

Analysis of Ray-Guided Volume Rendering

Thomas Fogal, Alexander Schiewe, Jens Krüger

VR Background

Thanks: Florian Hoffman

What's Important for Performance

● Identifying densely-sampled regions
● Transition to coarse sampling quickly
● Communicate data needed to IO

Ray-Guided Rendering

Brick Size

Brick Size: IO

0

20

40

60

80

100

T
im

e
 (

se
co

n
d

s)

16 32 64
Brick s ize (voxe ls cubed)

zlib compress ion

Space-Filling Curves

Dynamic Bricking

Where Does the Time Go?

Dynamic Sampling

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100

B
ric

ks
 N

ee
de

d

Frame Number

Bricks needed per frame at varying resolutions, RMI Rotation

320x240
640x480

1024x768
1280x800

1920x1080

~250k bricks in
Dataset!

Memory Needed

Vis Pipeline

Growth of Data

Growth of Data (2)
D

at
a

Year

exp(x)

Growth of Display Devices
R

es
ol

ut
io

n

Year

R
es

ol
ut

io
n

Year

Growth

D
at

a

Year

exp(x)

R
es

ol
ut

io
n

Year

Vis Pipeline

Rendering

==

Filtering

?

Analysis of Ray-Guided Volume Rendering

Thomas Fogal, Alexander Schiewe, Jens Krüger

the motivation for this work was partially from these
datasets. it seemed like we didn't need to do all that
much work to capture these images, and yet they
actually require a lot of computation. we scoured the
literature: where does a modern volume renderer
spend its time? and came up empty. so we started
looking ourselves.

VR Background

Thanks: Florian Hoffman

So we measured ourselves.

What's Important for Performance

● Identifying densely-sampled regions
● Transition to coarse sampling quickly
● Communicate data needed to IO

Ray-Guided Rendering

ray-guided rendering is the idea that rendering and
identifying which data are needed should be
co-computed

Brick Size

How does brick size effect renderings? In this image
we visualize the behavior of a ray. A ray
accumulates green if it skips the brick due to empty
space leaping. Blue means we terminated the ray on
exit from the brick, due to saturation. Red areas
were sampled densely. One can see that a lot of the
data falls into the 'blue' and 'green' categories: that
is, very little work needs to be done for the majority
of rays. Only the red areas require lots of
computation.
Clearly, we should desire small bricks, to more
closely approximate these distinct regions.

Brick Size: IO

0

20

40

60

80

100

T
im

e
 (

se
co

n
d

s)

16 32 64
Brick s ize (voxe ls cubed)

zlib compress ion

Unfortunately, small bricks give really awful IO
performance. As the transfer sizes shrink, we end up
paying a lot for each brick. Furthermore, since we
need to include ghost data in each brick (thereby
copying some data), we can extend the size of the
data set pretty dramatically with small brick sizes
(50% at 32^3).

Compression is useful in reducing the size of data,
but does not actually improve IO time. With
compressors like zlib or bzlib, compression can
actually have a significant effect on performance.

(might want to add transfer vs. seek time image from
EGPGV paper)

Space-Filling Curves

Since IO was a big problem, we applied the
conventional wisdom from the community: use a
space-filling curve to minimize the 'distance' between
two bricks; reading one should automatically put
another in cache. If we have good spatiotemporal
locality for bricks, this should be a win.
Unfortunately this didn't prove to be much of a win
over standard 'scanline' ordering.

Dynamic Bricking

Since the problem was transfer time, not seek time,
we sought a solution that minimized transfer time,
but still gave us small bricks so the renderer would
perform well. What we decided on was generating
the bricks at runtime. We still do a precomputation
up-front; this gave us a base for the data and limits
the amount of work done. But we take those large
bricks and chop them up into tiny bricks on demand.
This means we still do large reads from disk, but our
renderer sees the tiny bricks that it wants for e.g.
early ray termination.

Where Does the Time Go?

This figure shows where we spend our time. As one
might guess, the majority of the time is spent in IO
and rendering. Note that the whole body, magnitude,
and velocity data sets actually spend a lot of time
rendering: this happens with lots of large,
thin/transparent structures, which must be sampled
densely but do not cause rays to saturate.

Dynamic Sampling

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100

B
ric

ks
 N

ee
de

d

Frame Number

Bricks needed per frame at varying resolutions, RMI Rotation

320x240
640x480

1024x768
1280x800

1920x1080

~250k bricks in
Dataset!

sampling is heavily output-driven: fewer rays means
we can sample the data coarsely. this means we
can load much less data.
side note: this means we should (as reviewers)
require high-resolution output frames
graph generated using a DS bricked via 36^3 bricks:
245760 bricks total

Memory Needed

here's a measure of how much data we need,
per-frame, for some common operations.
Wholebody: 1.5Gb; RMI: 7.5Gb; VHuman: 12.2Gb
I am sure almost everyone could guess that the data
needed is a subset of the overall volume. The point
here is how small that subset is.

Vis Pipeline

This is the standard vis pipeline. Actually, I stole this
directly from the lecture we give graduate students.
The problem with this is that it's the wrong way to
teach students how to do visualization

Growth of Data

Let's take a look at how fast data are growing. This
graph has a lot of information, but what let's just
focus on this “All info per year” line now. And all I
really want you to note is that we've got a 'linear'
growth on a log scale.

Growth of Data (2)

D
a

ta

Year

exp(x)

Thus: data are growing exponentially.

Growth of Display Devices

R
e

so
lu

tio
n

Year

R
e

so
lu

tio
n

Year

What about display devices? Displays look much
more like a linear function. Actually, if we want to get
technical, it's more of a step function; but either way,
it's linear.
And, in recent years, it has hit a peak: so-called
“retina resolution”.

Growth
D

at
a

Year

exp(x)

R
es

ol
ut

io
n

Year

Vis Pipeline

This is the standard vis pipeline. Actually, I stole this
directly from the lecture we give graduate students.
The problem with this is that it's the wrong way to
teach students how to do visualization: it implies this
waterfall model which is really awful for performance.

Rendering

==

Filtering

We've got this whole vis pipeline thing upside down.
Rendering is filtering; they should not be separate
operations, else we give up 2 to 3 orders of
magnitude of performance. We need to stop
considering large data as a waterfall, with our job
being to direct that flow to where it's desired.
Instead, consider large data a lake and our task is to
identify where we should insert our 'sampling straw'.

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26

