Thg rays traced in a typl.cal |nteracF|ve ray tracer are no.t using a kd-tree acceleration structure for beam tracing. How-
organized randomly; there is substantial spatial coherence in ever, beam tracing performance becomes less competitive

the rays thf”lt are traced _(i.e., tr_\ey can be grouped together ing, ooy triangle sizes, since small triangles force a large
§pace).Th|s coherence is particularly strong for eye rays, but number of beam splits. An important advantage of beam
itis also pres‘?“t for hard shadow rays, soft shadow !'ays, and tracers is that they eliminate the Monte Carlo sampling ar-
many other kinds of secon_dar_y rays. All modern high per- tifacts produced by traditional ray tracers for soft shadows.
formance ray tracers exploit this spatial coherence to reduce Though most of the systems discussed in the remainder of
computation costs. At a high level, there are two strategies paper do not use beam tracing, the general discussions

for explomng coheren_ce: beam tracinigtia4] and ray ag- on data structures and build/update strategies may apply to a
gregation. Beam tracing performs exact area sampling and ;o tracing approach as well

thus does not explicitly represent rays at all. On the other
hand, ray aggregation explicitly represents rays but amor-
tizes the cost of some of the traversal operations over an en-
tire “packet” of multiple rays.

Most current systems use ray aggregation techniques,
which combine several rays into a packet and/or frustum.
The first step in that direction was Wald et al.'s “coher-
ent ray tracing” paperWSBWO01], which proposed trac-

Interactivity for animated scenes requires performance
both for ray tracing as well as for data structure up-
date/rebuilds. Therefore, we will describe the traversal tech-
niques for kd-trees, BVHSs, and grids in Secti@$§, and7,
respectively. At the current state-of-the-art, grids, kd-trees,
and BVHs all feature fast traversal algorithms; thus, the fo-
cus of that paper lies on how to handle dynamically changing

. . . try. We d , fist h to di the high-level
ing rays in bundles of four through a kd-tree, and using geometry. TE do S0, We 1ist have fo discuss the high-ieve

: design issues on how to design a ray tracer for dynamicall
SIMD to process these rays in parallel; the same concept 9 9 y y y

.) - animated scenes.
has since been used in numerous ray tracers, and on a vari-

ety of architectures. Using packet tracing allows for amor-

tizing operations including memory accesses, function calls 3- Overarching tradeoffs

and traversal computations, and permits the use of register There are a number of candidate approaches for ray tracing

SIMD instructions to gain more performance from the CPU. dynamic scenes. Before discussing any of these approaches

For coherent rays, this can lead to significant performance in detail, it is worth considering the general design decisions

increases over single ray implementations. Though tracing that must be addressed when attempting interactive ray trac-

rays in SIMD, “plain” packet tracing still performs all traver- ing of dynamic scenes.

sal steps and triangle intersections as a single-ray ray tracer. Each of these decisions represents one dimension in the
An important evolution of packet tracing is the use of overall design space of a ray tracer. We present several

frustum- or interval arithmetic-based techniques. Instead dimensions of this design space, discussing the possible

© The Eurographics Association 2007.

Wald et al. / State of the Art in Ray Tracing Animated Scenes

choices and the tradeoffs made with these choices. As someThough a variety of different data structures exist (e.g., grids,

of these decisions are interrelated, we also discuss the effectkd-trees, octrees, and variant of BVHSs), they fall into only

of one choice on other choices in this space. two classes: spatial subdivision techniques, and object hier-
Some of these tradeoffs include: archies.

e What kind of acceleration structure should be used? The 3 1 1 Spatial subdivision vs. object hierarchy
tradeoffs include using a space partitioning hierarchy vs.
an object hierarchy; axis aligned vs. arbitrarily oriented
bounding planes; One coordinate system vs. many lo-
cal coordinate systems; adaptive to geometry vs. non-
adaptive; and mechanisms for organizing bounding planes
in the data structure.

