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ABSTRACT

We  have  integrated  a  framework  for  computational  steering 
developed  at  the  Technische  Universität  München  [1]  into  the 
AGENT [2]  codebase.  This  framework allows for  the  arbitrary 
interruption  of  any  simulation  system  for  the  purpose  of 
modifying internal state.  Once the simulation is interrupted, the 
solver,  meshing  and  resolution  parameters,  and  convergence 
variables  can  all  be  modified  to  more  appropriate  values. 
Depending  which  settings  have  been  modified,  remeshing  and 
refined resolution are then performed, and values are copied from 
the old set of resolution parameters onto the new set.  Then the 
simulation restarts at whatever state - for example, timestep - it  
reached previously, without requiring a resubmission into the job 
control system. The utility of this computational steering process 
is  exemplified  during  the  3D  simulation  of  the  University  of 
Utah’s  100 kW TRIGA reactor  (UUTR) core with the AGENT 
code. In this paper we present an example in which initially the 
mesh resolution of the UUTR core input set up with a wide ray 
separation of 1.2 cm that as expected does not  converge to the 
specified criteria after 600 iterations; the AGENT code version we 
used to demonstrate this new feature does not initiate any of other 
existing  iteration  acceleration  techniques.  Thus,  using  the 
aforementioend computational steering framework, the simulation 
is  interrupted  after  249  iterations.  The  ray  separation  is  then 
changed to a smaller value and after 351 iterations the solution 
meets  the  required  convergence  criteria.  The  second  example 

illustrates how the user can accelerate the convergence: starting 
from a coarse mesh resolution an interruption is performed after a 
few iterations to refine the initial resolution. There is a significant 
reduction in the CPU time (~ 22.0 %) following this procedure 
compared to finding the solution using only the refined resolution.

1. INTRODUCTION

We use the AGENT simulation framework for modeling reactor 
physics in configurations common to standard research reactors, 
current power reactors and any future reactor designs.  AGENT 
solves the 3D Boltzmann transport equation using the method of 
characteristics (MOC). A number of rays are generated for each 
azimuthal and polar direction, and intersections are found for each 
surface  within  the  domain.   These  form  ray  segments,  which 
provide the basis for sampling a discretized Boltzmann equation. 
In  three dimensions a 2D version may be employed with a 1D 
factor to account for axial leakage between reactor core slices.

This method of simulation requires a large number of parameters 
to  be  configured  by  the  user.   The  user  must  choose  which 
simulation  method  to  utilize,  the  2D/1D  coupled  model  with 
MOC  or  nodal  expansion  method  (NEM)  used  at  the  axial 
direction, inclusive of a variety of meshing parameters, as well as 
a set of convergence variables. Meshing and resolution parameters 
include the number of azimuthal and polar angles, the number of 
rays  (representing  neutron  tracks  of  motion),  meshing  of  the 
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zones, and the number of boundary edges along each side of the 
reactor  core  assemblies.   Convergence  parameters  include  k- 
values and scalar neutron flux. 

Improper  settings  of  these  parameters  can  lead  to  excessive 
computational or memory requirements, leading to less properly 
converged neutron transport  solution.   However, in many cases 
proper  values  are  not  easily  understood  and  by  nature  of  the 
Method  of  Characteristics  (MOC) based  codes  require  for  the 
user  to  complete  a  detailed  survey  toward  the  best  estimate 
solution.  This unnecessarily exacerbates the computational cost 
of simulating particular phenomena. To resolve this, we employ a 
computational  steering  approach.   Computational  steering  is  a 
powerful concept that allows scientists to interactively control a 
computational  process  during  its  execution  in  order  to  gain 
insight  concerning  parameters,  algorithmic  behavior,  and 
opportunities for optimization. 

2. THE AGENT CODE

AGENT  (Arbitrary  GEometry  Neutron  Transport)  is  a 
deterministic code that is used for 2D and 3D detailed, accurate 
and yet computationally efficient nuclear reactor modeling. The 
multi-group neutron transport equation is solved with the MOC. 
Compared to other deterministic and the MOC codes, the main 
AGENT advantage lies on the use of the so called R-functions to 
describe the reactor geometry and generate all geometrical data 
needed for the straightforward MOC solution. We have published 
a  number  of  conference  and  journal  papers  on  AGENT code 
physics, structure and accuracy in last more than ten years, but we 
usually refer to a paper listed as Ref [2] as the paper that gives the 
best overview of all unique aspects of the AGENT code. Thus, in  
this paper we just point in brief on the main aspects of the code 
philosophy that are of interest to simulation steering. 

