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Robust BVH Ray Traversal
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Figure 1. Left: Holes in the flower are ray-triangle intersections missed due to limited precision.
Center: Many holes closed with our 1-ulp solution. Right: All holes closed with our 2-ulp
solution.

Abstract

Most axis-aligned bounding-box (AABB) based BVH-construction algorithms are numerically
robust; however, BVH ray traversal algorithms for ray tracing are still susceptible to numerical
precision errors. We show where these errors come from and how they can be efficiently
avoided during traversal of BVHs that use AABBs.

1. Introduction

BVHs are a popular acceleration structure for ray tracing, and almost all BVH-based
ray tracers use axis-aligned bounding boxes as their bounding volumes since they are
easy to build and fast to traverse. Therefore, we will focus solely on this type of BVH
and the numerical precision errors that can occur when traversing them with a ray.

BVHs are built using numerically robust min/max operations over the underlying
geometry, and so, the resulting tree will have no numerical precision issues, and
a robust traversal algorithm will be able to correctly traverse the tree and find all
valid primitives for ray-primitive intersection testing. Unfortunately, precision errors
incurred during traversal can cause both false-hits and false-misses to occur. A false-hit
occurs when a node is incorrectly visited even though the ray never actually entered
that node. Aside from the performance penalties incurred by the unnecessary traversal,
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this is a benign error since it will not result in any additional primitives being marked
as hit. False-misses, on the other hand, occur when the traversal algorithm marks a ray
as missing a node even though it does in fact enter that node. This error can lead to a
valid ray-primitive intersection being missed if that primitive belonged to the missed
node. During rendering, this could manifest as visually objectionable holes in a mesh,
as seen in Figure 2, or in light leaking into a closed scene, which would introduce hard
to identify speckles in Monte Carlo lighting simulations. A single false-miss could
even introduce substantial overhead, such as when lazy loading is used. This can, for
instance, happen if the ray escapes a closed room and hits a hundred million triangle
object in the adjacent room, which must then be loaded from disk and have its BVH
constructed. This paper concerns itself with removing false-misses due to the BVH
traversal; of course, false-misses can occur from other places in a ray tracer, such as in
the ray-primitive intersection, but those are orthogonal to this paper, since making one
robust will not make the other robust.

Generally, false-hits and false-misses are rare, and so, from a performance per-
spective, these errors are normally not an issue, since they happen so infrequently.
However, even just a single pixel with a hole can be visually objectionable. A naive
attempt at solving this is to filter out the artifact with increased pixel samples, but this
has a significant cost, and sometimes, increased sampling will not help at all, since
the additional rays might also introduce error, which means that while some pixels
will start to look better, other pixels that used to be correct with a single sample will
in turn have error introduced by the new incorrect samples. Another issue with this
approach is that the false-miss might cause something extremely bright, e.g., the sun,
to be hit, which could require a prohibitive number of samples in order to filter out.
Artifacts can be seen in Figure 2, despite 256 samples per pixel being cast. A somewhat
better approach is to enlarge the bounding boxes of the BVH leaf nodes by a certain
amount. However, as we will show later, this approach will always fail, since no matter
what amount of padding is chosen, if the ray origin is moved sufficiently far from the
bounding box, then false-misses can once again occur. In addition, this can result in
a noticeable performance degradation if the padding is too large. Another attempted
solution is to use a floating-point representation with more bits—for instance, going
from single precision floats to double precision. This works fairly well by making the
likely-hood of a false-miss much more rare, but a false-miss can still happen and this
comes with a substantial performance and memory overhead, especially if SSE is being
used for the BVH traversal, since that halves the throughput from four simultaneous
float operations to two simultaneous double operations.

