
Proceedings of the 1st International Nuclear and Renewable Energy Conference (INREC10), Amman, Jordan, March 21-24, 2010

VISUAL SIMULATION STEERING FOR A 3D NEUTRON TRANSPORT AGENT CODE
SYSTEM

Jovana Knežević Hermilo Hernández

Technische Universität München
Computation in Engineering

The University of Utah
Nuclear Engineering Program

Arcisstr. 21 80290, Munich, Germany 50 S. Central Campus Dr, Salt Lake City, UT,
84112, USA

knezevic@bv.tu-muenchen.de Hermilo.Hernandez@utah.edu

Thomas Fogal Tatjana Jevremovic

The University of Utah
Scientific Computing and Imaging Institute

The University of Utah
Nuclear Engineering Program

72 S. Central Campus Dr, Salt Lake City, UT,
84112, USA

50 S. Central Campus Dr, Salt Lake City, UT,
84112, USA

tfogal@sci.utah.edu Tatjana.Jevremovic@utah.edu

ABSTRACT

We have integrated a framework for computational steering
developed at the Technische Universität München [1] into the
AGENT [2] codebase. This framework allows for the arbitrary
interruption of any simulation system for the purpose of
modifying internal state. Once the simulation is interrupted, the
solver, meshing and resolution parameters, and convergence
variables can all be modified to more appropriate values.
Depending which settings have been modified, remeshing and
refined resolution are then performed, and values are copied from
the old set of resolution parameters onto the new set. Then the
simulation restarts at whatever state - for example, timestep - it
reached previously, without requiring a resubmission into the job
control system. The utility of this computational steering process
is exemplified during the 3D simulation of the University of
Utah’s 100 kW TRIGA reactor (UUTR) core with the AGENT
code. In this paper we present an example in which initially the
mesh resolution of the UUTR core input set up with a wide ray
separation of 1.2 cm that as expected does not converge to the
specified criteria after 600 iterations; the AGENT code version we
used to demonstrate this new feature does not initiate any of other
existing iteration acceleration techniques. Thus, using the
aforementioend computational steering framework, the simulation
is interrupted after 249 iterations. The ray separation is then
changed to a smaller value and after 351 iterations the solution
meets the required convergence criteria. The second example

illustrates how the user can accelerate the convergence: starting
from a coarse mesh resolution an interruption is performed after a
few iterations to refine the initial resolution. There is a significant
reduction in the CPU time (~ 22.0 %) following this procedure
compared to finding the solution using only the refined resolution.

1. INTRODUCTION

We use the AGENT simulation framework for modeling reactor
physics in configurations common to standard research reactors,
current power reactors and any future reactor designs. AGENT
solves the 3D Boltzmann transport equation using the method of
characteristics (MOC). A number of rays are generated for each
azimuthal and polar direction, and intersections are found for each
surface within the domain. These form ray segments, which
provide the basis for sampling a discretized Boltzmann equation.
In three dimensions a 2D version may be employed with a 1D
factor to account for axial leakage between reactor core slices.

This method of simulation requires a large number of parameters
to be configured by the user. The user must choose which
simulation method to utilize, the 2D/1D coupled model with
MOC or nodal expansion method (NEM) used at the axial
direction, inclusive of a variety of meshing parameters, as well as
a set of convergence variables. Meshing and resolution parameters
include the number of azimuthal and polar angles, the number of
rays (representing neutron tracks of motion), meshing of the

INREC10-1

mailto:Tatjana.Jevremovic@utah.edu
mailto:tfogal@sci.utah.edu
mailto:Hermilo.Hernandez@utah.edu
mailto:knezevic@bv.tu-muenchen.de

Proceedings of the 1st International Nuclear and Renewable Energy Conference (INREC10), Amman, Jordan, March 21-24, 2010

zones, and the number of boundary edges along each side of the
reactor core assemblies. Convergence parameters include k-
values and scalar neutron flux.

Improper settings of these parameters can lead to excessive
computational or memory requirements, leading to less properly
converged neutron transport solution. However, in many cases
proper values are not easily understood and by nature of the
Method of Characteristics (MOC) based codes require for the
user to complete a detailed survey toward the best estimate
solution. This unnecessarily exacerbates the computational cost
of simulating particular phenomena. To resolve this, we employ a
computational steering approach. Computational steering is a
powerful concept that allows scientists to interactively control a
computational process during its execution in order to gain
insight concerning parameters, algorithmic behavior, and
opportunities for optimization.