The  AGENT  code  is  optimized  for  robustness,  simplicity, 
accuracy,  and  efficiency  while  supporting  a  full  treatment  of 
neutron transport in highly heterogeneous reactors’ designs. The 
robustness of the R-function based geometrical module is assured 
through the sequential generation of the geometry and automatic 
sub-meshing of complex reactor lattices. The simplicity of reactor 
geometry description and selection of the parameters for accurate 
treatment  of  neutron  propagation  is  achieved  through  the 
hierarchical organization of geometrical primitives (that could be 
pre-meshed into even smaller material zones) into more complex 
shapes (to be meshed based on the mesh of the primitives or to be 
meshed independently) using the R-function formula to describe 
the  domain  areas  of  all  involved  geometrical  shapes.  The 
accuracy is comparable to the Monte Carlo codes and is obtained 
by  following  neutron  propagation  through  defined  real 
geometrical  domains  subdivided  into  as  many  small  material 
zones as user would like to select. The efficiency is maintained 
through  a  set  of  acceleration  techniques  introduced  in  all 
important calculation levels. 

The R-functions modeler [3] used to represent complex domains 
through  the  combination  of  simple  primitives  into  a  single 
analytical  equation  allows  great  flexibility  in  hierarchical 
organization  of  any type  of  reactor  geometry.  The  modeler  is 
equally general  as  Monte  Carlo  combinatorial  geometry based 
approach,  but  incomparably  simpler  and  importantly  faster. 
AGENT modeler permits automatic generation of flat-flux zones 
that  is  required  for  accurate  MOC  calculation.  Graphic  user 
interface  is  available  at  any  of  currently  available  computer 
platforms including mobile technologies, [4].

3. SIMULATION STEERING

Computational steering allows scientists to interactively control a 
computational  process  during  its  execution  in  order  to  gain 
insight  concerning  parameters,  algorithmic  behavior,  and 
opportunities for optimization [5]. The first challenge introduced 
by  the  simulation  steering  concept  is  the  matter  of  instantly 
communicating the desired changes to the simulation program at 
runtime.  There  are  two primary state-of-the-art  approaches  for 
doing this: checkpointing and process interruption.

3.1 Checkpoints implementation

The first approach introduces the idea of  checkpoints inserted at 
fixed places in the code, testing if anything has changed on the 
user’s side. Such an approach has several disadvantages. First, it 
involves major code modifications, making the implementation of 
such an approach tedious for the end-user (researcher) writing the 
simulation code.  As a consequence, despite the advantages that 
computational steering may offer, researchers become reluctant to 
apply the concept in their applications. The second disadvantage 
is the difficulty in making the right decision as to where to insert 
these checkpoints,  since the  answer to  that  question  is  entirely 
simulation dependent, and, moreover, problem-size dependent. In 
order to guarantee the  immediate response of the computational 
model to user modifications, one would have to estimate this in 
advance,  based  on  the  experience  gained  by  previous  program 
runs.  Another  disadvantage  is  the  inevitable  trade-off  between 
frequent  polling  (at  considerable  computational  cost)  and 
responsiveness to new user input. In addition to the insertion of 
checkpoints,  a  common  approach  is  assigning  one  thread  per 
simulation process exclusively to check for updates from the user, 
but this presents logistical issues in coordinating access to shared 
data (Figure 1).

Figure 1. Typical use case scenario.
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3.1 Interruption implementation

We  chose  to  use  an  elegant  and  straightforward  integration 
framework,  previously proven  to  give excellent  results  in  other 
engineering  applications  [1,7].  This  framework provides  instant 
responses user interaction with only minimal code modifications 
to the simulation.  The main idea of the framework is to exploit  
user-generated interrupts, i.e. signals, to interfere with the regular 
course of the simulation.

Threads in any application programs execute sequentially if every 
instruction  runs properly.  In  case of  an error  or  other  anomaly 
during execution,  the operating system utilizes signals to notify 
the  program.  There are  many scenarios  in  which  the  operating 
system will generate a signal, and one of them is when the user 
sends  an  interrupt  to  the  program.  In  common  UNIX-based 
environments,  this  consists  of  a  Ctrl-C  key  combination.  The 
default  action  for  such  a  signal  is  to  terminate  the  process, 
however  this  framework  uses  a  signal  handler  to  override  that 
operation and provide the user with the opportunity to modify the 
state of the running simulation.