Mahovsky showed in his dissertation how a BVH traversal based on integer arith-
metic could be made robust [Mahovsky 2005]. His approach was focused on ensuring
traversal with low-precision integers would still be as robust and accurate as the higher
quality floating-point traversal algorithms. However, it is not shown whether this
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Figure 2. We rendered the 37.9M triangle flower at a 700×900 resolution with 256 samples
per pixel using an ambient occlusion shader. The top row uses a very bright background so that
even a single false-miss that strikes the background will still result in a completely white pixel.
False-misses that end up hitting other parts of the flower tend to be averaged away which is
why some parts of the flower appear not to have holes. From top left to top right, we rendered
using no padding of any kind, one, and then two ulps with the robust InvUlps algorithm. Note
that one ulp still results in false-misses while two ulps renders correctly without holes (the
two small holes near the base of the petals are not precision issues but actual very tiny gaps
between petals). The bottom row has a black background so that it is easier to filter away
artifacts, with the left image using no padding, the middle image two ulps of padding, and the
right image shows where these two image are different. In addition to the obvious holes, notice
that the flower stamen are darker in the first image due to rays that accidentally entered into the
unlit stamen.

approach is more accurate than his reference implementation using floats and it is
possible that rounding errors in the floating-point computations used to produce the
integers could result in a false-miss. If so, it probably would not be difficult to avoid
this by appropriately expanding the relevant integers by one. In any case, while this
could be implemented on a regular CPU, Mahovsky claimed it would be slower than a
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regular floating-point traversal as it introduces extra complexity and certain expensive
operations, such as bit shifts, which a hardware implementation could avoid. So,
Mahovsky’s integer arithmetic traversal is not generally applicable.

Since false-hits and false-misses normally are rare and do not affect render time,
we do not bother removing false-hits and in fact trade the removal of false-misses for
a negligible increase in false-hits. Our approach is to analyze where the error comes
from, and from this, we discover two elegant and robust solutions. The first only
requires adding a small amount of padding to our inverse ray direction used during
BVH traversal without adding any extra computation during the BVH traversal loop.
The second method shows that multiplying the max slab hit distance by a special
constant float value will also be robust and extremely simple to implement, though it
adds the slight overhead of an extra multiplication during each traversal step.

2. Current almost-robust traversal algorithm

We use the ray-bounding box test of Williams et al. for our BVH traversal [2005]
combined with the simple improvement proposed by Berger-Perrin for avoiding
NaNs [2004].

The Williams et al. test marks whether a ray intersects a bounding box by com-
puting the ray-plane entrance and exit intersection distances for each of the three
bounding box slabs and then returning a hit if the largest entering distance for the three
slabs is smaller than the smallest exiting distance for the three slabs [Kay and Kajiya
1986]. The equation for computing the ray-plane intersection of the x-plane b.x is
t =

b.x−rayorigin.x
raydir.x

. The slabs in the y and z dimension are computed similarly. Williams
et al. showed how this can be both optimized and made more robust in the case the ray
direction component is zero, by precomputing the reciprocal of the direction so that
the calculations performed, for the purposes of computing the numerical error, appears
as t = (b.x− rayorigin.x)

1
raydir.x

[Williams et al. 2005].
Berger-Perrin made the traversal more robust for the case when the ray origin lies

on the surface of the bounding box and the ray direction has a zero component, since
in that case, a NaN is produced. Assuming b.x = rayorigin.x and raydir.x = 0, we get

t = (b.x− rayorigin.x)
1

raydir.x

t = (0)
1
0
= 0inf= NaN

He handles this by carefully using standard min/max operations that are algorithmically
defined as in Listing 1 so that if there is a NaN, the second argument will be returned,
since a NaN equality always evaluates to false. Note that the SSE min/max assem-
bly instructions, which is what Berger-Perrin uses, follows this, but the std::min /
std::max do not always follow this rule and cannot be safely used. With this property,
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template<class T>

const T& min(const T& a, const T& b) {

return (a < b) ? a : b;

}

template<class T>

const T& max(const T& a, const T& b) {

return (a > b) ? a : b;

}

Listing 1. NaN-safe min/max functions that will return NaN only if the second argument, b, is
NaN

by making sure the argument that could have a NaN, such as t, is always placed as
the first argument and the second argument never has a NaN, then no NaNs will be
returned.

