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Motivation

• Single level grids mostly solved (Cleary and Wyvill 
‘89) -- O(n) cells should normally work

• Not much discussion on long skinny triangles

• Guess-and-check was the recommended method 
for multi-level grids

• Given the number of triangles in the grid and the 
current grid level, would like a formula that 
returns the optimal grid resolution



Uniform Grid Acceleration Structure

• We use the standard 3D uniform grid for ray 
tracing (examples are in 2D for simplicity)

• Use cubical shaped cells

• Choose number of cells in each 
dimension according to:
d is the diagonal of the object (length)
N is number of triangles (primitives)
k is a user supplied parameter

nx = dx
3

√
kN

dxdydz

ny = dy
3

√
kN

dxdydz

nz = dz
3

√
kN

dxdydz

d
ny = 3

nx = 7



Our approach
• Assume compact triangles are points 

• Assume long skinny triangles are lines

• Points and lines have zero probability of being 
intersected -- makes the derivations much easier

• All rays hit grid and are equally likely

• Note: we use points and lines only for our 
derivation, we still care only about ray tracing 
triangles



We find solutions for these simple scenes 
and later apply it to actual triangle scenes 
(note these are supposed to be 3D)

Arbitrarily scattered points

Arbitrarily scattered lines

Multi-level grids made up of points on surface

Multi-level grids made up of lines on surface

Scenes we solve for



• Time for a ray to enter grid, traverse, and 
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection



• Time for a ray to enter grid, traverse, and 
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

     : Time to intersect grid 
bounding box and setup grid 
traversal

Tsetup



• Time for a ray to enter grid, traverse, and 
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

    : Time for ray to march to 
next cell

Tstep

3



• Time for a ray to enter grid, traverse, and 
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

    : Time for ray to march to 
next cell

             : Time to perform a 
ray/primitive intersection

Tstep

Tintersection

55



• Time for a ray to enter grid, traverse, and 
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

    : Time for ray to march to 
next cell

Tstep

59



Ray/Grid cost model

•  

• Can empirically find average values

• Even easier, we’ll find that in the end we only 
need to find a single value, which is a ratio of the 
above parameters

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

Assume Tsetup, Tstep, and Tintersection are constants



• Very complicated to find actual value

• Cell traversal stops when primitive is hit

• Varies with scene and camera view

Ray/Grid cost model: # cells traversed

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection



• Very complicated to find actual value

Ray/Grid cost model: # intersection tests

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection



• We simplify by only looking at points and lines 
which probabilistically will never be hit

Ray/Grid cost model: # cells traversed

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection



• We simplify by only looking at points and lines 
which probabilistically will never be hit

Ray/Grid cost model: # cells traversed

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection



• We simplify by only looking at points and lines 
which probabilistically will never be hit

Ray/Grid cost model: # cells traversed

T = Tsetup + mTstep + (# intersection tests)Tintersection

• Average # cells traversed = m, for an m x m x m grid



•

•  

•

Ray/Grid cost model: # point intersection tests

T = Tsetup + mTstep + (# intersection tests)Tintersection

Given N points and m3 cells, there are an average of
N
m3 points in a cell

A ray traverses m cells on average

N
m3 m = N

m2 intersection tests per ray



•

•  

•

Ray/Grid cost model: # point intersection tests

T = Tsetup + mTstep + (# intersection tests)Tintersection

Given N points and m3 cells, there are an average of
N
m3 points in a cell

A ray traverses m cells on average

N
m3 m = N

m2 intersection tests per ray



•

•  

•

Ray/Grid cost model: # point intersection tests

T = Tsetup + mTstep +
N

m2
Tintersection

Given N points and m3 cells, there are an average of
N
m3 points in a cell

A ray traverses m cells on average

N
m3 m = N

m2 intersection tests per ray



•  

•  

•  

•

Ray/Grid cost model: # line intersection tests

T = Tsetup + mTstep +
N

m
Tintersection

Given N lines and m3 cells, there are an average of
N
m3 m = N

m2 lines in a cell

A ray traverses m cells on average
N
m2 m = N

m line intersection tests per ray

A line covers m cells on average



Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection



Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

dT

dm
= Tstep −

2N

m3
Tintersection



Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

dT

dm
= Tstep −

2N

m3
Tintersection = 0



Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

m = 3

√

N
2Tintersection

Tstep

dT

dm
= Tstep −

2N

m3
Tintersection = 0



Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

m = 3

√

N
2Tintersection

Tstep

dT

dm
= Tstep −

2N

m3
Tintersection = 0

Grid should thus have m3 = N 2Tintersection
Tstep

cells•  

• This holds for any single level grid of points



Optimal Grid for Points
Applied to Triangle Based Scenes

•  

• Get within 5% of optimal for tested scenes

• Varied triangle count for laser scanned models

•  

• Laser scanned models with small compact triangles are 
handled very well, but even conference room does well