The  user  may  send  the  signal  at  any  point  during  program 
execution.  However,  this  means  that  the  program  could  be 
executing any arbitrary piece of code at that point in time; if the  
simulation was interrupted after acquiring a resource, we do not 
want  to  alter  the program state  such  that  the  resource is  never 
released.  To  workaround  this  problem,  instead  of  directly 
modifying important state, the signal handler simply rewrites loop 
indices so that inner loops are considered ‘done’. When the signal 
handler  returns,  control  is  resumed  from  whatever  point  of 
execution  was  suspended  by  entering  the  signal  handler.  This 
ensures  any required  cleanup occurs  whilst  avoiding  the heavy 
cost  of  finishing  the  current  iteration  at  the  old  data  values. 
Finally, the simulation code is instrumented at its outermost loop 
to check and see if a user interruption has occurred, and if so it  
updates the relevant simulation variables.

For  this  work,  updates  may refer  to  changing  the  convergence 
criteria parameters, resolution parameters (such as the number of 
polar and azimuthal angles),  maximal number of iterations,  etc. 
Depending  on  the  nature  of  the  modification,  appropriate  re-
initialization steps for the data have to be taken at the beginning of 
the new iteration, to ensure the correct execution of the program.

Illustration: The whole computation is intended to be restarted by 
manipulating the iteration vector i = (idx1, idx2, ... idxn), i. e. the 
loop indices idxi of all loops by setting it for each loop index to be 
some value  out  of  its  actual  range,  as  shown in  the  following 
pseudo code:

for (t ← T0 to TN) do             // iterations over time
   reinitialize_data()               // (re)initialize MAX1, MAX2
                                             // and other necessary data
   for (idx1 ← 1 to MAX1) // in the case of interrupt, MAX1
                                             //and MAX2 are both set to -1

      for (idx2 ← 1 to MAX2)
         process(data[idx1][ idx2])  // can be interrupted at
                                                    // any point

4. VISUALIZATION

To make an informed decision on the new parameter set, a user 
must be able to understand the efficacy of the current solution. 
Thus the simulation periodically outputs the current state to disk. 
Visualization  software  converts  that  data  into  a  representable 
form, and the results are displayed for the user's evaluation.

Figure 2. Instrumented AGENT session:  the user runs AGENT 
on a remote server (terminal, top left);  as iterations complete,  

visualizations come available and appear in the locally-running  
ImageVis3D client

A  common  mode  of  operation  for  simulations  is  to  run  the 
simulation  code  on  a  remote  computing  resource,  such  as  a 
supercomputer.  This  presents  a  problem  for  visualization 
software, which typically runs on the user’s desktop and therefore 
cannot directly access the data.  To solve this problem, we have 
implemented a client/server  solution:  a simple daemon process 
runs on the server and brokers access to the data to clients.  Client 
applications are presented with a list of available iterations of the 
currently running simulation, which is dynamically updated as the 
simulation progresses. Requesting a data set sends it over to the 
client  machine  and  automatically  loads  up  the  ImageVis3D 
volume rendering tool [6] to visualize the data. Figure 2 shows 
the use of ImageVis3D client to visualize the main UUTR core 
parameters  after  AGENT  multiple  iterations  have  been 
completed.

5. RESULTS

Since  the  AGENT code  solves  the  neutron  transport  equation 
using  an  iterative  process,  two  criteria  are  applied  to  indicate 
whether the calculation has converged after each iteration, or did 
not.  The  first  criterion  is  the  relative  difference  for  the 
multiplication factor between the iterations, defined as

             kdiff =∣
knew−k

k
∣                                       (1)
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The second criterion is the maximum relative difference of zone 
flux for all zones, which is defined as

         φdiff ,max=max (∣φ i , new−φi

φ i

∣ for all zone i)  

                 (2)

When  kdiff <  ԑ1 and  ϕdiff,max <  ԑ2,  the  calculation  is  considered 
converged  and  will  stop;  otherwise,  it  will  continue  on  to  a 
subsequent  iteration  until  convergence  or  until  reaching  a 
maximum (user  defined)  number  of  iterations.  For  the  UUTR 
core the selected values are: ԑ1 = 0.00001 and ԑ2 = 0.0001.

The  AGENT  code  MOC  parameters  required  to  solve  the 
transport equation for heterogeneous reactor cores are:

a. Number of polar angles (for the UUTR simulations two  
polar  angles  are  chosen,  with  weights  based  on  the  
study  of  Leonard  and  McDaniel  [8].  AGENT  also  
permits the use of more than two polar angles by using  
the CACTUS quadrature approximation [9]. 

b. Number of azimuthal angles (nθ).
c. Ray separation (δA).
d. Number of boundary edges (nb).