2. THE AGENT CODE

AGENT (Arbitrary GEometry Neutron Transport) is a
deterministic code that is used for 2D and 3D detailed, accurate
and yet computationally efficient nuclear reactor modeling. The
multi-group neutron transport equation is solved with the MOC.
Compared to other deterministic and the MOC codes, the main
AGENT advantage lies on the use of the so called R-functions to
describe the reactor geometry and generate all geometrical data
needed for the straightforward MOC solution. We have published
a number of conference and journal papers on AGENT code
physics, structure and accuracy in last more than ten years, but we
usually refer to a paper listed as Ref [2] as the paper that gives the
best overview of all unique aspects of the AGENT code. Thus, in
this paper we just point in brief on the main aspects of the code
philosophy that are of interest to simulation steering.

The AGENT code is optimized for robustness, simplicity,
accuracy, and efficiency while supporting a full treatment of
neutron transport in highly heterogeneous reactors’ designs. The
robustness of the R-function based geometrical module is assured
through the sequential generation of the geometry and automatic
sub-meshing of complex reactor lattices. The simplicity of reactor
geometry description and selection of the parameters for accurate
treatment of neutron propagation is achieved through the
hierarchical organization of geometrical primitives (that could be
pre-meshed into even smaller material zones) into more complex
shapes (to be meshed based on the mesh of the primitives or to be
meshed independently) using the R-function formula to describe
the domain areas of all involved geometrical shapes. The
accuracy is comparable to the Monte Carlo codes and is obtained
by following neutron propagation through defined real
geometrical domains subdivided into as many small material
zones as user would like to select. The efficiency is maintained
through a set of acceleration techniques introduced in all
important calculation levels.

The R-functions modeler [3] used to represent complex domains
through the combination of simple primitives into a single
analytical equation allows great flexibility in hierarchical
organization of any type of reactor geometry. The modeler is
equally general as Monte Carlo combinatorial geometry based
approach, but incomparably simpler and importantly faster.
AGENT modeler permits automatic generation of flat-flux zones
that is required for accurate MOC calculation. Graphic user
interface is available at any of currently available computer
platforms including mobile technologies, [4].

3. SIMULATION STEERING

Computational steering allows scientists to interactively control a
computational process during its execution in order to gain
insight concerning parameters, algorithmic behavior, and
opportunities for optimization [5]. The first challenge introduced
by the simulation steering concept is the matter of instantly
communicating the desired changes to the simulation program at
runtime. There are two primary state-of-the-art approaches for
doing this: checkpointing and process interruption.

3.1 Checkpoints implementation

The first approach introduces the idea of checkpoints inserted at
fixed places in the code, testing if anything has changed on the
user’s side. Such an approach has several disadvantages. First, it
involves major code modifications, making the implementation of
such an approach tedious for the end-user (researcher) writing the
simulation code. As a consequence, despite the advantages that
computational steering may offer, researchers become reluctant to
apply the concept in their applications. The second disadvantage
is the difficulty in making the right decision as to where to insert
these checkpoints, since the answer to that question is entirely
simulation dependent, and, moreover, problem-size dependent. In
order to guarantee the immediate response of the computational
model to user modifications, one would have to estimate this in
advance, based on the experience gained by previous program
runs. Another disadvantage is the inevitable trade-off between
frequent polling (at considerable computational cost) and
responsiveness to new user input. In addition to the insertion of
checkpoints, a common approach is assigning one thread per
simulation process exclusively to check for updates from the user,
but this presents logistical issues in coordinating access to shared
data (Figure 1).

Figure 1. Typical use case scenario.

INREC10-2

Proceedings of the 1st International Nuclear and Renewable Energy Conference (INREC10), Amman, Jordan, March 21-24, 2010

3.1 Interruption implementation

We chose to use an elegant and straightforward integration
framework, previously proven to give excellent results in other
engineering applications [1,7]. This framework provides instant
responses user interaction with only minimal code modifications
to the simulation. The main idea of the framework is to exploit
user-generated interrupts, i.e. signals, to interfere with the regular
course of the simulation.

Threads in any application programs execute sequentially if every
instruction runs properly. In case of an error or other anomaly
during execution, the operating system utilizes signals to notify
the program. There are many scenarios in which the operating
system will generate a signal, and one of them is when the user
sends an interrupt to the program. In common UNIX-based
environments, this consists of a Ctrl-C key combination. The
default action for such a signal is to terminate the process,
however this framework uses a signal handler to override that
operation and provide the user with the opportunity to modify the
state of the running simulation.

The user may send the signal at any point during program
execution. However, this means that the program could be
executing any arbitrary piece of code at that point in time; if the
simulation was interrupted after acquiring a resource, we do not
want to alter the program state such that the resource is never
released. To workaround this problem, instead of directly
modifying important state, the signal handler simply rewrites loop
indices so that inner loops are considered ‘done’. When the signal
handler returns, control is resumed from whatever point of
execution was suspended by entering the signal handler. This
ensures any required cleanup occurs whilst avoiding the heavy
cost of finishing the current iteration at the old data values.
Finally, the simulation code is instrumented at its outermost loop
to check and see if a user interruption has occurred, and if so it
updates the relevant simulation variables.