3. Sources of error

Given the current state-of-the-art robust BVH traversal, let us examine what error is
still present. The bounding box planes given from b we know have no error, and the ray
origin and direction are the same as used for the ray-primitive intersection test, so we
assume they too have no error. This means the error can only be introduced from the
subtraction, multiplication, and division operations and that catastrophic cancellation
cannot occur when subtracting rayorigin from b, since they are perfectly represented in
the input float.

IEEE 754 essentially dictates that each of these arithmetic operations is fully
accurate, but the result must be rounded to the nearest representable floating point value
(note that some processors, particularly older GPUs, are not IEEE 754 compliant—see
for instance [Whitehead and Fit-Florea 2011]). The distance between a float x and the
next closest float to it is defined as ulp(x), where ulp stands for unit in the last place.
This allows us to compute the maximum error introduced by an arithmetic operation
as being the rounding error when the true result, given by the real number X , must be
rounded to the floating-point x. For normal floating-point numbers, the magnitude of
this error is at most

ulp(X)

2
≤ |X |ε (1)

where ε is the machine epsilon. For a 32 bit IEEE754 float, the mantissa has 24 bits
(the first bit is implicit) so ε = 2−24.
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3.1. Traversal error

The ray-plane test will thus produce an approximate t, t̃, that is at most

t̃ =
(((

b− rayorigin
)
(1+δ1)

)( 1
raydir

(1+δ2)

))
(1+δ3) (2)

t̃ = (b− rayorigin)
1

raydir
(1+δ1)(1+δ2)(1+δ3) (3)

t̃ = (b− rayorigin)
1

raydir
(1+δ1 +δ2 +δ3 +δ1δ2 +δ1δ3 +δ2δ3 +δ1δ2δ3) (4)

where the δ are the relative errors introduced by each floating point operation, and
|δ| ≤ ε. Dropping the higher order δ terms, which are insignificant compared to
floating-point precision, gives us

t̃ = (b− rayorigin)
1

raydir
(1+δ1 +δ2 +δ3) (5)

t̃ = t(1+δ1 +δ2 +δ3) (6)

The error in the floating point computed t̃ can be bounded by

|t̃− t| ≤ |δ1t|+ |δ2t|+ |δ3t| (7)

|t̃− t| ≤ 3ε|t| (8)

|t̃− t| ≤ 3
ulp(t)

2
, (9)

and so the floating point computed t̃ is up to 3
2 ulps away from the real distance t.

As shown in Figure 3, a false-miss can occur when the computed floating-point
entry distance, t̃min, is larger than the computed floating-point exit distance, t̃max, even
though the real exit distance is larger than or equal to the real entry distance. In other
words, the following two conditions must occur for a false-miss:

t̃min > t̃max

tmin ≤ tmax. (10)

Plugging in the 3
2 ulps error bounds, the above condition can be simplified as

0≤ tmax− tmin < 3ulp(tmax) (11)

Since floats can only be an integer number of ulps away from each other, we get

0≤ tmax− tmin ≤ 2ulp(tmax) (12)

Thus, false-misses can occur only if the entry and exit distances are within 2 ulps or
less of each other.
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Figure 3. The ray is said to intersect the bounding box if the largest entry plane intersection
distance, tmin, is smaller than or equal to the smallest exit plane distance, tmax. In the left
example where there is no numerical error, this is the case, with tmin-x < tmax-y. However, in the
right example we increase the precision error, denoted by the enlarged error bounds, and it is
now possible for t̃min to become larger than t̃max.

