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Figure 1: Several animated models ray traced using our coherent grid traversal: a) A gesturing hand of 16K triangles. b) An animated “Poser”
model (78K triangles). c) Animated wind-up toys (11K triangles) walking and jumping incoherently around each other. d) A rigid-body
dynamics simulation of marbles (8.8K triangles). e) A complex scene of 174K animated triangles, where a fairy and a dragonfly dance through
an animated forest. Scenes are rebuilt from scratch every frame, allowing fully dynamic animation. Including shading, texturing, and hard
shadows, as used in the above images, we can render these scenes at 1024× 1024 pixels with 15.3, 7.8, 10.2, 26.2, and 1.4 frames per second
on a dual 3.2 GHz Xeon. Excluding shading, texturing, and shadows, we achieve 34.5, 15.8, 29.3, 57.1, and 3.4 frames per second.

Abstract
We present a new approach to interactive ray tracing of moderate-
sized animated scenes based on traversing frustum-bounded packets
of coherent rays through uniform grids. By incrementally computing
the overlap of the frustum with a slice of grid cells, we accelerate
grid traversal by more than a factor of 10, and achieve ray tracing
performance competitive with the fastest known packet-based kd-
tree ray tracers. The ability to efficiently rebuild the grid on every
frame enables this performance even for fully dynamic scenes that
typically challenge interactive ray tracing systems.

1 Introduction and Related Work

Over the last 20 years, a number of different data structures have
been proposed for accelerating ray tracing, such as Bounding Volume
Hierarchies (BVH), Grids, Octrees [Glassner 1984], and Binary
Space Partitioning (see, e.g., [Glassner 1989; Havran 2001]). Each
of these data structures has its own strengths and weaknesses, and
the effectiveness of each technique strongly depends on the scene,
application, and efficiency of the actual implementation. Recent
work in interactive ray tracing, however, has focused primarily on
kd-trees [Wald 2004; Foley and Sugerman 2005; Reshetov et al.
2005; Woop et al. 2005] and grids [Purcell et al. 2002], or multilevel
grids [Parker et al. 1999b; Reinhard et al. 2000].

While the first interactive ray tracers used grids [Parker et al.
1999b], algorithmic developments for kd-tree based ray tracers —
most notably coherent ray tracing [Wald et al. 2001] and MLRT
traversal [Reshetov et al. 2005] — have significantly improved the
performance of kd-trees. Packet tracing creates groups of spatially
coherent rays that are simultaneously traced together through a kd-
tree, where all rays perform each traversal iteration in lock-step.
This enables effective use of SIMD extensions on modern CPUs,
increases the computational density of the code, and reduces strain
on memory access. In turn, this gave rise to fast software implemen-
tations [Wald 2004], and to instruction-parallel special-purpose ray
tracing hardware [Woop et al. 2005]. Exploiting the coherence in a
packet of rays has yielded further improvements in “Multilevel Ray
Tracing” (MLRT) [Reshetov et al. 2005], where a bounding frustum
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drives the kd-tree traversal of rays in bulk instead of considering
each ray individually. Consequently, the cost of a traversal step be-
comes independent of the number of rays in the packet, encouraging
larger packets with significantly lower cost per ray.

Unfortunately, these techniques are not directly applicable to
grids. Thus, packet-enabled kd-trees have recently consistently
outperformed grid-based ray tracers, and many believe that they are
a superior acceleration structure (see, e.g., [Stoll 2005]).

Dynamic Scenes Although packet kd-tree traversals outper-
form grids for static scenes, animated scenes present a challenge
due to the high cost of rebuilding a kd-tree as objects move. For
the surface area heuristics required to build fast kd-trees [Wald and
Havran 2006], building the acceleration structure effectively requires
seconds to minutes for moderately complex scenes. This limitation
to static scenes limits the utility of interactive ray tracing for many
applications that would benefit from advanced lighting models, such
as visual simulation, animations, and interactive games. While some
efforts have focused on extending kd-trees to dynamic scenes [Wald
et al. 2003; Günther et al. 2006], they are limited to mostly hierarchi-
cal motion or require advance knowledge of the scene, and therefore
are unsuitable for most truly dynamic animations that require un-
structured motion. For full generality, we propose rebuilding the
acceleration structure from scratch every frame. For general scenes,
with kd-trees this is currently infeasible.

A grid, in contrast, can be created and modified at interactive
rates [Reinhard et al. 2000], at least for moderate sized scenes of
up to a few hundred thousand triangles. Consequently, grids are
attractive for dynamic scenes because of their faster build, even if
they have a higher traversal cost than a kd-tree. Nevertheless, as
kd-trees can be up to an order of magnitude faster than single-ray
grids, grids will only be viable when their traversal can be performed
with similar efficiency. Ultimately, this will require employing the
same techniques for grids that made kd-trees as fast as they are today:
coherent packets of rays, SIMD, and frusta. However, the 3D digital
differential analyzer algorithms usually used for traversing a grid do
not lend well to packetization, as we will explain below.

In this paper, we propose a new traversal scheme for grid-based
acceleration structures that allows for traversing and intersecting
packets of coherent rays using an MLRT-inspired frustum-traversal
scheme. This algorithm is well-suited for SIMD implementation
and provides dramatic speedup over a conventional grid traversal,
yielding performance comparable to kd-tree based systems for static
scenes. More importantly, this scheme facilitates animated scenes in
a straightforward manner by interactively rebuilding the grid from



scratch every frame. Using this technique on a fully animated teapot-
in-a-stadium stress scene of 174K triangles, we achieve a ray tracing
performance of around 1-2 frames per second (at 10242 pixels with
hard shadows and simple shading) on a dual 3.2 GHz Xeon CPU; for
a 16K triangle object, we achieve 15-16 fps (Figure 1). We mostly
consider moderate scenes of up to a few hundred thousand triangles,
and focus on only primary and shadow rays.

The importance of supporting dynamic scenes has recently been
recognized by many different researchers, and several different ap-
proaches have been proposed concurrently to our work, for ex-
ample [Wald et al. 2006; Stoll et al. 2006; Günther et al. 2006;
Lauterbach et al. 2006]. We will compare to these approaches in
Section 5.

