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Motivation
• Coherent grid traversal is fast

• O(n) grid rebuild time is fast. But...

• “Large” scenes take too long to build

• Parallelize build

• Multi-core trend
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CGT is competitive with other acceleration structures for traversal and can be rebuilt MUCH faster.
Note: the issue with large models exists for any acceleration structure with any type of update method. Only difference is what the definition of “large” is.



Future ray tracing machine:
parallel computer

• Multi-core trend: future consumer 
computers will have many cores (on one or 
more processor chips)

• Ray tracing hardware, like GPUs, will likely 
have many cores

• Need to parallelize the build for these 
machines
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Parallel computers

• 3 main types:

• SMP: Symmetric Multi-Processing

• ccNUMA: cache coherent Nonuniform Memory Access

• Distributed memory: computer clusters
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ccNUMA we will usually refer as just NUMA



Parallel computers: SMP
• All processors share a memory controller and 

memory bus

• Does not scale: memory bottleneck

www.tyan.com
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http://www.tyan.com
http://www.tyan.com


Parallel computers: ccNUMA

• Partition system into 
nodes

• Each node has its own 
memory subsystem 
(node is SMP)

• Scales as long as most 
memory operations 
reside in the thread’s 
node

www.tyan.com
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Opterons have integrated memory controller. Each CPU is its own node.
The diagram is of the computer we use for our experiments.

note: image from tyan, but I modified it to make it dual core.

http://www.tyan.com
http://www.tyan.com


Parallel computers: 
distributed memory

• Computer clusters

• Memory latency across cluster nodes is 
slow and parallel grid build is memory 
intensive

• Not likely to appear on consumer level 
computers

• We do not target this architecture
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Photo Credit: NASA Ames Research Center/Tom Trower 



Future ray tracing machine

• Target machine is likely a combination of 
NUMA and SMP architectures

• Chip(s) might contain several nodes 
(NUMA)

• Nodes each contain several cores (SMP)

• Ideal algorithm takes NUMA and SMP 
requirements into account
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Serial grid rebuild

• Clear the cells of previous triangles

• Insert triangles into grid cells

• Build macro cells
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In order to parallelize the grid rebuild, we first have to understand the serial build we use
note: this is the same as the CGT siggraph paper



Serial grid rebuild:
clearing

• Naive: Loop through all cells

• Problem: Most cells are already empty causing 
wasted effort

• Solution: Loop through all macro cells, clearing 
only cells that reside in a full macro cell
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green cells we had to check. Red cells we skipped



Serial grid rebuild:
triangle insertion

• Insert triangle into all cells it overlaps

• Use triangle bounding box for overlap test

• Results in much faster build

• Traversal stays roughly the same due to 
mailboxes
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For conference (282k):
triangle references: 1.24M -> 0.83M
rendering time:        339ms -> 330ms
serial rebuild time:  82ms -> 245ms   (163ms increase)



• Same idea as clearing

• For each macro cell, look through all grid cells 
until a nonempty grid cell is found

Serial grid rebuild:
macro cell build
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green cells we had to check. Red cells we skipped



Parallelizing the build

• Scale to many threads

• Keep memory bandwidth between nodes low

• Must not impact traversal performance
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Parallel clear and 
macro cell build

• Have each thread handle a continuous section 
of macro cells

• Doesn’t load balance well

• Overhead for better load
balancing is too high
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It’s quite possible for certain scenes better load balancing would end up better



Parallel triangle insertion

• Analogous to rasterization: instead of pixels 
(2D grid) use cells (3D grid)

• Extend ideas from existing parallel raster-
based rendering algorithms

• Parallel rendering algorithms classified into 3 
categories:
 sort-first
 sort-last
 sort-middle
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• Sort-first:     Each thread is given a subset of the grid which it must insert triangles into.
• Sort-last:      Each thread is given a subset of triangles to insert into the grid.

Sort-middle: Each thread is given a subset of triangles and a subset of the grid. It then routes its 
triangles to the thread handling that part of the grid.