3.2. FMA optimized traversal error

If an IEEE754 compliant fused multiply-add (FMA) hardware instruction is available,
then since the subtraction and multiplication operations become a single operation, only
half an ulp of error is introduced when doing both a multiply and an add [Whitehead
and Fit-Florea 2011]. In this case, in exchange for an additional multiplication at the
start of the traversal, we can achieve faster traversal by using an FMA operation. We
can see how to do this by taking our original equation and transforming it as such:

t =
(
b− rayorigin

) 1
raydir

(13)

t = b
1

raydir
+

(
−rayorigin

1
raydir

)
(14)

t = bY +X , (15)
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where X can be precomputed at the start of the BVH traversal as −rayorigin
1

raydir
and Y

as 1
raydir

. The error, unfortunately, is not the same. The computed value is

t̃ =
(

b
(

1
raydir

(1+δ1)

)
+

(
−rayorigin

(
1

raydir
(1+δ1)

))
(1+δ2)

)
(1+δ3) (16)

t̃ =
b

raydir
(1+δ1)(1+δ3)−

rayorigin

raydir
(1+δ1)(1+δ2)(1+δ3) (17)

t̃ = (
b

raydir
−

rayorigin

raydir
)(1+δ1)(1+δ3)−

rayorigin

raydir
(1+δ1)(1+δ3)δ2 (18)

t̃ = t(1+δ1)(1+δ3)−
rayorigin

raydir
(1+δ1)(1+δ3)δ2 (19)

t̃ = t(1+δ1 +δ3 +δ1δ3)−
rayorigin

raydir
(δ2 +δ1δ2 +δ2δ3 +δ1δ2δ3) (20)

where as before, |δ|< ε and give the relative errors introduced by each floating point
operation. Dropping the higher order δ terms gives us

t̃ = t + t(δ1 +δ3)−
rayorigin

raydir
δ2. (21)

The error is thus
t̃− t = t(δ1 +δ3)−

rayorigin

raydir
δ2, (22)

and can be bounded as

|t̃− t| ≤ |tδ1|+ |tδ3|+
∣∣∣∣rayorigin

raydir
δ2

∣∣∣∣ (23)

|t̃− t| ≤ 2ε|t|+
∣∣∣∣rayorigin

raydir

∣∣∣∣ε (24)

The
∣∣∣ rayorigin

raydir

∣∣∣ε term unfortunately allows large amounts of error when the ray origin
is large or when the ray direction component is small. For this reason, the FMA
optimization should be avoided when accuracy is important.

4. Robust traversal algorithm

We can make ray-box intersection completely robust by pushing the entry and exit
plane intersection distances two ulps apart. One way to do this would be to use
the add_ulp_magnitude() function from Listing 2 to modify the plane intersection
inequality from t̃min < t̃max to

t̃min < add_ulp_magnitude(t̃max,2) (25)

each time a ray-box test occurs. While this works, it is somewhat inefficient as it must
occur for each ray-bounding box test, and on certain hardware architectures, there can
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template <typename IN_T, typename OUT_T>

inline OUT_T reinterpret_type(const IN_T in) {

// Good compiler should optimize memcpy away.

OUT_T out;

memcpy(&out, &in, sizeof(out));

return out;

}

inline float add_ulp_magnitude(float f, int ulps) {

if (!std::isfinite(f)) return f;

const unsigned bits = reinterpret_type<float, unsigned>(f);

return reinterpret_type<unsigned, float>(bits + ulps);

}

Listing 2. Increasing magnitude of a float by a certain number of ulps. A double
precision version would only require changing the floats to doubles and bits to be
unsigned long long.

be even more overhead, as adding ulps requires moving the float from a floating-point
register into an integer register and back. Note that the code in Listing 2 will not work
for floats that are less than k ulps from FLT_MAX when adding k ulps to the float, since
then we could obtain NaN or some incorrect number. If this is an issue, this can be
easily avoided by clamping to inf at the expense of some additional overhead.