2 Coherent Grid Traversal
Efficient ray-grid traversal has already received much atten-
tion [Cleary et al. 1983; Fujimoto et al. 1986; Amanatides and Woo
1987; Parker et al. 1999b; Spackman and Willis 1991], in aspects of
both algorithm and implementation. Significant improvements can-
not be expected from merely optimizing current implementations;
we must explore new concepts to design an effective packetized
traversal. Our new algorithm delivers to grids the same components
that made kd-trees as fast as they are today: packets, SIMD exten-
sions, and frustum traversal; while preserving the trivial computation
of an incremental grid marching step.

In this section, we explain why these techniques have been suc-
cessful for other acceleration structures and discuss the difficulties
of applying the same concepts to a conventional grid traversal. Then,
we derive our new packet traversal scheme, and show how it can
benefit from known optimizations to achieve significantly higher
performance than past grid implementations.

2.1 Issues with Packetized Grids

The basic idea of packet and frustum traversal is straightforward:
rather than traverse each ray on its own, we exploit the intrinsic
coherence between neighboring rays, and trace them together. If
the rays are coherent, they will largely traverse the same regions of
space, accessing identical nodes in an acceleration structure, and
intersecting the same underlying triangles. Effectively, the cost of
memory access becomes amortized over all the rays in a packet,
ideally for both our acceleration structure and geometry data. In
addition, traversing multiple rays through the same node of the accel-
eration structure allows us to perform SIMD operations on four rays
at once, reducing the computation costs of both traversal and primi-
tive intersection by up to a factor of four. Finally, frustum techniques
determine intersection patterns of an entire packet, often replacing
intensive per-ray branching with a single test; thus amortizing the
computations over the entire packet.

The advantages of packets, SIMD, and frustum methods are ben-
eficial to any acceleration structure. Spatially hierarchical structures,
such as a kd-tree or BVH, typically exhibit little divergence at the
upper levels of traversal, making them ideally suited for adaptation
to ray packets. Packets are easily traversed through hierarchical ac-
celeration structures where rays generally progress through identical
cells; diverging only in finer nodes deep down in the hierarchy, if at
all. Even when rays diverge, some rays just traverse a few cells that
they would not have traversed otherwise, but do not interfere with
traversal decisions in the remaining part of the subtree. Since the
packet is never divided, those rays automatically are re-enabled as
soon as the recursion returns from that subtree.

For a grid, in contrast, the situation is more complicated: traversal
is always performed on the same fine level, where divergence is
most likely. Moreover, grid based ray tracers typically use 3D digital
differential analyzers (3DDDA) or Bresenham-like algorithms to
iterate through the voxels traversed by the ray (e.g., [Fujimoto et al.

1986; Amanatides and Woo 1987; Spackman 1990]). These algo-
rithms can chose only one cell at a time to step into, but different
rays can disagree on the next cell to be traversed. For example,
Figure 2 shows five rays diverging in cell B; some demand traversal
to C, while others demand traversal to D. If the packet decides to go
to C first, the 3DDDA state variables for those rays entering cell D
become invalid (and vice versa). These invalid state variables break
the 3DDDA algorithm in the next traversal step.

This disagreement could be solved by splitting the packet into
subpackets with the same traversal decision. However, Figure 2
shows that the rays that have diverged in cell B still traverse other
common cells (E and F) later on. If the packet were split at cell B,
that coherence would be lost; in practice, packet splitting quickly
deteriorates to single-ray traversal. Re-merging the packets after
each step would solve that problem, but is prohibitively expensive.
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Figure 2: Five coherent rays traversing a grid. The rays are initially
together in cells A and B, but then diverge at B where they disagree
on whether to first traverse C or D in the next step. Even though they
have diverged, they still visit common cells (E and F) afterwards.

2.2 A Slice-based Packet Traversal for Grids

As the above discussion has shown, the primary concern with pack-
etizing a grid is that with a 3DDDA, different rays may demand
different traversal orders. We solve this by abandoning 3DDDA
altogether, and devise an algorithm that traverses the grid slice by
slice rather than cell by cell. For example, we can traverse the rays
in Figure 2 by traversing through vertical slices; from cell A in the
first slice, we would traverse the rays to cells B and D in the second
slice, then to C and E in the third, and so on. In each slice, we would
intersect all rays with all of the slice’s cells that are overlapped by
any ray. This may traverse some rays through cells they would not
have intersected themselves, but will keep the packet together at
all times. In Figure 2, we would intersect 7 cells with 5 rays each,
instead of 27 cell visits if the rays are traced individually. Though
the packet now intersects only 7 instead of 27 cells, the total number
of ray-cell intersection tests is 7×5 = 35. In practice, ray coherence
easily compensates for this overhead.

We first transform the rays into the canonical grid coordinate
system, in which a grid of Nx × Ny × Nz cells maps to the 3D
region of [0..Nx)× [0..Ny)× [0..Nz). In that coordinate system,
the cell coordinates of any 3D point p can be computed simply by
truncating it. Then, we pick the dominant component (the ±X ,
±Y, or ±Z axis) of the direction of the first ray. This will be the
major traversal axis that we call ~K; all rays are then traversed
along this same axis; the remaining dimensions are denoted ~U and
~V . In order to traverse the rays front to back, which allows early
termination when all rays have intersected before the next slice,
all rays must have the same sign along the traversal direction. For
coherent packets, this is not a limitation; to violate this assumption,
two rays would need to span an angle of more than π
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. Note that we

do not demand that all rays in a packet have the same dominating
axis, nor that their direction signs match along ~U or ~V , as is usually
required by kd-tree packet traversers [Wald 2004] as long as the rays
are coherent.

Now, consider a slice k along the major traversal axis, ~K. For
each ray ri in the packet, there is a point pin

i where it enters this
slice, and a point pout

i where it exits. The axis aligned box B that



encloses these points will also enclose all the 3D points — and thus,
the cells — visited by at least one of of the rays. Once B is known,
truncating its min/max coordinates yields the u, v extents of all the
cells on slice k that are overlapped by any of the rays (Figure 3d).
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Figure 3: Given a set of coherent rays, our algorithm first computes
the packet’s bounding frustum (a) that is then traversed through the
grid one slice at a time (b). For each slice (blue), we incremen-
tally compute the frustum’s overlap with the slice (yellow), which
determines the actual cells (red) overlapped by the frustum. (c) Inde-
pendent of packet size, each frustum traversal step requires only one
four-float SIMD addition to incrementally compute the min and max
coordinates of the frustum slice overlap, plus one SIMD float-to-int
truncation to compute the overlapped grid cells. (d) Viewed down
the major traversal axis, each ray packet (green) will have corner
rays which define the frustum boundaries (dashed). At each slice,
this frustum covers all of the cells covered by the rays.