For this work, updates may refer to changing the convergence
criteria parameters, resolution parameters (such as the number of
polar and azimuthal angles), maximal number of iterations, etc.
Depending on the nature of the modification, appropriate re-
initialization steps for the data have to be taken at the beginning of
the new iteration, to ensure the correct execution of the program.

Illustration: The whole computation is intended to be restarted by
manipulating the iteration vector i = (idx1, idx2, ... idxn), i. e. the
loop indices idxi of all loops by setting it for each loop index to be
some value out of its actual range, as shown in the following
pseudo code:

for (t ← T0 to TN) do // iterations over time
 reinitialize_data() // (re)initialize MAX1, MAX2
 // and other necessary data
 for (idx1 ← 1 to MAX1) // in the case of interrupt, MAX1
 //and MAX2 are both set to -1

 for (idx2 ← 1 to MAX2)
 process(data[idx1][idx2]) // can be interrupted at
 // any point

4. VISUALIZATION

To make an informed decision on the new parameter set, a user
must be able to understand the efficacy of the current solution.
Thus the simulation periodically outputs the current state to disk.
Visualization software converts that data into a representable
form, and the results are displayed for the user's evaluation.

Figure 2. Instrumented AGENT session: the user runs AGENT
on a remote server (terminal, top left); as iterations complete,

visualizations come available and appear in the locally-running
ImageVis3D client

A common mode of operation for simulations is to run the
simulation code on a remote computing resource, such as a
supercomputer. This presents a problem for visualization
software, which typically runs on the user’s desktop and therefore
cannot directly access the data. To solve this problem, we have
implemented a client/server solution: a simple daemon process
runs on the server and brokers access to the data to clients. Client
applications are presented with a list of available iterations of the
currently running simulation, which is dynamically updated as the
simulation progresses. Requesting a data set sends it over to the
client machine and automatically loads up the ImageVis3D
volume rendering tool [6] to visualize the data. Figure 2 shows
the use of ImageVis3D client to visualize the main UUTR core
parameters after AGENT multiple iterations have been
completed.

5. RESULTS

Since the AGENT code solves the neutron transport equation
using an iterative process, two criteria are applied to indicate
whether the calculation has converged after each iteration, or did
not. The first criterion is the relative difference for the
multiplication factor between the iterations, defined as

 kdiff =∣
knew−k

k
∣ (1)

INREC10-3

Proceedings of the 1st International Nuclear and Renewable Energy Conference (INREC10), Amman, Jordan, March 21-24, 2010

The second criterion is the maximum relative difference of zone
flux for all zones, which is defined as

 φdiff ,max=max (∣φ i , new−φi

φ i

∣ for all zone i)

 (2)

When kdiff < ԑ1 and ϕdiff,max < ԑ2, the calculation is considered
converged and will stop; otherwise, it will continue on to a
subsequent iteration until convergence or until reaching a
maximum (user defined) number of iterations. For the UUTR
core the selected values are: ԑ1 = 0.00001 and ԑ2 = 0.0001.

The AGENT code MOC parameters required to solve the
transport equation for heterogeneous reactor cores are:

a. Number of polar angles (for the UUTR simulations two
polar angles are chosen, with weights based on the
study of Leonard and McDaniel [8]. AGENT also
permits the use of more than two polar angles by using
the CACTUS quadrature approximation [9].

b. Number of azimuthal angles (nθ).
c. Ray separation (δA).
d. Number of boundary edges (nb).

The following examples illustrate an initial study focused on the
utility of the computational steering integration framework
applied to the deterministic code AGENT.

5.1 Monitoring the AGENT live simulation

In the case the user started the simulation with an incorrect initial
parameters (for example, nθ =4, nb = 22 and δA =1.2 cm), the
solution converges for kdiff, but giving an inaccurate value for k.
Meanwhile, the convergence towards ԑ2 follows a slow trend. If
we interrupt the simulation (we selected to interrupt at 249 th

iteration) by conserving the same mesh but refining the MOC
resolution parameters as δA=0.9 cm, the solution will improve
toward best estimate but in a shorter computation time.

Figure 3 illustrates the value of kdiff as a function of the number of
iterations. The peak at the iteration number of 250 is due to the
value of k monotonically increasing from its initial value at the
uninterrupted case.

Figure 3. kdiff as a function of number of iterations by refining the
MOC resolution parameters

Similarly, Figure 4 shows the values for ϕdiff,max (scalar neutron
flux). At the iteration number 600, the interrupted scheme reaches
the convergence criteria.