4.1. Inverse ulps traversal

Let us define rayinv_dir =
1

raydir
and reorder the sequence of operations in Equation (5)

so that we get the equivalent:

t̃ =
(
b− rayorigin

)(
rayinv_dir (1+δ1 +δ2 +δ3)

)
(26)

The error is maximized when

t̃ =
(
b− rayorigin

)(
rayinv_dir (1±3ε)

)
(27)

A nice property, easily seen in Equation (27), is that the 3
2 ulps can be applied to the

inverse ray direction instead of to the final t. So we can also arrive at Equation (25),
not by adding two ulps to t, but by adding two ulps to rayinv_dir. This allows us to
precompute a maximum error r̃ayinv_dir once and then reuse that for all bounding-
box tests with that ray when computing t̃max. The final modified algorithm based on
Williams et al. and Berger-Perrin is presented in Listing 3. In this paper, we will call
this algorithm the InvUlps traversal. Its benefits are that it adds only the minimum
amount of padding, so introduces as few false-hits as possible, is fast to precompute,
and no additional computation is introduced during the traversal loop. However, extra
work might occur during the traversal loop in the form of additional loads and register
pressure, which could make it slightly slower on some architectures.
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struct Ray {

Ray(Vector3 &o, Vector3 &d) : origin(o), dir(d) {

inv_dir = Vector3(1/d.x, 1/d.y, 1/d.z);

inv_dir_pad.x = add_ulp_magnitude(inv_dir.x, 2);

inv_dir_pad.y = add_ulp_magnitude(inv_dir.y, 2);

inv_dir_pad.z = add_ulp_magnitude(inv_dir.z, 2);

sign[0] = (inv_dir.x < 0);

sign[1] = (inv_dir.y < 0);

sign[2] = (inv_dir.z < 0);

}

Vector3 origin;

Vector3 dir;

Vector3 inv_dir;

Vector3 inv_dir_pad;

int sign[3];

};

bool Box::intersect_InvUlps(const Ray &r, float tmin, float tmax) {

float txmin, txmax, tymin, tymax, tzmin, tzmax;

txmin = (bounds[ r.sign[0]].x-r.origin.x) * r.inv_dir.x;

txmax = (bounds[1-r.sign[0]].x-r.origin.x) * r.inv_dir_pad.x;

tymin = (bounds[ r.sign[1]].y-r.origin.y) * r.inv_dir.y;

tymax = (bounds[1-r.sign[1]].y-r.origin.y) * r.inv_dir_pad.y;

tzmin = (bounds[ r.sign[2]].z-r.origin.z) * r.inv_dir.z;

tzmax = (bounds[1-r.sign[2]].z-r.origin.z) * r.inv_dir_pad.z;

tmin = max(tzmin, max(tymin, max(txmin, tmin)));

tmax = min(tzmax, min(tymax, min(txmax, tmax)));

return tmin <= tmax;

}

Listing 3. InvUlps robust BVH traversal. Changes from the default algorithm are highlighted.

The implementation from Listing 2 works correctly here for all floats f , since 1/ f
is either inf or at least 7 ulps below FLT_MAX, so no overflow to NaN can occur when
adding two ulps.

4.2. Max multiplication traversal

If we allow adding slightly more padding than required, a very simple solution is to
approximate Equation (25) with a conservative multiplication that adds at least 2 ulps.

t̃max_padded = t̃max +2ulp(t̃max) (28)

t̃max_padded = t̃max +2(2εt̃max) (29)

t̃max_padded = t̃max(1+4ε) (30)

t̃max_padded = t̃max1.0000002384185791015625 (31)

t̃max_padded = t̃max1.00000024f, (32)
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Figure 4. We rendered the 90.1M triangle stairs at a 960×720 resolution with 256 samples
per pixel using an ambient occlusion shader. From left to right, we used no padding of any
kind, one, and then two ulps in our robust algorithm. Note that using one ulp still results in
false-misses, while two ulps renders correctly without holes.

