
Grid Creation Strategies
for Efficient Ray Tracing

Thiago Ize
Peter Shirley

Steven G. Parker

or

How to pick the best grid resolution

Motivation

• Single level grids mostly solved (Cleary and Wyvill
‘89) -- O(n) cells should normally work

• Not much discussion on long skinny triangles

• Guess-and-check was the recommended method
for multi-level grids

• Given the number of triangles in the grid and the
current grid level, would like a formula that
returns the optimal grid resolution

Uniform Grid Acceleration Structure

• We use the standard 3D uniform grid for ray
tracing (examples are in 2D for simplicity)

• Use cubical shaped cells

• Choose number of cells in each
dimension according to:
d is the diagonal of the object (length)
N is number of triangles (primitives)
k is a user supplied parameter

nx = dx
3

√
kN

dxdydz

ny = dy
3

√
kN

dxdydz

nz = dz
3

√
kN

dxdydz

d
ny = 3

nx = 7

Our approach
• Assume compact triangles are points

• Assume long skinny triangles are lines

• Points and lines have zero probability of being
intersected -- makes the derivations much easier

• All rays hit grid and are equally likely

• Note: we use points and lines only for our
derivation, we still care only about ray tracing
triangles

We find solutions for these simple scenes
and later apply it to actual triangle scenes
(note these are supposed to be 3D)

Arbitrarily scattered points

Arbitrarily scattered lines

Multi-level grids made up of points on surface

Multi-level grids made up of lines on surface

Scenes we solve for

• Time for a ray to enter grid, traverse, and
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

• Time for a ray to enter grid, traverse, and
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

 : Time to intersect grid
bounding box and setup grid
traversal

Tsetup

• Time for a ray to enter grid, traverse, and
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

 : Time for ray to march to
next cell

Tstep

3

• Time for a ray to enter grid, traverse, and
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

 : Time for ray to march to
next cell

 : Time to perform a
ray/primitive intersection

Tstep

Tintersection

55

• Time for a ray to enter grid, traverse, and
intersect objects :

Ray/Grid cost model

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

 : Time for ray to march to
next cell

Tstep

59

Ray/Grid cost model

•

• Can empirically find average values

• Even easier, we’ll find that in the end we only
need to find a single value, which is a ratio of the
above parameters

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

Assume Tsetup, Tstep, and Tintersection are constants

• Very complicated to find actual value

• Cell traversal stops when primitive is hit

• Varies with scene and camera view

Ray/Grid cost model: # cells traversed

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

• Very complicated to find actual value

Ray/Grid cost model: # intersection tests

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

• We simplify by only looking at points and lines
which probabilistically will never be hit

Ray/Grid cost model: # cells traversed

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

• We simplify by only looking at points and lines
which probabilistically will never be hit

Ray/Grid cost model: # cells traversed

T = Tsetup + (# cells traversed)Tstep + (# intersection tests)Tintersection

• We simplify by only looking at points and lines
which probabilistically will never be hit