Extension to Frustum Traversal Instead of determining the
overlap B based on the entry and exit points of all rays, we can
compute the four planes bounding the packet on the top, bottom,
and sides. This forms a bounding frustum that has the same overlap
box B as that computed from the individual rays1. Since the rays are
already transformed to grid-space, we can determine our bounding
planes based on the minima and maxima of all the rays’ u and v

slopes along ~K. For a packet of N×N primary rays, we can simply
compute these extremal planes using the four corner rays; however
for more general (secondary) packets all rays must be considered.

Traversal Setup Once the plane equations are known, we can
intersect the frustum with the bounding box of the grid; the minimum
and maximum coordinates of the overlap determine the first and last
slice that should be traversed. If this interval is empty, the frustum
misses the grid, and we can terminate without traversing.

Otherwise, we compute the minimum and maximum u and v
coordinates of the entry and exit points with the first slice to be
computed. Essentially, these describe the lower left and upper right
corner of an axis-aligned box bounding the frustum’s overlap with
the initial slice, B(0). Note that we only need the u and v coordinates
of each B(i), as the k coordinates are equal to the slice number.

Incremental Traversal Since each slice’s overlap box B(i) is
determined by the frustum’s planes, the minimum and maximum
coordinates of two successive boxes B(i) and B(i+1) will differ
by a constant vector ∆B. With each slice being 1 unit wide, this
∆B is simply ∆B = (dumin, dumax, dvmin, dvmax), where the

1This is similar in spirit to beam tracing [Heckbert and Hanrahan 1984].

dumin/max and dvmin/max are the slopes of the bounding planes
in the grid coordinate space.

Given a slice’s overlap box B(i), we can now incrementally com-
pute the next slice’s overlap box B(i+1) via B(i+1) = B(i) + ∆B.
This requires only four floating point additions, and can be per-
formed with a single SIMD instruction. As mentioned above, once
a slice’s overlap box B is known, the range [i0..i1] × [j0..j1] of
overlapped cells can be determined by truncating B’s coordinates
and converting them to integer values. This operation can also be
performed with a single SIMD float-to-int conversion instruction.
Thus, for arbitrarily sized packets of N ×N rays, the whole process
of computing the next slice’s overlapped cell coordinates costs only
two instructions: one SIMD addition, and one SIMD float-to-int
conversion. The complete algorithm is sketched in Figure 3.

2.3 Efficient Slice and Triangle Intersection

Once the cells overlapped by the frustum have been determined, we
intersect all of the rays in a packet with the triangles in each cell.
Triangles may appear in more than one cell, and some rays will
traverse cells that would not have been traversed without packets.
Consequently, redundant triangle intersection tests are performed.
The overhead of these additional tests can be avoided using two
well-known techniques: SIMD frustum culling and mailboxing.

SIMD Frustum Culling A grid does not conform as tightly to
the geometry as a kd-tree, and thus requires some triangle inter-
sections that a kd-tree would avoid (see Figure 4). To allow for
interactive grid builds, cells are filled if they contain the bounding
boxes of triangles rather than the triangles themselves, further ex-
acerbating this problem (see Section 3). However, as one can see
in Figure 4, many of these triangles will lie completely outside the
frustum; had they intersected the frustum, the kd-tree would have
had to perform an intersection test on them as well.

a) b)

Figure 4: Since a grid (b) does not adapt as well to the scene geom-
etry as a kd-tree (a), a grid will often intersect triangles (red) that
a kd-tree would have avoided. These triangles however usually lie
far outside the view frustum, and can be inexpensively discarded by
inverse frustum culling during frustum-triangle intersection.

For a packet tracer, triangles outside the bounding frustum can
be rejected quite cheaply using Dmitriev et al.’s “SIMD shaft
culling” [2004]. If the four “corner rays” of the frustum miss the
triangle on the same edge of the triangle, then all the rays must miss
that triangle2. Using the SIMD triangle intersection method outlined
in [Wald 2004], intersecting the four corner rays costs roughly as
much as a single SIMD 4-ray-triangle intersection test. As such, for
an N-ray packet, triangles outside the frustum can be intersected at
4
N

the cost of those inside the frustum.

Mailboxing In a grid, large triangles may overlap many cells.
In addition, since a single-level grid cannot adapt to the position
of a triangle, even small triangles often straddle cell boundaries.
Thus, most triangles will be referenced in multiple cells. Since these
references will be in neighboring cells, there is a high probability
that our frustum will intersect the same triangle multiple times. In

2Note that some (virtual) corner rays can also be computed for other than
primary rays, by taking the four edges of the bounding frustum.



fact, as shown in Figure 5 this is much more likely for our frustum
traversal than for a single-ray traversal: While a single ray would
visit the same triangle only along one dimension, the frustum is
several cells wide, and will re-visit the same triangle in all three
dimensions.

a) b)

Figure 5: While one ray (a) can re-visit a triangle in multiple cells
only along one dimension, a frustum (b) visits the same triangle
much more often (even worse in 3D). These redundant intersection
tests would be costly, but can easily be avoided by mailboxing.

Repeatedly intersecting the same triangle can be avoided by mail-
boxing [Kirk and Arvo 1991]. Each packet is assigned a unique
ID, and a triangle is tagged with that ID before the intersection test.
Thus, if a packet visits a triangle already tagged with its ID, it can
skip intersection. Mailboxing typically produces minimal perfor-
mance improvement in either a grid or a kd-tree for inexpensive
primitive such as triangles; and may even reduce performance if
gains from avoiding repeat intersection tests do not outweigh the
costs of checking and updating the mailbox [Havran 2002].

As explained above, however, our frustum grid traversal yields
far more redundant intersection tests than a single ray grid or kd-
tree, and thus profits better from mailboxing. Additionally, the
overhead of mailboxing for a packet traverser becomes insignificant;
the mailbox test is performed per packet instead of per ray, thus
amortizing the cost as we have seen before.