where we used the ε for 32 bit floats. Note that 1.0000002384185791015625 and
1.00000024f are exactly equal since 1+ 4ε happens to be a number that can be
perfectly represented in floating-point and 1.00000024f rounds to this value. Since
Equation (1) gives a lower bound, it is possible that more than 2 ulps will be added. In
fact, we confirmed by exhaustively testing all normalized floats that it will add between
2 and 4 actual ulps. Note that this is valid for all normalized floats (t̃max >= 2−126)
as well as for NaN and infs. Not being robust for denormals is an issue when the ray
exits the bounds with t < 2−126; however, most ray tracers do not allow intersections
within some range of the ray origin and that range is extremely likely to be greater
than this (it is usually larger than ε), so missing this bounding box would be fine since
nothing could have been intersected in it anyways. Even if no range is used, it is
extremely unlikely that the ray would hit something valid so close from its origin.
If this must be allowed, then the following would handle all floating-point values,
t̃max1.00000024f+2.80259693e-45f, but would be slightly slower due to the extra
addition and possibly much slower on architectures where denormals are expensive.

Unlike adding an ulp at each traversal step, which can be slow on certain hardware
architectures, multiplying will always be fast and is an extremely simple modification
to existing BVH traversal code, as seen in Listing 4. We call this the MaxMult
traversal. Furthermore, we do not need to compute the padded inverse ray direction
like in InvUlps, so if few traversals occur, this might even be faster. The only significant
downsides are that it is often 2 ulps too large, which is usually a minor issue, and it
does add a small amount of extra work during each traversal step.

5. Results

All our tests were made with Solid Angle’s Arnold renderer on 8 cores of an Intel
Xeon E5-4650 running at 2.7GHz. We used a high quality double precision triangle-
intersection algorithm so that false-misses caused by the triangle intersection test would
be kept at a minimum. Two scenes are from test cases reported to us by our users.
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struct Ray {

Ray(Vector3 &o, Vector3 &d) : origin(o), dir(d) {

inv_dir = Vector3(1/d.x, 1/d.y, 1/d.z);

sign[0] = (inv_dir.x < 0);

sign[1] = (inv_dir.y < 0);

sign[2] = (inv_dir.z < 0);

}

Vector3 origin;

Vector3 dir;

Vector3 inv_dir;

int sign[3];

};

bool Box::intersect_MaxMult(const Ray &r, float tmin, float tmax) {

float txmin, txmax, tymin, tymax, tzmin, tzmax;

txmin = (bounds[ r.sign[0]].x-r.origin.x) * r.inv_dir.x;

txmax = (bounds[1-r.sign[0]].x-r.origin.x) * r.inv_dir.x;

tymin = (bounds[ r.sign[1]].y-r.origin.y) * r.inv_dir.y;

tymax = (bounds[1-r.sign[1]].y-r.origin.y) * r.inv_dir.y;

tzmin = (bounds[ r.sign[2]].z-r.origin.z) * r.inv_dir.z;

tzmax = (bounds[1-r.sign[2]].z-r.origin.z) * r.inv_dir.z;

tmin = max(tzmin, max(tymin, max(txmin, tmin)));

tmax = min(tzmax, min(tymax, min(txmax, tmax)));

tmax *= 1.00000024f;

return tmin <= tmax;

}

Listing 4. MaxMult robust BVH traversal. By allowing for up to 4 ulps instead of 2 ulps of
padding, the following code is robust, efficient, and extremely simple to implement. Changes
from the original algorithm are highlighted. For double precision, the multiplication factor is
1.0000000000000004 instead.