Ray/Grid cost model: # cells traversed

T = Tsetup + mTstep + (# intersection tests)Tintersection

• Average # cells traversed = m, for an m x m x m grid

•

•

•

Ray/Grid cost model: # point intersection tests

T = Tsetup + mTstep + (# intersection tests)Tintersection

Given N points and m3 cells, there are an average of
N
m3 points in a cell

A ray traverses m cells on average

N
m3 m = N

m2 intersection tests per ray

•

•

•

Ray/Grid cost model: # point intersection tests

T = Tsetup + mTstep + (# intersection tests)Tintersection

Given N points and m3 cells, there are an average of
N
m3 points in a cell

A ray traverses m cells on average

N
m3 m = N

m2 intersection tests per ray

•

•

•

Ray/Grid cost model: # point intersection tests

T = Tsetup + mTstep +
N

m2
Tintersection

Given N points and m3 cells, there are an average of
N
m3 points in a cell

A ray traverses m cells on average

N
m3 m = N

m2 intersection tests per ray

•

•

•

•

Ray/Grid cost model: # line intersection tests

T = Tsetup + mTstep +
N

m
Tintersection

Given N lines and m3 cells, there are an average of
N
m3 m = N

m2 lines in a cell

A ray traverses m cells on average
N
m2 m = N

m line intersection tests per ray

A line covers m cells on average

Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

dT

dm
= Tstep −

2N

m3
Tintersection

Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

dT

dm
= Tstep −

2N

m3
Tintersection = 0

Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

m = 3

√

N
2Tintersection

Tstep

dT

dm
= Tstep −

2N

m3
Tintersection = 0

Optimal Grid for Points
• Minimize ray/grid cost to find optimal m

T = Tsetup + mTstep +
N

m2
Tintersection

m = 3

√

N
2Tintersection

Tstep

dT

dm
= Tstep −

2N

m3
Tintersection = 0

Grid should thus have m3 = N 2Tintersection
Tstep

cells•

• This holds for any single level grid of points

Optimal Grid for Points
Applied to Triangle Based Scenes

•

• Get within 5% of optimal for tested scenes

• Varied triangle count for laser scanned models

•

• Laser scanned models with small compact triangles are
handled very well, but even conference room does well

From m3 = N 2Tintersection
Tstep

, we empirically find Tintersection
Tstep

Use same ratio of Tintersection
Tstep

for all scenes

• Same derivation as for points gives
 cells

•

• Long skinny triangles common in
CAD models

• We use a cylinder to simulate this

Optimal Grid for Lines Applied to
Long Skinny Triangle Based Scenes

m3 = (N
Tintersection

Tstep
)1.5

O(N1.5) space-complexity

• Only practical for small number of triangles

•

•

• Extremely large 19,996 tri cylinder within 10% of optimal

O(N1.5) cells produces grids within 3% of optimal performance

O(N) cells results in a 1.25× – 2× slowdown

Optimal Grid for Lines Applied to
Long Skinny Triangle Based Scenes

• Recursive (nested) Grid

• Cube shaped cells

• Cell size can vary between
grids

• Subgrid resides only in
parent cell

2-Level Grid

• Recursive (nested) Grid

• Cube shaped cells

• Cell size can vary between
grids

• Subgrid resides only in
parent cell

2-Level Grid

• Recursive (nested) Grid

• Cube shaped cells

• Cell size can vary between
grids

• Subgrid resides only in
parent cell

2-Level Grid

2-Level Grid
• Multi-level grids do not help for scattered data

• Focus on manifold-like models, such as laser-scanned
models

2D analogy

2-Level Grid for Manifolds
•

•

•

• In 2D, square goes through 4m cells

•

•

For an m×m×m cell grid, a 2D manifold passes
through O(m2) cells

A 2D manifold goes through km2 cells, where k depends on
the specific manifold

Cube goes through 6m2 cells (k = 6)

m

m

Only need to refine the km2 cells for bottom
level grid

Fraction of cells with subgrids: km2

m3 = k
m

2-Level Grid: Points on Surface

• As before, we simplify the problem by looking at
points -- this time points are on a surface

•

• T = Tsetup + mTstep +
k

m
mTsubgrid

Assume the km2 cells each contain an equal number
of points (each subgrid has same time complexity)

2-Level Grid: Points on Surface

• As before, we simplify the problem by looking at
points -- this time points are on a surface

•

• T = Tsetup + mTstep + kTsubgrid

Assume the km2 cells each contain an equal number
of points (each subgrid has same time complexity)

2-Level Grid: Points on Surface
•

•

•

•

T = Tsetup + mTstep + kTsubgrid

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell

2-Level Grid: Points on Surface
•

•

•

•

T = Tsetup + m1Tstep + kTsubgrid

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell

2-Level Grid: Points on Surface
•

•

•

•

T = Tsetup + m1Tstep + kTsubgrid

T = Tsetup + m1Tstep + k

(
Tsetup + m2Tstep +

N

km2
1m

2
2

Tintersection

)

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell

2-Level Grid: Points on Surface
•

•

•

•

T = Tsetup + m1Tstep + kTsubgrid

T = Tsetup + m1Tstep + k

(
Tsetup + m2Tstep +

N

km2
1m

2
2

Tintersection

)