Impact of Mailboxing and Frustum Culling Mailboxing and
frustum culling are both very useful in reducing the number of re-
dundant intersection tests. In fact, both methods are much more
powerful for our frustum grid traversal than for their original appli-
cations. Mailboxing is performed for multiple rays simultaneously,
so the cost is amortized over the entire packet, and also avoids more
redundant intersection tests. Similarly, due to the higher number
of redundant triangle intersections in the packetized grid, SIMD
frustum culling is more beneficial than in a kd-tree, where these
intersections may have been avoided in the first place.

To quantify the magnitude of this impact, we have measured
statistics on example scenes, using OpenRT’s kd-tree system em-
ploying 4×4 packets, and our frustum grid also using 4×4 packets.
For each of those, we have measured the total number of ray-triangle
intersections that are performed if neither of these techniques are
used, then the results when mailboxing and finally SIMD frustum
culling are applied. As can be seen from Table 1, mailboxing alone
reduces the number of tests by up to a factor of 2; for a kd-tree, it
usually trims this by less than 10% [Havran 2002]. On top of the
reductions achieved by mailboxing, frustum culling achieves yet
another reduction by a factor of 4 to 9. With both techniques, the
final number of intersection tests decreases by a factor of 8.5 to 14,
and the absolute number of ray-triangle intersection tests roughly
matches that of a kd-tree (see Table 1).

Together, mailboxing and frustum culling remedy the deficiencies
of frustum traversal on uniform grids. Only one source of overhead
cannot be avoided: when the bounding box of a triangle overlaps
some cells traversed by a ray, but does not fall entirely outside the
frustum. This scenario, however, is not limited to the grid; it also
occurs in a packetized kd-tree.

scene #tris grid grid ratio kd-tree
MB/FC n/n y/n y/y n/n to y/y

toys 11K 14.0M 8.7M 1.0M 14.0 0.82M
hand 15K 12.5M 6.0M 0.9M 13.9 0.85M
ben 78K 12.8M 6.0M 1.5M 8.5 1.1M
conf 274K 96.0M 54M 6.9M 13.9 3.7M

Table 1: Ray-triangle intersection tests for a 4× 4 kd-tree and for
our 4× 4 frustum-grid traversal, and the impact of using mailboxing
(MB) and frustum culling (FC). Mailboxing and frustum culling
reduce the number of ray-triangle intersections by up to a factor of
14, to roughly as few as performed by a good kd-tree.

2.4 Extension to Hierarchical Grids

Our algorithm so far has been described for a single-level grid;
however hierarchical grids generally achieve superior performance.
There are several ways to organize grids hierarchically, including
loosely nested grids [Cazals et al. 1995; Klimaszewski and Seder-
berg 1997], recursive or multiresolution grids [Jevans and Wyvill
1989], and macrocells or multigrids [Parker et al. 1999a]. Though
these terms are ill-defined and often used ambiguously, they all share
the same idea of subdividing some regions of space more finely than
others, and thus traverse empty space more quickly than populated
space. To demonstrate that our approach is not restricted to uniform
grids, we have extended it with a single-level macrocell layer. Macro-
cells are a simple hierarchical optimization to a base uniform grid,
often used to apply grids to scalar volume fields [Parker et al. 1999a].
Macrocells superimpose a second, coarser grid over the original
fine grid, such that each macrocell corresponds to an M ×M ×M
block of original grid cells. Each macrocell stores a boolean flag
specifying whether any of its corresponding grid cells are occupied.

Building the macrocell grid is trivial and cheap. Traversing it
with our algorithm is rather simple: the macrocell grid in essence is
just an M ×M ×M downscaled version of the original grid, and
many of the values computed in the frustum setup can be re-used,
or computed by dividing by M . During traversal, we first consider
a slice of macrocells, and determine all the macrocells overlapped
by the frustum (usually but one in practice). If the macrocells in our
slice are all empty, we can skip M traversal steps on our original
fine grid. Otherwise, we perform these steps as usual.

Though the best value of M obviously depends on the scene,
M = 6 has consistently shown to be a good choice for the test
scenes in our system. For smaller resolutions, the savings for each
macrocell step become too small to justify the additional computa-
tions; for larger resolutions the probability of finding empty regions
decreases. Using macrocells yields a performance improvement of
around 30%, which is consistent with improvents seen for single
ray grids. Additional levels of macrocells could further improve
performance for more complex models with larger grids. More ro-
bust varieties of hierarchical grids could speed up large scenes with
varying geometric density, at the cost of higher build time. As our
goal is to formulate a viable grid traversal for medium-size animated
scenes, these have not yet been investigated.

3 Acceleration Structure Rebuild

With an animated scene, our acceleration structure is recreated every
frame. Though schemes for incrementally [Reinhard et al. 2000]
or hierarchically [Lext and Akenine-Möller 2001] updating a grid
exist, we did not want to impose any restrictions on the kind of
animations we support, and thus opted for the most general method
by rebuilding the grid from scratch for every frame. We use the
common scheme of choosing the number of cells to be a multiple, λ,
of the number of triangles, N [Cleary et al. 1983]. Due to having the
smallest surface area in relation to volume, cubically shaped cells
minimize a grid’s expected ray tracing cost. Thus, we choose the
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Figure 6: For several different models, this graph shows the fram-
erate, normalized by the best time, in relation to grid size as deter-
mined by λ (on the X axis). Nearly all tested scenes, both static and
dynamic, reach their optimum at approximately λ ≈ 5.
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where ~d is the diagonal and V the volume of our grid. Fortunately,
our experiments show that most scenes are insensitive to the param-
eter λ and achieved their best performance around λ = 5 (Figure 6),
which we use for all the experiments throughout this paper.

Once the grid resolution is chosen, for each triangle we deter-
mine the cells overlapped by the triangle’s bounding box and add
a reference to the triangle to each of these cells. Since this is quite
conservative, we also tested a more exact grid insertion scheme using
an exact triangle-in-box test (e.g., [Akenine-Möller 2001]). Though
the exact test could reduce the number of triangle references in the
grid by more than one third, the number of ray-triangle intersection
tests after mailboxing would shrink by only a few percent. For such
a small gain, the significantly higher rebuild cost does not pay off,
leading us to use the less accurate — but faster — bounding box test.
For scenes with dominantly long, skinny, and diagonal triangles, a
more accurate test may still pay off.