One is a poppy flower from the film “Oz: the Great and Powerful” (Figure 2), and
the other is the staircase used in the Dragon Age 2 cinematic trailer (Figure 4). False
misses with these models were causing problems in the final rendered images, showing
that false-misses are a legitimate issue and not just one of academic interest. We have
modified these test cases by further subdividing the meshes and casting more rays per
pixel in an attempt to cause many more false-misses to occur, which in turn gives us a
better test as to whether we are in fact preventing all false-misses. Furthermore, to aid
with visualizing these misses, we have simplified the shading and placed extremely
bright backgrounds behind the model so that even a single false-miss will clearly
turn up in the final image. We also compare against the publicly available Natural
History Museum scene (Figure 5), which does not exhibit any perceptible artifacts
in our renderings, although an image comparison tool does single out a few pixels as
having a very slight difference. Despite not easily showing artifacts, this scene helps
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Figure 5. We rendered the 1.4M triangle Natural History Museum at a 960×720 resolution
with 256 samples per pixel using an ambient occlusion shader to demonstrate that no perceptible
errors arising from precision limitations are present.

to compare the performance of our algorithms on more realistic looking scenes with
greater geometric complexity.

In the flower scene, the camera is 66400 units away from the flower which is
located roughly at the origin and is 29 units tall. Extreme distances, such as this one,
are especially challenging, since it amplifies numerical precision issues. Of course,
in this particular test case, the camera could have been moved much closer and fewer
holes would have shown up. However, in the film, this flower might be part of a vast
field, and so, a large camera distance is required. The stairs, by comparison, is at a
more regular distance of between 408 and 454 units from the camera, and the museum
has the camera inside it with the longest dimension of the scene being about 140 units.

Since we need to expand the entry and exit planes by two ulps, an alternative (third)
solution to prevent false-misses is to add the padding not to the inverse ray direction
but instead to the leaf bounds by adding one ulp(b− rayorigin)) in each positive and
negative direction during BVH construction. Notice that this padding depends on
the variable ray origin, so we need to select the furthest possible ray origin from
the bounding box in order to guarantee there will never be a false-miss. Since the
stairs are at most 454 units away from the camera, we pad the bounding boxes by
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no padding bounds padding InvUlp MaxMult
time time time time

trav/int trav/int trav/int trav/int

Flower
78.0s 174.4s 79.6s 81.2s

1×/1× 1.323×/6.600× 1.013×/1.077× 1.018×/1.108×

Stairs
70.8s 71.3 71.2s 71.0s

1×/1× 1.004×/1.035× 1.000×/1.002× 1.000×/1.002×

Museum
114.1s 117.3s 114.1s 113.4s
1×/1× 1.022×/1.119× 1.000×/1.002× 1.000×/1.002×

Table 1. Table shows rendering time and relative number of BVH traversals (trav) and triangle
intersection tests (int) compared to the default non-robust traversal where no padding is used.
From left to right, the columns correspond to: using no padding so that false-misses occur,
padding the bounds of every BVH node by the minimum fixed epsilon specified during BVH
construction, adding exactly 2 ulps to the padded inverse direction when the ray is created, and
finally, multiplying t̃max by 1.00000024f so that at least 2 ulps of padding are added to t̃max

at each traversal step.

ulp(454) = 2ε454 = 2−23 ∗454 = 5.412×10−5 so that ray origins can exist within a
range of 454 units from the object. Table 1 shows that, while this is competitive, it
is the slowest option and has the most traversal overhead. Worse still, over-padding
by 1×10−3 makes it a further couple percent slower at 72.9s, and since this padding
must be set during BVH construction, this means that there is a trade-off between
performance and how far away the camera and other objects and lights are allowed to
be.

The Museum scene, with longest dimension being 140 units, requires padding to
about 1.67×10−6. Despite having a small amount of padding, the padding causes a
3% slowdown and a significant number of extra traversals and intersections.