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell

m3
1 =

(
N

2k2Tintersection

Tstep

)0.6

m3
2 =

(
N

2Tintersection

k3Tstep

)0.6

2-Level Grid: Points on Surface
•

•

•

•

T = Tsetup + m1Tstep + kTsubgrid

T = Tsetup + m1Tstep + k

(
Tsetup + m2Tstep +

N

km2
1m

2
2

Tintersection

)

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell

m3
1 =

(
N

2k2Tintersection

Tstep

)0.6

m3
2 =

(
N

2Tintersection

k3Tstep

)0.6

m3
2 =

N

km2
1

2Tintersection

Tstep

2-Level Grid: Points on Surface
•

•

•

•

T = Tsetup + m1Tstep + kTsubgrid

T = Tsetup + m1Tstep + k

(
Tsetup + m2Tstep +

N

km2
1m

2
2

Tintersection

)

N points and km2
1 subgrids give us

N
km2

1
points per subgrid

Each subgrid has N
km2

1

1
m3

2
points per subgrid cell

m3
1 =

(
N

2k2Tintersection

Tstep

)0.6

m3
2 =

(
N

2Tintersection

k3Tstep

)0.6

m3
2 = N2

2Tintersection

Tstep

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

buddha - 15536 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

m
2
/(

N
2
1
/3

)

41
cells

327
cells

1104
cells

2618
cells

5112
cells

8834
cells

20940
cells

14028
cells

Top Level Grid

Bo
tt

om
 L

ev
el

 G
ri

d

Optimal

• Get within 5% of
optimal for
tested scenes

• About a 2x
speedup over
single level grid

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

bunny 69451 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

bunny 948 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

conference room 282k tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

buddha - 1087716 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

buddha - 15536 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

• Get within 5% of
optimal for
tested scenes

• About a 2x
speedup over
single level grid

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

bunny 69451 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

bunny 948 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

conference room 282k tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

buddha - 1087716 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

0
1
2
3
4
5

10

15

20

25
>25

p
er

ce
n
t

er
ro

r

buddha - 15536 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2

1
/3

)

2-level grid: lines on surface Applied to
Long Skinny Triangle Based Scenes

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

cylinder - 196 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/3

)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

m
2
/(

N
2

1
/2

)

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

cylinder - 1996 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/3

)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

m
2
/(

N
2
1
/2

)

2-level grid is 1.4x faster
than 1-level for 1996 tri

cylinder

2-level grid is just 1.04x
faster than 1-level for

196 tri cylinder

2-level grid: lines on surface Applied to
Long Skinny Triangle Based Scenes

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

cylinder - 196 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/3

)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

m
2
/(

N
2

1
/2

)

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

cylinder - 1996 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/3

)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

m
2
/(

N
2
1
/2

)

20% slower

60% slower

2-level compact
triangle grid
resolution

2-level grid is 1.4x faster
than 1-level for 1996 tri

cylinder

2-level grid is just 1.04x
faster than 1-level for

196 tri cylinder

L-level grid
• Same process as for 2-level grids

•

• The next level would recursively behave as an L-1
level grid

• Can do same analysis for long skinny triangles

Compact triangle top level grid has O
(
N

3
2L+1

)
cells

Better Single Level Grid
• For manifold like models empirically found

•

•

Results in even better performance

• Results in almost perfect grids for all our tests:

•

•

• Use this if you don’t mind the lack of theory

• Theory is future work

With O(N3/2) cells, 19,996 tri cylinder has 10% penalty

With O(N4/3) cells, 19,996 tri cylinder has 0% penalty

O(N7/9) cells (sublinear grid storage!) for compact triangles

O(N4/3) cells for long skinny triangles

Limitations
• Good for laser scanned models and simple scenes

• Not as good as empirically found formula

• Assumptions might not hold for some scenes

• Assumed we never hit the primitive -- clearly false

• Triangle distributions not evenly distributed about simple surface

• Might not work at all for more complex scenes

Conclusion
•

• Number of grid levels depends on model and
setup cost of entering grid

• Long skinny triangle scenes can only achieve sub-
linear time with super-linear memory use

• For scenes that do not deviate too much from
our assumptions, finding a close-to-optimal multi-
level grid resolution is very easy

Nested grids can lower time complexity below O(3
√

N)