Since memory allocations are costly, we use a preallocated pooled-
memory scheme that prevents per-cell memory allocations and frag-
mentation as the scene changes from frame to frame. We also use
the macrocell information from the previous frame to reduce the
number of cells we need to check for objects to clear. Memory lay-
out techniques such as bricking [Parker et al. 1999b] have also been
tested; but since the frustum traversal already amortizes memory
accesses over the entire packet, these techniques did not result in
a measurable performance difference for our scenes. Larger grids,
however, may still benefit from these techniques.

In addition to rebuilding the grid, we also need to create the de-
rived data for the triangle test described in [Wald 2004]. Though this
could be avoided by storage-free triangle tests [Möller and Trumbore
1997], we found these to be slightly inferior in performance even
after per-frame triangle rebuild time is taken into account; again,
this could be different for much larger scenes than we tested. Fur-
thermore, the triangle rebuild takes less time than the grid rebuild,
and can be run in parallel with the grid rebuild.

4 Experiments and Results
In addition to the statistics presented above, we evaluated the per-
formance of our algorithm on a working implementation. We first
discuss the impact of the different governing parameters, and present
performance for both static and dynamic scenes. If not mentioned
otherwise, all experiments are performed at 1024 × 1024 pixels,
without display, and on a dual 3.2 GHz Intel Xeon PC.

4.1 Impact of Grid and Packet Resolution

For any given scene, the performance of our frustum traversal algo-
rithm is governed by four factors: The resolution of the grid, macro-
cell resolution, screen resolution, and ray packet size. As shown
in the previous section, choosing the grid resolution via λ = 5 in
practice works fine for the kind of moderate-sized scene we are
targeting. Similar experiments show that a macrocell resolution of
6× 6× 6 usually yields reasonable performance. Though tweaking
these parameters can result in additional performance gains, these
default parameters usually work well.

While grid and macrocell resolution do have an impact, screen
resolution and packet size have the greatest impact on performance.
For any given packet size, the cost of a traversal step is constant, but
the cost for intersecting the cells in a slice increases with the number
of cells that the frustum overlaps. Larger packets will benefit more
from the constant cost traversal step, but are also more likely to
overlap more cells. Thus, there is a natural crossover point where
the savings in traversal steps from a larger packet are offset by the
additional cell intersections. Obviously, this crossover point will be
influenced by the model resolution, as larger models have finer grids
and correspondingly smaller cells.

To find that crossover point — and thus determine the optimal
packet size — we generated different resolutions of the Stanford
Armadillo model and measured the rendering performance for pack-
ets of 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32 rays per packet.
The results of these experiments are given in Figure 7. For 2 × 2
rays, the benefit of tracing packets is rather small, and the rendering
times correspondingly high. Also not surprisingly, for packets of
32× 32 rays, the frusta get very wide and performance deteriorates
quickly as model complexity increases. Packets of 16 × 16 rays
are better, but still deteriorate quite quickly. For small to medium
sized models, 8× 8 packets performed best until the crossover point
of 250k triangles, at which point the smaller 4 × 4 packets begin
to work better for large models. If a higher degree of coherence is
given for a certain application — for example for higher resolutions,
multiple samples per pixel for antialiasing or motion blur, or when
computing soft shadows with lots of shadow rays to the same light
source — even larger packets can still be beneficial.
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Figure 7: Static render time with varying packet sizes and different
resolutions of the Stanford Armadillo. There is a crossover point
around 250K triangles where 4× 4 packets become more efficient
than 8× 8 packets. Nevertheless, both 4× 4 and 8× 8 show nearly
the same performance over a wide range of model complexity.

4.2 Scalability with Screen Resolution

Obviously, the optimal packet size also depends on the screen resolu-
tion, as higher resolutions result in a higher density of rays, and thus
allow for larger packet sizes. Given today’s hardware constraints,
we chose 1024× 1024 pixels as a default resolution for all our ex-
periments. In the future, high-resolution displays and supersampling



will push demand for even larger images.
While the cost of ray tracing is usually considered to be linear in

the number of pixels, this is not the case for our algorithm. Since
higher resolutions enable larger packets, we generally see sublinear
scaling in screen resolution: When increasing the screen resolution
from 1024 × 1024 to 2048 × 2048 the frame rate usually drops
by only a factor of 1.75-2.25, significantly less than the expected
factor of 4. Weakening the linear dependence on pixel count helps
overcome a major hurdle in interactive ray tracing systems.

4.3 Performance for Static Scenes

Though our main motivation was to enable ray tracing of dynamic
scenes, the performance gains achieved by the packet traversal apply
also to static models. To evaluate our raw ray tracing performance,
we used several typical static test models for ray tracing, and ren-
dered them with our system with the rebuild disabled. This lets
us consider traversal time independently from grid build time, and
facilitates a comparison between our algorithm and contemporary
interactive ray tracing systems, namely OpenRT [Wald 2004] and
Intel’s MLRT system [Reshetov et al. 2005].

For this comparison, we chose the erw6, conference, and soda
hall scenes of 800, 280K, and 2.2M triangles, respectively, as these
are the only scenes for which numbers from both systems are avail-
able [Reshetov et al. 2005]. Though the axis-aligned features of
these three architectural models strongly favor the kd-trees used
in MLRT and OpenRT, Table 2 shows that our system, despite rel-
atively little low-level optimization, is competitive even for these
best-case scenarios for the other systems, usually being around 3-4×
slower than MLRT, but consistently faster than OpenRT.

scene #tris OpenRT MLRT Frustum Grid
Pentium IV Pentium IV Pentium IV

2.5 GHz 3.2 GHz w/ HT. 3.2 GHz w/ HT
erw6 804 2.3 50.7 18.3
conf 274k 1.93 15.6 4.0
soda hall 2.2m 1.8 24.1 8.0

Table 2: Static scene ray tracing performance for both the packetized
grid, OpenRT, and MLRT. OpenRT and MLRT data are taken from
[Reshetov et al. 2005]; all times are including simple shading, but
without display. Though these three scenes are best-case examples
for our competitors, we remain at least competitive.