Figure 4. ϕdiff,max as a function of number of iterations by refining
the MOC resolution parameters

5.2 Interrupting AGENT live simulation achieving higher
accuracy and reducing total CPU time

In this example we show the effect of the interruption early on
during the AGENT simulation of the University of Utah TRIGA
research reactor. The AGENT iterative process starts with the low-
resolution parameters: nθ =8, δA=1.2 cm and nb=22 (in accordance
with the previous section these values by themselves do not meet
the convergence criteria but creates an initial solution estimate).
The interruption is introduced after 82.5 seconds, at the 41 st

iteration (when k > 1.0). Two independent cases based on MOC
resolution were analyzed after the interruption:

(a) Medium resolution with the new values of nθ =18,
δA=0.45 cm and nb =22.

(b) Higher resolution with the new values of nθ =32,
δA=0.1 cm and nb =22.

Table 1 shows the time and number of iterations it takes for
AGENT to solve the transport equation for the UUTR. It can be
observed that the low-to-medium interruption procedure
consumes ~ 84.5% of the CPU-time spent solving the transport
equation at medium-resolution level. This gain in time increases
with the low-to-high interruption procedure which consumes ~
78% of the CPU-time with respect to a high-resolution level

INREC10-4

Proceedings of the 1st International Nuclear and Renewable Energy Conference (INREC10), Amman, Jordan, March 21-24, 2010

computation. At this early stage of computation steering module
development, we observe the time savings in the order of 30%.

Table 1. AGENT code performance vs MOC resolution
parameters

Modeling the
UUTR

Total number of
iterations

CPU-time (s)

Medium-Resolution 157 1,000
Low-to-Medium

Resolution
159 843

High-Resolution 157 8,511
Low-to-High
Resolution

158 6,634

6. CONCLUSIONS

We have introduced a new feature into the AGENT code based
on the utility of dynamically-adjusted resolution parameters in a
simulation framework. Although in its early stage of the
development, this streaming simulation key provides a unique
code feature non-existent in neutron transport codes based on
deterministic methods. This new framework provides a number of
advanced ways in running AGENT code allowing user to monitor
the solution for the best estimate in a shorter computation time.
For example, by starting AGENT solution with a coarse
resolution and by interrupting the solution early on, users can
accelerate the overall time-to-convergence of the entire
simulation run. Also, at runtime, the user can correct initial mesh
and resolution parameters increasing the accuracy of the entire
simulation. Computation steering is therefore a remarkable new
feature of the AGENT code providing a new way of monitoring
live simulations toward best estimate optimization of reactor core
modeling; in addition, the computation steering is well utilized as
a tool for validation and verification of the code simulation. Our
next development includes live monitoring of the graphical
representations of the main solution parameters such as neutron
flux and current distributions in 2D and 3D solution modalities.

7. REFERENCES

[1] Jovana Knežević, Ralf-Peter Mundani, and Ernst Rank,
"Interactive Computing−Virtual Planning of Hip Joint
Surgeries with Real-Time Structure Simulations,"
International Journal of Modeling and Optimization, Vol 1
(4), 2011, p 308.

[2] Mathieu Hursin, Shanjie Xiao, Tatjana Jevremovic,
“Synergism of the method of characteristic, R-functions and
diffusion solution for accurate representation of 3D neutron
interactions in research reactors using the AGENT code
system.” Annals of Nuclear Energy, Vol. 33, 2006, p 1116.

[3] V. L. Rvachev, “Theory of R-functions and Some
Applications,” Naukova Dumka, 1982. (in Russian)

[4] Tatjana Jevremovic, Thomas Fogal, Dong-OK Choe, Haori
Yang, Jens Krüger, “The Role of Virtual Engineering and
EMERGING Visualization Tools in Nuclear Engineering
Education and Training at the University of Utah”, NEST
Conference, ENS, Prague, April, 2011

[5] Mulder, J. D., van Wijk, J. J., van Liere, R: A Survey of
Computational Steering Environments. Future Generation
Computer Systems, Vol. 15(1), 1999, p 119.

[6] Knezevic, J., Frisch, J., Mundani, R.-P. and Rank, E.
“Interactive computing framework for engineering
applications.” J. Comput. Sci., Vol. 7 (5), 2011, p 591.

[7] Thomas Fogal, Jens Krüger, “Tuvok, an Architecture for
Large Scale Volume Rendering.” Proceedings of the 15th
International Workshop on Vision, Modeling, and
Visualization, 2010.

[8] A. Leonard, C.T. McDaniel, “Optimal polar angles and
weights”. Trans. Am. Nucl. Soc., Vol. 73,1995, p. 171

[9] M. Halsall, “CACTUS, A Characteristics Solution to the
Neutron Transport Equation in Complicated Geometries,
AEEW-R1291, UKAEA, Winfrith, 1980.

INREC10-5