The following examples illustrate an initial study focused on the 
utility  of  the  computational  steering  integration  framework 
applied to the deterministic code AGENT.

5.1 Monitoring the AGENT live simulation

In the case the user started the simulation with an incorrect initial  
parameters  (for  example,  nθ =4,  nb = 22 and  δA =1.2 cm),  the 
solution converges for  kdiff, but giving an inaccurate value for  k. 
Meanwhile, the convergence towards ԑ2 follows a slow trend.  If 
we  interrupt  the  simulation  (we  selected  to  interrupt  at  249 th 

iteration)  by  conserving  the  same mesh  but  refining  the  MOC 
resolution  parameters  as  δA=0.9  cm,  the  solution  will  improve 
toward best estimate but in a shorter computation time.

Figure 3 illustrates the value of kdiff  as a function of the number of 
iterations. The peak at the iteration number of 250 is due to the 
value of  k monotonically increasing from its initial  value at the 
uninterrupted case. 

Figure 3. kdiff  as a function of number of iterations by refining the  
MOC resolution parameters

Similarly, Figure 4 shows the values for  ϕdiff,max (scalar neutron 
flux). At the iteration number 600, the interrupted scheme reaches 
the convergence criteria. 

Figure 4. ϕdiff,max  as a function of number of iterations by refining  
the MOC resolution parameters

5.2  Interrupting  AGENT  live  simulation  achieving  higher 
accuracy and reducing total CPU time

In this example we show the effect of the interruption early on 
during the AGENT simulation of the University of Utah TRIGA 
research reactor. The AGENT iterative process starts with the low-
resolution parameters: nθ =8, δA=1.2 cm and nb=22 (in accordance 
with the previous section these values by themselves do not meet 
the convergence criteria but creates an initial  solution estimate). 
The  interruption  is  introduced  after  82.5  seconds,  at  the  41 st 

iteration (when  k > 1.0). Two independent cases based on MOC 
resolution were analyzed after the interruption:

(a) Medium  resolution  with  the  new  values  of  nθ =18,  
δA=0.45 cm and nb =22. 

(b) Higher  resolution  with  the  new  values  of  nθ =32,  
δA=0.1 cm and nb =22. 

Table  1  shows  the  time  and  number  of  iterations  it  takes  for 
AGENT to solve the transport equation for the UUTR. It can be 
observed  that  the  low-to-medium  interruption  procedure 
consumes ~ 84.5% of the CPU-time spent solving the transport 
equation at medium-resolution level. This gain in time increases 
with  the  low-to-high  interruption  procedure  which  consumes  ~ 
78%  of  the  CPU-time  with  respect  to  a  high-resolution  level 
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computation. At this early stage of computation steering module 
development, we observe the time savings in the order of 30%. 

Table 1. AGENT code performance vs MOC resolution  
parameters

Modeling the 
UUTR

Total number of 
iterations

CPU-time (s)

Medium-Resolution 157 1,000
Low-to-Medium 

Resolution
159 843

High-Resolution 157 8,511
Low-to-High 
Resolution

158 6,634

6. CONCLUSIONS

We have introduced a new feature into the AGENT code based 
on the utility of dynamically-adjusted resolution parameters in a 
simulation  framework.  Although  in  its  early  stage  of  the 
development,  this  streaming  simulation  key provides  a  unique 
code  feature  non-existent  in  neutron  transport  codes  based  on 
deterministic methods. This new framework provides a number of 
advanced ways in running AGENT code allowing user to monitor 
the solution for the best estimate in a shorter computation time. 
For  example,  by  starting  AGENT  solution  with a  coarse 
resolution  and  by interrupting  the  solution  early on,  users  can 
accelerate  the  overall  time-to-convergence  of  the  entire 
simulation run. Also, at runtime, the user can correct initial mesh 
and resolution  parameters increasing the accuracy of the entire 
simulation. Computation steering is therefore a remarkable new 
feature of the AGENT code providing a new way of monitoring 
live simulations toward best estimate optimization of reactor core 
modeling; in addition, the computation steering is well utilized as 
a tool for validation and verification of the code simulation. Our 
next  development  includes  live  monitoring  of  the  graphical 
representations of the main solution parameters such as neutron 
flux and current distributions in 2D and 3D solution modalities.
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