4.4 Scalability with Model Resolution

As shown in Section 3, for moderate-sized scenes as targeted in
our system, the optimal grid resolution is usually near λ ≈ 5. For
significantly larger models of up to several million triangles, how-
ever, the time for building a fine grid may no longer pay off for the
constant number of rays shot, and a coarser grid may yield the higher
aggregate performance if build time is taken into account. As shown
in Figure 8, for the 10 million triangle Thai Statue, the grid rebuild
for λ = 5 already takes three times longer than tracing the rays. In
that case, trading grid resolution for lower rebuild times pays off,
reaching the optimal aggregate performance around λ = 1. Though
the thus reduced grid resolution increases the render time, this is
more than made up for in saved rebuild time, resulting in a total
rendering time including rebuild of less then 1.5s per frame. This

time can be further reduced using a second thread for the rebuild,
which we do not want to discuss here in detail.

For comparison, for the Soda Hall model the grid at λ = 1 can be
rebuilt (using one build thread only) in a mere 110ms, and achieves
a frame rate (including rebuild) of 3.5 frames/second; i.e., even
including rebuild, the full 2.2M triangle model is still interactive.
Though this shows that a coarser grid can pay off for much larger
models than intended for our technique, in the remainder of this
paper we will use the above-mentioned default resolution of λ = 5.
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Figure 8: Rebuild and render times at λ = 1 and λ = 5 for different
resolutions of the Stanford Thai Statue ranging from 100K to 10M
triangles. For these large models, we use a packet size of 4× 4.

4.5 Comparison to Single-Ray Grid Traversal

The somewhat surprising performance of our frustum grid on archi-
tectural models can be explained by the benefits of packetization. To
illustrate this difference, we compare our approach to an optimized
single-ray 3DDDA implementation of a hierarchical grid. Though
this implementation uses a more sophisticated multilevel hierarchy,
Table 3 shows that the packetized grid ranges from 6 to 21 times
faster, depending on the scene and viewpoint. Though some of
this improvement is due to our use of SIMD extensions that can-
not easily be used with single-ray traversal, SIMD implementation
alone usually gives only about a factor of two; the remainder is
due to cost amortizations and the algorithmic improvements of the
packet/frustum technique.

scene ben hand toys erw6 conf
single-ray 1.57 1.59 1.53 0.67 0.30
8× 8 packets 10.6 16.1 20.0 14.0 3.2
ratio 6.75 10.1 13.1 20.9 10.6

Table 3: Static scene performance (in frames per second) for our sys-
tem; and for an optimized 3DDDA single-ray grid, using a macrocell
hierarchy if advantageous. Images rendered at 1024× 1024 pixels
on a Pentium IV 3.2 GHz CPU with 1 thread and simple shading.
Our frustum traversal outperforms the single-ray variant by up to an
order of magnitude.

This effect can best be explained by the number of cells visited
during traversal: as we see in Table 4, compared to a single ray
traversal, the frustum version visits roughly 10 to 20 times fewer
cells for the 4 × 4 packets, and over 50 times fewer for the 8 × 8
packets. Due to efficient packetized slice and triangle intersection
(Section 2.3), the frustum actually tests fewer triangle intersections
as well; and can even do that in SIMD.



scene ben hand toys erw6 conf
# ray-triangle intersection tests (millions)
single ray 2.96 3.58 1.97 8.90 15.70
packet 4× 4 1.50 0.93 1.02 1.54 6.90
packet 8× 8 5.74 2.54 2.23 2.00 20.70
# visited cells (millions)
single ray 24.30 19.60 7.72 33.20 167.70
packet 4× 4 2.91 0.95 0.80 2.18 16.54
packet 8× 8 1.37 0.36 0.32 0.58 5.84
ratio 4× 4 13.10 20.74 9.65 15.23 10.13
ratio 8× 8 8.35 54.90 23.9 55.7 28.70

Table 4: Total number of triangles intersected and cells visited (in
millions) for a single ray grid; a 4× 4; and an 8× 8 packet traversal.
No macrocells are being used by either grid, and tests use identical
dimensions for the same scene. Frustum traversal dramatically
reduces both the numbers of cell visits and triangle intersection
tests.

4.6 Performance for Animated Scenes

To support animation, the simplest mechanism for a grid is to rebuild
the grid structure every time the geometry changes. For small to
medium sized scenes, rebuilding the grid is fast; allowing the perfor-
mance achieved for static scenes to be sustained during animation.
For larger scenes, other techniques such as incremental or parallel
rebuilds may be required to maintain interactive performance, al-
though these techniques were not employed here. To demonstrate
these performance characteristics, we used several animated scenes
of various sizes and different dynamic behavior, and measured the
rebuild time and rendering performance.

Animated meshes Some of the benchmark scenes are depicted
in Figure 9: The “wood-doll” is a simple model with 5k triangles,
resulting in a grid of 18 × 48 × 36 cells that can be built in 1ms.
Without shading, this scene can be rendered at 67 frames per second;
even including shading and shadows, 35 frames per second can be
reached. However, consisting only of rigid body animation of its
otherwise static limbs, the wood-doll could also be rendered using
rigid-body animation schemes for kd-trees as proposed in [Wald
et al. 2003].

To stress more complex kinds of animation, we also tested an
animated “hand” model of 16K triangles, as well as “ben”, a runner
character of 80K triangles. Though the “ben” model is already non
trivial in size, its grid of 48× 108× 78 cells can be rebuilt in only
14ms, resulting in a final performance of 16fps without shading, and
9fps with shading and shadows turned on. The “hand” (72×36×36
cells built in 5ms) can be rendered at 36 and 16 frames per second,
respectively.

Figure 9: Some of the simpler animated models: a rigid-body wood-
doll (5.3k triangles), a gesturing hand (16k triangles), and a running
poser figure (78k triangles). Without shading and shadows, these
scenes render at 66.9, 35.9, and 16.3 frames per second (including
grid rebuild), and still at 35.1, 15.9, and 8.9 frames per second with
shading, texturing, and shadows turned on.

Non-hierarchical animation Though differing in their forms
of animation, both “wood-doll”, “hand”, and “ben” are individual
models that are tightly enclosed by the grid. To demonstrate that our
method is not limited to such models, the “toys” scene has a set of 5
individually animated wind-up toys that walk around incoherently,
bump into each other, and even jump over each other (see Figure 10).
With a total of 11K triangles, grid rebuild (for 66× 18× 66 cells)
took 4ms, yielding a frame rate of 9-17 and 28-40fps with and
without shading and shadows, respectively.