Sort-first

• Benefits: does not require synchronization 
on cells or triangles

• Issues:

• Each thread must look at ALL triangles

• Build remains O(number of triangles) 
despite parallelization

➡We do not use this
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Sort-last

Two approaches:

1. Threads share a single global grid

• Requires expensive synchronization on 
cell updates

2. Each thread has a copy of its own grid

• Combine grids later during build

• Keep grids separate and traverse them all
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Sort-last: global grid
Threads share a single global grid

• Single mutex for the entire grid

• Degenerates into serial build

• Mutex overhead from resolving conflicts 
actually causes build to get many times 
slower

• Mutex for every cell

• Almost no contention - “fast” mutex

• Fast mutex overhead still exists though

• Memory overhead
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Sort-last: global grid
mutex pool

Threads share a single global grid

• Much less memory used

• Contention still low

• Mutex per macro cell

• Fewer mutex locks: if triangle overlaps several 
cells, lock mutex at start and hold it until done 
inserting to cells or until in another macro cell
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could do many things, such as interleaving mutex across cells.



Sort-last: separate grids

Each thread has a copy of its own grid

• Merge grids after triangle insertion

• Can do without synchronization

• High memory bandwidth — look at all cells in all 
grids. Copy triangles into main grid

• Must clear all grids — clearing no longer scales

• Don’t merge and instead check grids during traversal

• Hurts traversal performance

• Must perform grid clear and macro cell build for 
all grids — no longer scalable
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Sort-middle

• First step same as in sort-last 

• Threads get a subset of triangles
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• Thread performs a coarse bucket sort on its triangles

• We use (z % num_threads) where z is major index of 
overlapped cells

• Triangle might exist in multiple buckets

Sort-middle
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Could also do ordering on macro cells, but we did this
This load balances well as long as triangle sizes are randomly distributed across triangle list.
— Big triangles overlap more cells 



• After bucket sort, each thread gets a group of similar 
buckets

Sort-middle
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This is why number of buckets == number of threads



Sort-middle

• Each thread inserts into specific locations of grid

• No write conflicts between threads
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What to measure

• Different build methods

• Scalability

• NUMA and SMP performance

• Build times (scalable and fast)

25



Results

• 8  2.4GHz dual-core Opteron 880 processors

• 8 nodes, each node has 2 cores

• 6.4GB/s local memory
bandwidth per node

• Each node has 8GB local 
memory

www.tyan.com
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http://www.tyan.com
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www.tyan.com

Thread and memory 
allocation

• Spread out threads

• Allocate memory only 
on nodes that will use 
that memory

• Interleave memory 
allocations across nodes 
using that memory
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http://www.tyan.com
http://www.tyan.com


NUMA  API
• OS won’t always do the best thing

• Use to control memory assignments to 
nodes

• Download newer version that works...
http://ftp.suse.com/pub/people/ak/numa/

• Use numactl --hardware | grep free
to make sure all nodes really have free 
memory
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file cache often uses up memory that won’t be released until all the other nodes have no 
more free memory.

http://ftp.suse.com/pub/people/ak/numa/
http://ftp.suse.com/pub/people/ak/numa/


Comparison build methods
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Individual steps

• Poor load balancing for 
clear step

• Spike at 9 threads for 
macro cell build due to 
memory bottleneck  1
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why poor load balancing — triangle distribution



Memory system overhead

• Remove resource 
contention

• Memory bottleneck

• load balancing - clear
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contention-free build measures all types of contention (false sharing, bottlenecks, etc...)



Targeting NUMA

• Allocate only on nodes that 
will access that memory 

• Interleave memory 
allocations

• Total build time (with sort-
middle) improves by 80%

• mutex pool is faster than 
sort-middle without NUMA 
optimizations
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at 16 threads:
sort middle stage takes 92 and 151 ms
mutex pool stage takes 113 and 132 ms



Scene 
comparisons

• Efficient even for small triangle counts

• Conference is a complicated scene
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Total performance

• rebuild + ray cast
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hand only scales to 13x (out of 16 cores) for just rendering...
16 threads:
  Thai:      0.78fps - 2.86fps
  Marbles: 0.50fps - 1.97fps
  Hand:     78fps    - 150fps



Discussion

• Load balancing

• Memory bandwidth of future computers

• Cell: has 4 times the memory bandwidth of 
our test system

• Fair comparisons: type of systems, measure 
both performance and scaling, scenes

• Rebuild code available at:
www.cs.utah.edu/~thiago
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http://www.cs.utah.edu/~thiago
http://www.cs.utah.edu/~thiago


Conclusion

• Grid rebuild can scale to many cores

• Can even achieve interactive performance for 
large scenes with our parallel build

• Sort-middle has little overhead and scales well

• Importance of memory bandwidth

• Optimize code for NUMA machines
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Note: generating data will really be the bottleneck


