
1 Advisory I/O <ppio.h>

1. The header <ppio.h> declares two types and functions for performing block I/O in
an efficient manner.

2. The type ppio access mode must be declared as an enumeration accepting at least
the values PPIO RDONLY, PPIO WRONLY, and PPIO RDWR. Numerical
equivalents are implementation-defined.

3. The ppio iovec t type is defined as a compound type, supporting at least the offset
and length fields. The offset field represents a byte offset from the beginning of a
mapping. The length field represents a byte length of raw data.

1.1 Treatment of error conditions

1. The behavior of all functions in <ppio.h> is specified for all values representable by its
input arguments, except when stated otherwise. Errors are communicated via return
values and/or the special thread-global variable errno.

2. No function is required to modify the value of errno except as otherwise specified
here. Client code must set the value of errno to 0 prior to library calls in order to
properly distinguish between current and prior errors.

1.2 Mappings

1. Input and output to a variety of data sources is abstracted into logical data mappings,
which are more generic in scope than traditional file access.

2. A mapping is an ordered sequence of bytes suitable for recording large data streams.
Mappings are inherently binary. Under the same implementation, data read from a
mapping shall be equivalent to data written to the mapping. Endianness conversions
may or may not be required for data transfer between distinct implementations, but
no other conversions shall be required to share data between implementations.

3. Allocation is inherently tied to a mapping. A mapping is always suitably aligned for
any basic data type.

4. Mapping objects are created by opening a file, which may involve creating a file.

5. The address of the void object (mapping) may be significant; a copy of the object
need not serve in place of the original.

6. Mapping objects should be assumed to be finite resources. Implementations must allow
at least 128 mappings to be open at any one time.

1



7. A mapping open (open range) must be paired with a corresponding close (close range);
it is an error for execution to terminate with outstanding mappings. For mappings cre-
ated in write mode, corresponding file contents are undefined when a mapping lacks a
close.

8. A window is a portion of a mapping which is visible to the client execution context.
Mappings are not directly visible to application code. Windows should be considered
extremely lightweight to create. An implementation must allow at least 16,384 windows
to be available at any one time.

9. When a mapping is finished or destroyed, all associated mappings are automatically
and implicitly invalidated. Client applications are not required to specifically terminate
windows.

10. Mappings are modified through windows, but the results of such modifications may
be delayed in time. Client code may not be sure that modifications to a mapping are
visible until the mapping has been terminated via close range.

11. An implementation may allow creating multiple, concurrent mappings to a single,
overlapping byte range. It is implementation-defined whether changes to the first
mapping are visible in the second mapping. It is implementation-defined whether
termination of one mapping invalidates windows from the second. Portable applications
should expect closing a single mapping to invalidate all overlapping mappings.

1.3 Files

1. The open range function
Synopsis

#include <ppio.h>

void* open_range(const char* filename, enum ppio_access_mode access,

off_t begin, off_t end);

Description

(a) A successful call to open range creates and returns a new mapping which is
associated with the given filename. Access is defined only for the byte offsets
described by begin and end and the mode described by access.

(b) Open a file with read mode (PPIO RDONLY for access) fails if the file exists
or cannot be read.

(c) The returned pointer may not be used in the LHS of a statement unless the file
was opened in write mode (PPIO WRONLY or PPIO RDWR for access).

2



Returns

(a) The open range function returns the beginning of the address range defined by
begin and end. If the operation fails, open range returns a null pointer.

2. The readonev function
Synopsis

#include <ppio.h>

void* readonev(const void* map, const struct ppio_iovec_t *iv,

size_t len);

Description

(a) The readonev function makes data available to the calling process. The map
argument defines which mapping will be utilized. The iv argument is an array
of len structures of type ppio iovec t. The array describes a list of blocks the
application will utilize in the near future. All offsets in the array are relative
to the byte range defined during creation of the mapping (i.e. the open range
call).

(b) It is an error to pass a 0-length array (len=0 ) to readonev. Implementations
must set termerrno to a nonzero hould this occur.

(c) The map argument must have been previously obtained via a call to open range.
An implementation must detect and set errno to a nonzero value in this situation.

(d) If the map argument has previously been given as arguments to finished or
close range functions, the result is undefined. An implementation is encouraged
to detect and report an error via errno, when such an implementation can be
performed efficiently.

(e) Every element of the iv array must be within the allowable bounds of the map-
ping, as defined during open range. An implementation may reject a readonev
call if any element of the iv array violates this property (i.e. it may check all
elements, not just the first). Implementations must set errno when rejecting an
I/O operation.

Returns

(a) A successful call to readonev returns a window, a pointer to the beginning of
the data specified via the first element of the iv array. Data access is defined
only for the next iv[0].length bytes; the result of data access outside this range
is undefined.

(b) An unsuccessful call to readonev always returns a null pointer.

3



3. The finished function
Synopsis

#include <ppio.h>

void finished(void* map);

Description

(a) The finished function indicates a process no longer needs a mapping. An imple-
mentation must return from the function before initiating I/O operations.

(b) Arguments to finished must have been acquired from a previous call to open range.
It is implementation-defined whether an implementation reports this via errno.

(c) Any windows created by readonev or readanyv are invalidated when the cor-
responding mapping is passed to finished. Access to a window after this point
is undefined; clients should expect abrupt program termination to be a likely
occurrence.

Returns

(a) Nothing. finished cannot visibly fail. Error conditions result in no-operation.

4. The close range function
Synopsis

#include <ppio.h>

int close_range(void* map);

Description

(a) The close range function destroys a mapping. The map argument must have
resulted from a previous call to open range.

(b) The function is heavyweight; any outstanding internal buffers must be flushed
before the successful completion of close range.

(c) Conversely, it is undefined whether internal buffers are visible to other processes
until after a call to close range.

Returns

(a) A successful call returns 0. An implementation may set errno to communicate
error values, but must return a non-zero value regardless of the errno value.

4



1.4 Interaction with File I/O

(a) Applications may access files via both traditional I/O services as well as via
mappings. Interactions between the two access modes which are not specifically
defined in this section are undefined1.

1Portable applications should restrict file access to one mode at a time. For example, use standard C
routines to read or write metadata from/to a file, and then close the file and create a mapping from it for
data access.

5