The grid’s strongest advantage over other dynamic data structures
is that it does not require any kind of a hierarchy to be present in the
model. Thus, it can also be used for completely incoherent motion of
triangles, such as explosions, physics-driven simulations, or particle
sets. To demonstrate this, we modelled a scene where 110 “marbles”
are dropped into a (invisible) glass box, where they participate in a
rigid-body simulation (Figure 10). Since the grid does not depend
on any kind of coherence in the motion, this kind of animation can
be supported easily, taking just 2ms to rebuild (24× 78× 24 cells),
and rendering at 20-24 respectively 42-50fps.

Figure 10: Examples of complex scenes composed of multiple
individual objects: a) wind-up toys walking around and colliding
with each other (11K tri); b) A simulation of 110 marbles dropping
into an (invisible) box (8.8K tri). c) A complex scene of a typical
game scenario: A skinned fairy and dragonfly dance through an
animated forest (174K tri total). For the camera and light positions
shown, these animations respectively run at 28.0/39.6, 41.5/50.2,
and 3.3/4.3 fps without shading, and still at 9.4/17.3, 19.6/24.2, and
1.3/1.8 fps if shading, texturing, and shadows are turned on.

A real-world example While all these scenes are more or less
artificial test models, the “fairy forest” scene (see Figure 10) has been
chosen in particular because of its similarity to typical interactive
scenarios: In this scene, a fairy and a dragonfly dance through an
animated forest; both fairy and dragonfly are animated via a skinned
skeleton. The scene incorporates both locally dense and largely
empty regions; it is rather wide in spatial extent, requires complex
shading, and consists of a total of 174K triangles, most of which are
animated. Initially, we expected the high variation in scene density
to be quite a challenge for our approach. However, the frustum
traversal did surprisingly well, and still achieved some 3-4 and 1-
2fps for shading and no shading, respectively. The fairy’s grid of
150× 42× 150 cells can be rebuilt in 68ms.

The scenes discussed above were all modeled offline as animation
sequences. This fact is not exploited at all by our traverser. The
grid itself is built from a list of triangles and vertex positions every
frame, neither knowing nor caring where they originate. It does not
exploit the temporal coherence properties of sequenced animation,
but therefore also does not depend on it. Thus, the system would
work just as well for completely dynamic models. The number of
triangles in the scene can easily be changed from frame to frame,
and there is no restriction on the movement of existing triangles.



4.7 Shading, Shadows, and secondary Rays

So far all results have considered primary rays only. However, the
true beauty of ray tracing — and its main advantage over algorithms
like Z-Buffering — is that it can employ secondary rays to compute
effects such as shadows, reflections, and refraction.

Among all kinds of secondary rays, shadow rays are arguably the
easiest one, as they usually expose the amount of coherence that
packet and frustum-based techniques like ours depend on. For most
rendering algorithms, coherent shadow rays can be generated by
connecting all of the primary rays’ hit points to the same point light
source [Wald et al. 2001]. Though certain algorithms like Monte
Carlo path tracing [Kajiya 1986]), can exhibit incoherence even
in shadow rays, most practical applications of ray tracing produce
coherent shadow rays, and even global illumination has already been
demonstrated with such rays [Benthin et al. 2003].

If we connect all surface hit points to the same point light source,
the resulting shadow packets share a common origin just like primary
rays, and differ from those only in that they have no concept of
“corner rays”. However, one can easily determine a principal march
direction of the packet, and can then construct a frustum over the
packet by determining the four planes that tightly bound the rays
along that direction. The four edges of this frustum can then be
determined quite cheaply, and can be used to perform the SIMD
frustum marching and SIMD frustum culling.

Though shadow packets often are coherent, there is no guarantee
that this is always the case. For example, if a primary packet hits
an object’s silhouette, the 3D hitpoints can be quite distant from
each other, and connecting them to the same point light yields a
wide frustum for which our method breaks down. In fact, for a
frustum-based technique like ours the impact of some packets getting
incoherent is much worse than for pure packet-based techniques, as
all the triangles in the frustum would get intersected, which might
comprise large parts of the scene.

Fortunately, however, this case can be detected and alleviated
quite easily as already proposed in [Wald et al. 2001]: If the primary
hit points are too far apart (measured, for example, by the minimum
and maximum hit distances along the packet), the packet can be
split into two more coherent subpackets. Without packet splitting,
certain scene and light configurations can easily lead to severe per-
formance degradation for shadows; while with splitting, shadow
rays in practice work just as well as primary rays.

More general packets that do not even share the same origin
would also be possible, as long as the rays are still coherent. Initial
experiments have shown that this works quite well when, for exam-
ple, computing soft shadows by connecting multiple surface sam-
ples with multiple light samples on the same light source. Though
packet/frustum-based systems have shown that reflection and re-
fraction rays often work surprisingly well in packet-based render-
ers [Woop et al. 2005; Mahovsky 2005], no experimental data are
available for our coherent frustum traversal technique, yet.

5 Summary and Discussion

We presented a new approach to ray tracing with uniform grids. This
algorithm elegantly allows for transferring the recent advantages in
fast ray tracing — namely, ray packets, frustum testing and SIMD
extensions — to grids, for which these techniques had previously
not been available. The frustum based grid traversal has several
important advantages. First, it has a simple traversal step, where
a few SIMD operations allow for determining all the cells in a
grid slice that are overlapped by the frustum. This operation has a
constant cost for the entire frustum that is amortized over the entire
packet of rays, and allows for a traversal step that is at least as
cheap as that of a packet/frustum kd-tree. Using mailboxing and
SIMD frustum culling (Section 2.3), our method performs roughly

the same number of ray-triangle intersection tests as the kd-tree.
Though our implementation is not as highly tuned as that of Intel’s
MLRT system [Reshetov et al. 2005], it is up to 21 times faster than
known single-ray grid traversal schemes; competitive with kd-trees;
and inherently supports fully-dynamic animated scenes.