e How is the acceleration structure built or updated each

Spatial subdivision and object hierarchies are dual in nature:
Spatial subdivision techniques uniquely represent each point
in space, but each primitive can be referenced from multiple
cells; object hierarchy techniques reference each primitive
exactly once, but each 3D point can be overlapped by any-
where from zero to several leaf nodes (also déavD7).
. . Grids, octrees, and kd-trees are examples of spatial sub-
frame? In large part, this determines the trade-off be- division, with varying degree of regularity (or “arity” of
tween bw!d performance and trace perfo_rmancg. In partic- the subdivision iHav07); bounding volume hierarchies and
ular, reb_und Vs update;_ fuII_update/rebund (entire scene) their variants (bounding interval hierarchies, s-kd trees, b-kd
vs. partial update/rebuild (Jus_t portions neeo!ed for that trees, ...) are object hierarchies. The advantages and disad-
frame); fast vs. careful glgorlthms for choosmg boynd- vantages of the two approaches follow from these properties.
ing planes. These questions are addressed briefly in this . : .))
First, we consider traversal. If we wish to find the first

section and in more detail in Sectidn ;
. . o intersection point along a ray, the problem is somewhat sim-
e What is the interface between the application and the ray S
pler for the space partitioning data structures. Each volume

tracing engine? In particular, how does the application . - .
rovide geometry to the ray tracing engine: polygon soup of space is represented just once, so the traversal algorithm
P ; can traverse these voxels in strict front-to-back order, and

. sl ial organization ne graph) vs. r -to-) - o
vs. sloppy spatial organization (scene graph) vs. ready-to can perform an “early exit” as soon as any intersection is

use acceleration structure? Are there restrictions or op- .
R . | . found. In contrast, for space overlapping data structures the
timizations for particular kinds of dynamic movement? : . .
. L) same spatial location may be covered by different subtrees,
Static geometry vs. rigid object movement vs. deformable .) .
o and an intersection found in one subtree may later be over-
meshes vs. coherent movement vs. no restrictions? Is ge- . : - S . .
o . written by an intersection point in a different subtree that is
ometry represented with just one resolution, or many? S . ;
closer to the origin of the ray (potentially having led to su-

Note that many of these tradeoffs may be substantially dif- o,0us work). On the other hand, spatial subdivision may
ferent in an interactive system than in a traditional batch ray lead to visiting the same object several times along the ray,
tracer, where many of these issues are not faced. We discusgNhiCh cannot happen with an object hierarchy:

the same is
several of these tradeoffs below.

true for empty cells that frequently occur in spatial subdivi-
) sion, but simply do not exist in object hierarchies.
3.1. Acceleration structure tradeoffs Space subdivision also generally leads to a finer subdi-
As mentioned above, there are a wide variety of acceleration vision (an object hierarchy will never generate cells smaller
structures that can be used for ray tracing. Specific details of than the primitive inside), which often encloses objects more
particular acceleration structures will be discussed in Sec- tightly. This often leads to fewer primitive intersections, but
tions 5, 6, and7, but there are inherent tradeoffs between gt the expensive of potentially more work to be performed
these techniquesthat we want to contrast in advance. during building, and possibly more traversal steps. For the
The choice of an acceleration structure strongly affects same reason the often stated assumption that BVHs consume
the traversal performance, and also can facilitate (or inhibit) more memory than kd-trees is not necessarily true: though
the choice of certain algorithms for updating or rebuild- each node does require more data, the number of nodes,
ing the acceleration structure. Here, we discuss the differ- leaves, and triangle references in a BVH is generally much
ent kinds of acceleration structures in terms of their funda- smaller than in a kd-tree; the same observation is true for
mental properties. For a more in-depth discussion of spa- the cost of traversing the data structure (a more expensive
tial data structures in general we refer readers to books by traversal step, but fewer traversal steps).
Samet Fam06 Sam89hSam89% and a survey article by Second, we consider updates to an acceleration structure
Gaede and GlintheG[G98. For a more in-depth discussion as objects move. In a typical object hierarchy data structure,
of how ray tracing acceleration structures affect ray tracing it is easy to update the data structure as an object moves be-
traversal performance, we refer readers to the literature listed cause the object lives in just one node and the bounds for that
in the bibliography at the end of Chapter 4 in PBRHD4, node can be updated with relatively simple and localized up-
and in particular to Havran's Ph.D. theslsgv01. date operations. In contrast, updates to a space partitioning
Finding the object hit by a ray is fundamentally a search data structure are more complex. If split planes are updated,
problem, and the data structures used to accelerate thatthe changes are not necessarily well localized and may effect
search impose some kind of spatial sorting on the scene. other objects.