From m3 = N 2Tintersection
Tstep

, we empirically find Tintersection
Tstep

Use same ratio of Tintersection
Tstep

for all scenes



• Same derivation as for points gives
                                    cells

•  

• Long skinny triangles common in 
CAD models

• We use a cylinder to simulate this

Optimal Grid for Lines Applied to 
Long Skinny Triangle Based Scenes

m3 = (N
Tintersection

Tstep
)1.5

O(N1.5) space-complexity



• Only practical for small number of triangles

•  

•  

• Extremely large 19,996 tri cylinder within 10% of optimal

O(N1.5) cells produces grids within 3% of optimal performance

O(N) cells results in a 1.25× – 2× slowdown

Optimal Grid for Lines Applied to 
Long Skinny Triangle Based Scenes



• Recursive (nested) Grid

• Cube shaped cells

• Cell size can vary between 
grids

• Subgrid resides only in 
parent cell

2-Level Grid
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• Recursive (nested) Grid

• Cube shaped cells

• Cell size can vary between 
grids

• Subgrid resides only in 
parent cell

2-Level Grid



2-Level Grid
• Multi-level grids do not help for scattered data

• Focus on manifold-like models, such as laser-scanned 
models

2D analogy



2-Level Grid for Manifolds
•  

•  

•  

• In 2D, square goes through 4m cells

•  

•  

For an m×m×m cell grid, a 2D manifold passes
through O(m2) cells

A 2D manifold goes through km2 cells, where k depends on
the specific manifold

Cube goes through 6m2 cells (k = 6)

m

m

Only need to refine the km2 cells for bottom
level grid

Fraction of cells with subgrids: km2

m3 = k
m



2-Level Grid: Points on Surface

• As before, we simplify the problem by looking at 
points -- this time points are on a surface

•  

•  T = Tsetup + mTstep +
k

m
mTsubgrid

Assume the km2 cells each contain an equal number
of points (each subgrid has same time complexity)



2-Level Grid: Points on Surface

• As before, we simplify the problem by looking at 
points -- this time points are on a surface

•  

•  T = Tsetup + mTstep + kTsubgrid

Assume the km2 cells each contain an equal number
of points (each subgrid has same time complexity)



2-Level Grid: Points on Surface
•  

•

•  

•

T = Tsetup + mTstep + kTsubgrid

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell



2-Level Grid: Points on Surface
•  

•

•  

•

T = Tsetup + m1Tstep + kTsubgrid

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell



2-Level Grid: Points on Surface
•  

•

•  

•

T = Tsetup + m1Tstep + kTsubgrid

T = Tsetup + m1Tstep + k

(
Tsetup + m2Tstep +

N

km2
1m

2
2

Tintersection

)

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell



2-Level Grid: Points on Surface
•  

•

•  

•

T = Tsetup + m1Tstep + kTsubgrid

T = Tsetup + m1Tstep + k

(
Tsetup + m2Tstep +

N

km2
1m

2
2

Tintersection

)

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell

m3
1 =

(
N

2k2Tintersection

Tstep

)0.6

m3
2 =

(
N

2Tintersection

k3Tstep

)0.6



2-Level Grid: Points on Surface
•  

•

•  

•

T = Tsetup + m1Tstep + kTsubgrid

T = Tsetup + m1Tstep + k

(
Tsetup + m2Tstep +

N

km2
1m

2
2

Tintersection

)

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3
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m3
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(
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(
N
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1
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2-Level Grid: Points on Surface
•  

•

•  

•

T = Tsetup + m1Tstep + kTsubgrid

T = Tsetup + m1Tstep + k

(
Tsetup + m2Tstep +

N

km2
1m

2
2

Tintersection

)

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell

m3
1 =

(
N

2k2Tintersection

Tstep

)0.6

m3
2 =

(
N

2Tintersection

k3Tstep

)0.6

m3
2 = N2

2Tintersection

Tstep
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• Get within 5% of 
optimal for 
tested scenes

• About a 2x 
speedup over 
single level grid
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• Get within 5% of 
optimal for 
tested scenes

• About a 2x 
speedup over 
single level grid
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2-level grid: lines on surface Applied to 
Long Skinny Triangle Based Scenes
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2-level grid: lines on surface Applied to 
Long Skinny Triangle Based Scenes
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L-level grid
• Same process as for 2-level grids

•  

• The next level would recursively behave as an L-1 
level grid

• Can do same analysis for long skinny triangles

Compact triangle top level grid has O
(
N

3
2L+1

)
cells



Better Single Level Grid
• For manifold like models empirically found

•  

•   

Results in even better performance

• Results in almost perfect grids for all our tests:

•  

•  

• Use this if you don’t mind the lack of theory

• Theory is future work

With O(N3/2) cells, 19,996 tri cylinder has 10% penalty

With O(N4/3) cells, 19,996 tri cylinder has 0% penalty

O(N7/9) cells (sublinear grid storage!) for compact triangles

O(N4/3) cells for long skinny triangles



Limitations
• Good for laser scanned models and simple scenes

• Not as good as empirically found formula

• Assumptions might not hold for some scenes

• Assumed we never hit the primitive -- clearly false

• Triangle distributions not evenly distributed about simple surface

• Might not work at all for more complex scenes



Conclusion
•   

• Number of grid levels depends on model and 
setup cost of entering grid

• Long skinny triangle scenes can only achieve sub-
linear time with super-linear memory use

• For scenes that do not deviate too much from 
our assumptions, finding a close-to-optimal multi-
level grid resolution is very easy

Nested grids can lower time complexity below O( 3
√

N)


