
An Evaluation of Parallel
Grid Construction for Ray
Tracing Dynamic Scenes

Thiago Ize, Ingo Wald, Chelsea Robertson, Steven G. Parker
SCI Institute, University of Utah

1

Motivation
• Coherent grid traversal is fast

• O(n) grid rebuild time is fast. But...

• “Large” scenes take too long to build

• Parallelize build

• Multi-core trend

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0 2 4 6 8 10 12 14 16

Fr
am

es
 P

er
 S

ec
on

d

threads

Render + Rebuild Performance
for 10M tri Thai Statue

parallel build
standard build

2
CGT is competitive with other acceleration structures for traversal and can be rebuilt MUCH faster.
Note: the issue with large models exists for any acceleration structure with any type of update method. Only difference is what the definition of “large” is.

Future ray tracing machine:
parallel computer

• Multi-core trend: future consumer
computers will have many cores (on one or
more processor chips)

• Ray tracing hardware, like GPUs, will likely
have many cores

• Need to parallelize the build for these
machines

3

Parallel computers

• 3 main types:

• SMP: Symmetric Multi-Processing

• ccNUMA: cache coherent Nonuniform Memory Access

• Distributed memory: computer clusters

4

ccNUMA we will usually refer as just NUMA

Parallel computers: SMP
• All processors share a memory controller and

memory bus

• Does not scale: memory bottleneck

www.tyan.com
5

http://www.tyan.com
http://www.tyan.com

Parallel computers: ccNUMA

• Partition system into
nodes

• Each node has its own
memory subsystem
(node is SMP)

• Scales as long as most
memory operations
reside in the thread’s
node

www.tyan.com
6

Opterons have integrated memory controller. Each CPU is its own node.
The diagram is of the computer we use for our experiments.

note: image from tyan, but I modified it to make it dual core.

http://www.tyan.com
http://www.tyan.com

Parallel computers:
distributed memory

• Computer clusters

• Memory latency across cluster nodes is
slow and parallel grid build is memory
intensive

• Not likely to appear on consumer level
computers

• We do not target this architecture

7
Photo Credit: NASA Ames Research Center/Tom Trower

Future ray tracing machine

• Target machine is likely a combination of
NUMA and SMP architectures

• Chip(s) might contain several nodes
(NUMA)

• Nodes each contain several cores (SMP)

• Ideal algorithm takes NUMA and SMP
requirements into account

8

Serial grid rebuild

• Clear the cells of previous triangles

• Insert triangles into grid cells

• Build macro cells

9

In order to parallelize the grid rebuild, we first have to understand the serial build we use
note: this is the same as the CGT siggraph paper

Serial grid rebuild:
clearing

• Naive: Loop through all cells

• Problem: Most cells are already empty causing
wasted effort

• Solution: Loop through all macro cells, clearing
only cells that reside in a full macro cell

10

green cells we had to check. Red cells we skipped

Serial grid rebuild:
triangle insertion

• Insert triangle into all cells it overlaps

• Use triangle bounding box for overlap test

• Results in much faster build

• Traversal stays roughly the same due to
mailboxes

11

For conference (282k):
triangle references: 1.24M -> 0.83M
rendering time: 339ms -> 330ms
serial rebuild time: 82ms -> 245ms (163ms increase)

• Same idea as clearing

• For each macro cell, look through all grid cells
until a nonempty grid cell is found

Serial grid rebuild:
macro cell build

12

green cells we had to check. Red cells we skipped

Parallelizing the build

• Scale to many threads

• Keep memory bandwidth between nodes low

• Must not impact traversal performance

13

Parallel clear and
macro cell build

• Have each thread handle a continuous section
of macro cells

• Doesn’t load balance well

• Overhead for better load
balancing is too high

14

It’s quite possible for certain scenes better load balancing would end up better

Parallel triangle insertion

• Analogous to rasterization: instead of pixels
(2D grid) use cells (3D grid)

• Extend ideas from existing parallel raster-
based rendering algorithms

• Parallel rendering algorithms classified into 3
categories:
 sort-first
 sort-last
 sort-middle

15

• Sort-first: Each thread is given a subset of the grid which it must insert triangles into.
• Sort-last: Each thread is given a subset of triangles to insert into the grid.

Sort-middle: Each thread is given a subset of triangles and a subset of the grid. It then routes its
triangles to the thread handling that part of the grid.

Sort-first

• Benefits: does not require synchronization
on cells or triangles

• Issues:

• Each thread must look at ALL triangles

• Build remains O(number of triangles)
despite parallelization

➡We do not use this

16

Sort-last

Two approaches:

1. Threads share a single global grid

• Requires expensive synchronization on
cell updates

2. Each thread has a copy of its own grid

• Combine grids later during build

• Keep grids separate and traverse them all

17

Sort-last: global grid
Threads share a single global grid

• Single mutex for the entire grid

• Degenerates into serial build

• Mutex overhead from resolving conflicts
actually causes build to get many times
slower

• Mutex for every cell

• Almost no contention - “fast” mutex

• Fast mutex overhead still exists though

• Memory overhead

18

Sort-last: global grid
mutex pool

Threads share a single global grid

• Much less memory used

• Contention still low

• Mutex per macro cell

• Fewer mutex locks: if triangle overlaps several
cells, lock mutex at start and hold it until done
inserting to cells or until in another macro cell

19

could do many things, such as interleaving mutex across cells.