© The Eurographics Association 2007.

Wald et al. / State of the Art in Ray Tracing Animated Scenes

3.1.2. Axis-aligned vs. arbitrary bounding planes the performance advantages over a single ray grid are much
All of the commonly used acceleration structures rely on lower and it can even perform worse, or fall back to single-
planes to partition space or objects. For some types of ac- ray traversal. In addition, the grid requires highly coherent
celeration structures these planes are restricted, most com-rays to perform efficiently. Adaptive data structures, on the
monly to be axis-aligned along tlxey, or zaxis. However, it other hand, seem to be more friendly to different packet con-
is also possible to allow arbitrarily oriented bounding planes, figurations. In part, this is because the hierarchical nature of
as is done in a general binary space partitioning (BSP) tree. adaptive data structures allows much of the traversal work
The advantages of using axis-aligned planes include: (a) The to be done at coarse spatial scales, where the amortization
plane’s orientation can be represented with just two bits, of costs for large packets is especially effective, even when
rather than two or more floating point numbers, (b) Intersec- the packets are less coherent. It is possible that a hierarchi-
tion tests are simpler and faster for axis-aligned planes, (c) cal grid or an octree might be similarly effective for large
Numerical precision and robustness issues in ray-plane inter- packets with less coherence, but this question has not been
section are easier to characterize and solve for axis-aligned studied in detail yet.
planes, (d) Using only axis-aligned planes significantly re- Adaptivity also affects the construction of the acceleration
duces the dimensionality of the search space for building structure. In general, adaptive data structures are more ex-
efficient data structures, and building efficient good axis- pensive to construct than non-adaptive data structures. There
aligned data structures is well understood. Conversely, the are several reasons for this. First, adaptivity fundamentally
advantages of using arbitrarily-oriented planes include: (a) requires that more decisions be made, and these decisions re-
Arbitrarily aligned planes can bound geometry more tightly quire computation. Second, when inserting a new object into
than axis-aligned planes; and (b) Some strategies for in- an adaptive data structure, some traversal of the data struc-
cremental update of an acceleration structure might benefit ture is required whereas none is required for a non-adaptive
from the ability to arbitrarily adjust the orientation of bound- data structure such as a grid. Finally, parallelization of accel-
ing planes to accommodate rotations of objects. eration structure construction is more complex for adaptive
There has been very little investigation to date of gen- data structures than for non-adaptive data structures. From
eral BSP trees or BVHs with non-axis aligned bounding an algorithmic standpoint, building an adaptive data struc-
primitives as ray tracing acceleration structures, even though ture is related to sorting, and typically requires super-linear

both have been used for collision detection (see £QFP5 time, while building a regular data structure is very similar
GLM96,HEV*04]). to triangle rasterization, and can be done in an single pass.
3.1.3. Adapt to geometry vs. non-adaptive 3.1.4. Build time vs. build quality