Our method does possess several limitations. The very nature of
using a uniform grid makes the method ill-suited for highly complex
scenes with a high variation in size and density of geometry; for
example, the Boeing 777 data set or the classic teapot-in-a-stadium.
Though our macrocell technique works for most cases, for highly
complex scenes multiresolution grids [Parker et al. 1999b], multi-
level techniques [Wald 2004; Lext and Akenine-Möller 2001], or
separation of static and dynamic objects [Reinhard et al. 2000], as
well as mechanisms to incrementally rebuild the grid data structure
may be advantageous.

Grids still suffer from common pathological cases such as large
flat areas (i.e., from architectural models) where geometry overlaps
numerous cells. These situations can be handled more efficiently by
today’s kd-tree based ray tracers and therefore, kd-trees are likely
to remain somewhat more efficient for many scenes. It is also not
guaranteed that our technique will perform similarly well for other
kinds of secondary rays like reflection and refraction, for which the
coherence can be lower than for primary and shadow rays.

Our technique may be very appropriate for special-purpose hard-
ware architectures such as GPUs and the IBM Cell processor [Minor
et al. 2005] that offer several times the computational power of our
current hardware platform. Though kd-trees have been realized on
both architectures, they are limited by the streaming programming
model in those architectures. In contrast, a grid-based iteration
scheme is a better match to these architectures, and may be able to
achieve a higher fraction of their peak performance. The current
method may also be appropriate for a hardware-based implementa-
tion, similar to Woop et al. [2005].

The primary motivation of this approach is to enable ray tracing of
dynamically deforming models. Rebuilding an acceleration structure
on each frame enables ray tracing these models without placing any
constraints on the motion. As this update cost is — like rasterization
— linear in the number of triangles, it introduces a natural limit for
the size of models that can be rebuilt interactively. The rebuild cost
is manageable for many applications such as visual simulation or
games, where moderate scene sizes with several thousand to a few
hundred thousand polygons are common.

Comparison to Alternative Approaches In this paper, we
have shown that uniform grids are a viable option for interactively
ray tracing animated scenes. Nevertheless, other alternatives ex-
ist: Even without any assumptions on the scene structure, today’s
O(N log N) kd-tree construction schemes in practice exhibit near-
linear complexity [Wald and Havran 2006], albeit with higher con-
stants; thus, kd-tree construction could eventually be optimized to
achieve interactive rebuilds. As soon as some assumptions on the
scene can be made, even more alternatives become available: If
information from the scene graph could be exploited to steer the
building process [Stoll et al. 2006], interactive kd-tree rebuilds may
become feasible. For the case of locally smooth animations whose
deformations are known in advance, Günther et al. [2006] have
proposed to cluster the triangles into groups of similarly moving
triangles, the motion of which is decomposed into a rigid-body trans-
form and a residual motion, which are then handled separately. For
a similar class of scenes — albeit with fewer a-priori knowledge
of the deformation — Wald et al. have also proposed an approach
based on merely deforming a bounding volume hierarchy [Wald et al.
2006]: Using a specially designed traversal scheme their dynamic
BVH performs competitively to both grids and kd-trees. All these
approaches allow for interactively ray tracing animated scenes, and
more competitors are likely to appear. Hybrid approaches (e.g., a



kd-tree for static content and one separate grid for each animated
character) may be possible, but this has not yet been investigated.

From the performance and efficiency standpoint, among all these
approaches our coherent grid traversal is arguably the most ex-
treme one in that it is a pure frustum-based technique, while all
other approaches are mixed packet/frustum-traversal techniques
(i.e., [Reshetov et al. 2005; Günther et al. 2006; Wald et al. 2006]).
Compared to a packet-based technique, a pure frustum traversal can
take even better benefit from coherence if it exists; for example,
though doubling the number of rays in the packet would increase the
total number of ray-triangle intersections, the traversal cost would
not change at all. On the other hand, with rising incoherency a pure
frustum based technique will deteriorate much more quickly than
the other techniques — a single incoherent ray in a packet can signif-
icantly widen a frustum, and lead to painfully degraded performance.
Similarly, the frustum alone is prone to suffer worse from triangles
becoming smaller: In the worst case, the frustum will intersect all
the triangles in the frustum, even if those become as small as to fall
in between the raster of rays in the packet. Consequently, when com-
paring our approach to, for instance, the BVH-based packet/frustum
technique described in [Wald et al. 2006] we typically see that both
techniques usually are within a factor of ∼ 2× within each others
performance; the BVH usually has a slight advantage — in particular
for increasingly complex scenes — but can suffer worse for inten-
tionally designed worst-case scenes, and in addition is less general
in the kind of scenes it can handle.

In summary, we believe our approach to be at least competitive
with other data structures and traversal algorithms known today,
while at the same time being the most general of these techniques,
supporting any incoherent deformation to the scene.
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AKENINE-MÖLLER, T. 2001. Fast 3D triangle-box overlap testing. J.

Graph. Tools 6 (1), 29–33.
AMANATIDES, J., AND WOO, A. 1987. A Fast Voxel Traversal Algorithm

for Ray Tracing. In Eurographics ’87. Eurographics Association, 3–10.
BENTHIN, C., WALD, I., AND SLUSALLEK, P. 2003. A Scalable Approach

to Interactive Global Illumination. Computer Graphics Forum 22 (3),
621–630. (Proceedings of Eurographics).

CAZALS, F., DRETTAKIS, G., AND PUECH, C. 1995. Filtering, Cluster-
ing and Hierarchy Construction: a new solution for Ray Tracing very
Complex Environments. In Proceedings of Eurographics ’95.

CLEARY, J., WYVILL, B., BIRTWISTLE, G., AND VATTI, R. 1983. A
Parallel Ray Tracing Computer. In Proceedings of the Association of
Simula Users Conference, 77–80.

DMITRIEV, K., HAVRAN, V., AND SEIDEL, H.-P. 2004. Faster Ray
Tracing with SIMD Shaft Culling. Research Report MPI-I-2004-4-006,
Max-Planck-Institut für Informatik, Saarbrücken, Germany.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration structures for a
GPU raytracer. In Proceedings of HWWS, 15–22.

FUJIMOTO, A., TANAKA, T., AND IWATA, K. 1986. ARTS: Accelerated
ray tracing system. IEEE CG&A 6 (4), 16–26.

GLASSNER, A. S. 1984. Space subdivision for fast ray tracing. IEEE CG&A
4 (10), 15–22.

GLASSNER, A. 1989. An Introduction to Ray Tracing. Morgan Kaufmann.
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