Sort-last: separate grids

Each thread has a copy of its own grid

• Merge grids after triangle insertion

• Can do without synchronization

• High memory bandwidth — look at all cells in all
grids. Copy triangles into main grid

• Must clear all grids — clearing no longer scales

• Don’t merge and instead check grids during traversal

• Hurts traversal performance

• Must perform grid clear and macro cell build for
all grids — no longer scalable

20

Sort-middle

• First step same as in sort-last

• Threads get a subset of triangles

21

• Thread performs a coarse bucket sort on its triangles

• We use (z % num_threads) where z is major index of
overlapped cells

• Triangle might exist in multiple buckets

Sort-middle

22

Could also do ordering on macro cells, but we did this
This load balances well as long as triangle sizes are randomly distributed across triangle list.
— Big triangles overlap more cells

• After bucket sort, each thread gets a group of similar
buckets

Sort-middle

23

This is why number of buckets == number of threads

Sort-middle

• Each thread inserts into specific locations of grid

• No write conflicts between threads

24

What to measure

• Different build methods

• Scalability

• NUMA and SMP performance

• Build times (scalable and fast)

25

Results

• 8 2.4GHz dual-core Opteron 880 processors

• 8 nodes, each node has 2 cores

• 6.4GB/s local memory
bandwidth per node

• Each node has 8GB local
memory

www.tyan.com
26

http://www.tyan.com
http://www.tyan.com

www.tyan.com

Thread and memory
allocation

• Spread out threads

• Allocate memory only
on nodes that will use
that memory

• Interleave memory
allocations across nodes
using that memory

27

http://www.tyan.com
http://www.tyan.com

NUMA API
• OS won’t always do the best thing

• Use to control memory assignments to
nodes

• Download newer version that works...
http://ftp.suse.com/pub/people/ak/numa/

• Use numactl --hardware | grep free
to make sure all nodes really have free
memory

28

file cache often uses up memory that won’t be released until all the other nodes have no
more free memory.

http://ftp.suse.com/pub/people/ak/numa/
http://ftp.suse.com/pub/people/ak/numa/

Comparison build methods

 100

 1000

 10000

 1 2 4 8 16

m
ill

ise
co

nd
s

threads

default
sort-middle
mutex pool
mutex/cell

single mutex 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

threads

default
sort-middle
mutex pool
mutex/cell

single mutex

29

Individual steps

• Poor load balancing for
clear step

• Spike at 9 threads for
macro cell build due to
memory bottleneck 1

 10

 100

 1000

 10000

 1 2 4 8 16

m
ill

ise
co

nd
s

threads

clear
macro cell build

sort-middle triangle insertion
mutex pool triangle insertion

30

why poor load balancing — triangle distribution

Memory system overhead

• Remove resource
contention

• Memory bottleneck

• load balancing - clear
 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

threads

clear
macro cell build

sort-middle triangle insertion
contention-free clear

contention-free macro cell build
contention-free sort-middle triangle insertion

31

contention-free build measures all types of contention (false sharing, bottlenecks, etc...)

Targeting NUMA

• Allocate only on nodes that
will access that memory

• Interleave memory
allocations

• Total build time (with sort-
middle) improves by 80%

• mutex pool is faster than
sort-middle without NUMA
optimizations

-20

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16

pe
rfo

rm
an

ce
 im

pr
ov

em
en

t (
%

)

threads

clear
macro cell build

sort-middle triangle insertion
mutex pool triangle insertion

32

at 16 threads:
sort middle stage takes 92 and 151 ms
mutex pool stage takes 113 and 132 ms

Scene
comparisons

• Efficient even for small triangle counts

• Conference is a complicated scene

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

ef
fic

ie
nc

y

threads

Thai (10M)
Marbles (10M)

Conference (283K)
Hand (16K)

 1

 10

 100

 1000

 10000

 1 2 4 8 16

m
ill

ise
co

nd
s

threads

Thai (10M)
Marbles (10M)

Conference (283K)
Hand (16K)

33

Total performance

• rebuild + ray cast

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

threads

Thai serial build
Thai parallel build

Marbles serial build
Marbles parallel build

Hand serial build
Hand parallel build

34

hand only scales to 13x (out of 16 cores) for just rendering...
16 threads:
 Thai: 0.78fps - 2.86fps
 Marbles: 0.50fps - 1.97fps
 Hand: 78fps - 150fps

Discussion

• Load balancing

• Memory bandwidth of future computers

• Cell: has 4 times the memory bandwidth of
our test system

• Fair comparisons: type of systems, measure
both performance and scaling, scenes

• Rebuild code available at:
www.cs.utah.edu/~thiago

35

http://www.cs.utah.edu/~thiago
http://www.cs.utah.edu/~thiago

Conclusion

• Grid rebuild can scale to many cores

• Can even achieve interactive performance for
large scenes with our parallel build

• Sort-middle has little overhead and scales well

• Importance of memory bandwidth

• Optimize code for NUMA machines

36

Note: generating data will really be the bottleneck