For spatial subdivision techniques, one more option is the For every data structure, there are different ways of building
mechanism for subdividing space. In some acceleration that data structure for any given scene; commonly, there is a
structures the location of subdivision planes is chosen so as trade-off between build quality (i.e, how good the data struc-
to adapt to the geometry in the scene (e.g. a kd-tree), whereasture is at minimizing render cost) and build time. For exam-
in other acceleration structures the locations of bounding ple, a kd-tree can be built over bounding boxes or over actual
planes are predetermined, without looking at the geometry triangles (involving lots of costly clipping operations) and
in the scene (e.g., a grid or octree). In this second case, somethis difference can have an impact on render performance of
acceleration structures are still able to partially adapt to the 25% and moreHlav01, WHO#g].
scene geometry by adjusting their topology (e.g. anoctree or - When building or updating a hierarchical accelera-
grid with variable depth), whereas other acceleration struc- tion structure whose bounding planes adapt to geometry
tures do not adapt at all to scene geometry (e.g., a regular, (i.e. nearly all acceleration structures except grids), the
non-hierarchical grid). build/update algorithm must decide how to organize ge-
The advantage of the most highly adaptive data structures ometry into a hierarchy and choose locations for bound-
is that they are able to compactly and efficiently represent ing planes. Heuristics for evaluating the cost of any given
almost any scene, including those with highly variable den- tree configuration exist (we will go into more detail below),
sity of geometry such as the “teapot in a stadium”. For this but with an exponential number of possible tree configura-
same reason, they also provide good traversal performancetions, finding the globally best configuration is computation-
on virtually any scene (also seldgv01]). ally intractable. The best known heuristic is the greedy Sur-
When rays are traced in aggregates such as packets, frustaface Area Heuristic (SAH)GS87, which is explained in
or beams — which today is widely believed to be a prerequi- somewhat more detail below, as well as in Havran's the-
site to reaching high performance — there can be dramatic sis [Hav0], and in Pharr and Humphreys’ boolPtH04
differences in the traversal performance characteristics of (along with example code). However, though the greedy
different acceleration structures. For grids, only one packet- SAH algorithm has the same asymptotic complexity as a
based traversal scheme is known tod&4tik *06], and since spatial median split (and in practice also exhibits near linear
it is based on frustum traversal, it requires more than 4 rays cost WHO6]), evaluating lots of potential split planes incurs
to benefit from the frustum traversal; with 4 or less rays a significant cost.

© The Eurographics Association 2007.

Wald et al. / State of the Art in Ray Tracing Animated Scenes

At the other extreme, very simple heuristics can be used
such as placing a split plane at the median point within the

the needs of the application and the needs of the rendering
engine. A polygon soup or scene graph is often most natu-

current node. However, the acceleration structures producedral for the application, while an acceleration structure is most

by these algorithms generally exhibit significantly poorer
traversal performance than those built by the greedy SAH
especially when the density of geometry varies significantly
within the scene.

Recently, algorithms have been developed that are de-
signed to approximate the greedy SAH (we discuss these
algorithms in more details below, see Sectid). For a
moderate impact on build quality, these usually are sub-
stantially faster to build, and typically offer interactive re-
builds HSM06,PGSS0&

3.2. System Architecture tradeoffs

As ray tracing becomes practical for real-time applications

it becomes increasingly important to consider how the core
ray tracing engine, data structures, and algorithms should in-
teract with the data structures and code of a real application.
For example, how might a virtual reality system or game ap-

plication use a ray tracing-based rendering engine?

There are currently two broad schools of thought on
this question. The first, embodied in the OpenRT inter-
face WBSO03, argues that the interface between the render-
ing engine and application should be as similar as possible
to the immediate mode APIs used in Z buffer systems such
as OpenGL (and thus, ease the transition to ray tracing). The
second, originally advocated by Mark and FusskIFD5]
and implemented in RazobDHW*07] argues that it is nec-
essary to thoroughly reconsider this interface for ray tracing

systems and adopt an approach that more tightly couples the

application’s scene graph data structure to the ray tracing
rendering engine.

3.2.1. Polygon soup vs. scene graph vs. ready-to-use
acceleration structure.

Hierarchical motion and most kinds of deformabl