Similarly, for the flower, we must pad by ulp(66400) = 0.00792 and find that
padding the bounds is much slower than the alternative methods, as seen in Table 1.
In this test, performance and visual correctness are quite sensitive to the amount of
padding. With a padding of 0.01, which is just 1.3× larger, the render time goes up
by an additional 1.2×, while a smaller padding of 0.0031, which renders at 106.6s,
already exhibits holes. The slow performance occurs because we are forcing all rays,
even rays that are near the object and could get by with much smaller bounding box
padding (such as the ambient occlusion rays), to use the same overly large padding.
This demonstrates how important it is to accurately compute the padding and how
there can be an arbitrarily large range in what the required padding must be. Even
using the minimal padding for a scene can still be slow. We are not aware of any
published work that gives an actual formula for the minimum padding to use, and most
likely, ray tracers that pad the BVH bounds have a hard coded padding or some other
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heuristic that tends to over-pad and/or under-pad, so the above formula is already a
substantial improvement over the current state-of-the-art. Aside from the potential
render-time overhead, a major limitation of this approach is that it requires knowing
the maximum distance a ray will travel. Computing this maximum distance can be
complicated, especially in the case of object instancing, since then the maximum
distance for the furthest instance must be used over all instances (which is a further
unneeded performance hit for near instances), and with lazy loading, the position of
all instances might not even be known yet. This is also constraining for interactive
renderers, which would have to guess at a maximum distance and then constrain the
user from not exceeding it.

The two solutions we recommend are InvUlps, which pads the inverse ray direction
by 2 ulps, and MaxMult, which multiplies t̃max by 1.00000024f so that at least 2 ulps
of padding are added. Table 1 shows that both methods essentially introduced no
overhead in the stairs and museum scene and only a slight amount of overhead in the
Flower. Most of this overhead is due to the flower being very far away, which makes
the distance an ulp covers much larger, and so, more nodes end up being traversed and
more triangles tested against. In this case, the up to two extra ulps of padding that
MaxMult must do compared to InvUlps makes it traverse more nodes and consequently
become slower.

6. Discussion

This paper shows only how to make the BVH traversal robust, but there can still be
sources of error in other parts of the ray tracer that can lead to holes or other artifacts.
A common case is that holes and self shadowing can appear along the shared edge of
two triangles if the intersection algorithm is not robust enough. Another issue is that if
the minimum and maximum t values passed to the bounding box intersection function
are incorrect, then the wrong primitive could be intersected. One way this can occur
is if two axis-aligned triangles, A and B, are nearly coplanar, with A being k ulps in
front of B, and each is in a separate flat bounding box. During BVH traversal, assume
that B’s bounding box is tested first and B is then hit and due to numerical precision
issues in the ray-triangle intersection, its ray-primitive intersection is computed as
t̃ = t− (k+1)ulp(t). This k+1 ulps of error ends up placing B erroneously in front
of A. Early ray termination using that intersection distance t̃ would then cause the
bounding box of A to be skipped, since A is behind the computed hit point. We do not
count this as an error on the part of the BVH traversal, since it was given the wrong
t-bounds to traverse. Having said that, this could be fixed by performing early-ray
termination not with t̃ but with t̃ +α, where α is the maximum error that could occur
from that primitive-ray intersection. Computing this α for a particular ray-primitive
algorithm would be the domain of a future paper.
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7. Conclusion

We have derived how numerical precision issues can occur during BVH traversal, and
from this derivation, we were able to come up with two elegant solutions—InvUlps and
MaxMult—towards making BVH traversal fully robust while introducing essentially
negligible overhead in both code complexity and performance. Which of these two
methods is fastest will likely be scene and hardware specific. For instance, InvUlps
could be slow if adding ulps is expensive on that hardware, and the three extra padded
inverse ray direction components cause register spilling to occur. Since MaxMult
pads by up to 2 more ulps than necessary, this can make it slower than InvUlps if the
parametric ray distance is extremely large, such as with the flower. However, in most
scenes, this is not the case, and so, is a non-issue.

We tested this for single precision floats, but this can be trivially extended to lower
or higher precision floats as well, for instance, for double precision we would multiply
by 1.0000000000000004 and for 16-bit floats we would use 1.001953125. We also
gave examples of how commonly used solutions towards handling false-misses, such
as padding bounding boxes or casting more samples, will not always work, and even if
it does work, it can result in a significant performance hit.
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