
An Approach to Lowering the In Situ Visualization Barrier

Thomas Fogal
University of Duisburg-Essen, &

Scientific Computing & Imaging (SCI) Institute
tfogal@sci.utah.edu

Jens Krüger
University of Duisburg-Essen, &

Scientific Computing & Imaging (SCI) Institute
Building LE, Lotharstraße 65

Duisburg, Germany
jens.krueger@uni-due.de

ABSTRACT
Coupling visualization and analysis software with simulation
code is a resource-intensive task. As the usage of simulation-
based science grows, we asked ourselves: what would it take
to enable in situ visualization for every simulation in ex-
istence? This paper presents an alternative view focusing
on the approachability of in situ visualization. Utilizing a
number of techniques from the program analysis community
and taking advantage of commonalities in scientific software,
we find that we can vastly reduce the time investment re-
quired to achieve visualization-enabled simulations.

Keywords
in situ visualization, program verification

1. INTRODUCTION
This paper has been accepted, but is still under-

going edits. You are reading the author’s personal
copy. To obtain the official published version, please
use the DOI at the bottom left.

In situ visualization has proven to be useful for simulation-
based sciences. The majority of in situ visualization litera-
ture is focused on the performance story: the growing size
of outputs from simulations makes the commonplace post-
processing regime less attractive [5, 6, 20]. While these ef-
forts push us in the right direction, the impetus is flawed.
The post-processing approach is not inferior because it scales
poorly—though it does indeed scale poorly—it is intrinsi-
cally inferior. The ability to visualize and understand a
simulation’s data as it is generated is inherently useful. The
in situ approach has not been ignored until recent years be-
cause it was not useful. A more likely explanation is that
the difficulty was prohibitive.

Let us redefine ‘in situ visualization’ as ‘interactive sim-
ulation’. Interactive simulation is simulation that can be
controlled: sped up or slowed down, reinitialized with new
parameters, visualized, selectively refined, or even have its
underlying physics live-edited. This model of simulation is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISAV 2015 Austin, TX
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

clearly superior to our present batch-oriented model. The
cycle time from hypothesis to verification would be greatly
reduced.

Hall et al. note [10] the importance of “program-analysis
strategies to improve software construction, maintenance,
and evolution.” We introduce a methodology for “0 day”
coupling of simulation and visualization code. We remove
the need to link in any external code to the simulation. The
simulation software often does not even need to be recom-
piled. The bulk of our contribution is in the form of program
understanding: we demonstrate how to infer those data that
are interesting as well as the parameterization of those data
that enables visualization. This obviates the need for the
simulation author to conform to or even learn external APIs.

2. TRIVIAL EXAMPLE
Consider the task of modifying an existing simulation pro-

gram to interactively visualize its in-progress results. The
developer must identify the primary loop that advances the
state of the simulation. That loop modifies some memory
of interest that the developer typically has some external
knowledge about. The external knowledge generally revolves
around data type and format: ‘a point cloud of 64-bit float-
ing point values’, for example. This in turn helps the devel-
oper search for memory matching that organization. Once
the location where the simulation advances its state is dis-
covered, metadata is uncovered via a similar process, and a
call to the in situ visualization library is inserted.

The code fragment in Listing 1 is exemplary of this task.
The developer adding in situ visualization to a 2D simu-
lation would be pleased to find these loops: the code is ac-
cessing and updating a 2-dimensional structure, ‘data’. Next
tasks would be to identify the type and source of the mem-
ory in ‘data’. Should it align with the developer’s ideas of
the simulation’s data model, visualization will be inserted
after the loops and testing would be done.

The work presented here automates this exploratory search-
and-insert-visualization process.

3. PROGRAM MODEL AND SIMULATION
ANALYSIS

In this section we develop an abstract model of an exe-
cuting simulation program. We will then use this general
model to describe a collection of properties that code such
as that in Listing 1 follows. This set of properties codifies
the aforementioned developer process.

f o r (s i z e t j =0; j < dims [1] ; ++j) {
const s i z e t row = j ∗dims [0] ;
f o r (s i z e t i =0; i < dims [0] ; ++i) {

data [row+i] = (S(x−1,y−1) + S(x−0,y−1) + S(x+1,y−1) +
S(x−1,y−0) + S(x−0,y−0) + S(x+1,y−0) +
S(x−1,y+1) + S(x−0,y+1) + S(x+1,y+1)) / 9 .0

}
}

Listing 1: A code fragment representative of simulation software. A large array is smoothed using a set of
nested loops. S is presumed to be a macro that samples data while properly accounting for edge cases.

BaseType := Booleans ∪ Integers ∪ FP ∪ Strings

Type := BaseType ∪Array ∪ Pointer

Memory := Heap ∪ Static ∪ Local ∪Arguments ∪ Text

IP tr ∈ Text

T := Memory 7→ Type

BT := Memory 7→ BaseType

Fqn := [begin ∈ Text, end ∈ Text] | begin < end

Where := Text 7→ Fqn

Wr := (m ∈ Text) 7→ (n ∈ (Memory \ Text)) | m 6= n

class CFGNode address edges

CFG := {n | n = CFGNode}
BB := Text 7→ CFG

K := Text 7→ CFGNode

Hdr := CFGNode 7→ Boolean

Depth := CFGNode 7→ Integer

Listing 2: Definitions for an abstract machine and
analysis based on control flow properties.

We use the formalisms given in Listing 2. We consider
an abstract machine described by an instruction pointer
and the current state of memory. The instruction pointer
advances automatically, and memory operations consist of
reads and writes that map an address to a mutable mem-
ory location. Note that our definition denies self-modifying
code. Memory is assumed to be typed, with a small set of
available types. The T and BT mappings define mappings
from memory locations to type information.

The running process is assumed to consist of a series of
functions (Fqns), that are defined as the functions’ upper
and lower addresses. We make use of an inverse mapping
Where that allows us to identify a function from the cur-
rent instruction pointer. We build local control flow graphs
(CFGs) that describe the potential execution paths. These
graphs are represented as a set of nodes that contain an entry
address as well as a set of edges. We build these CFGs based
on the function address range. We define a mapping K that
allows us to identify a node in the control flow graph from
an instruction address. We define two final mappings from
a node in the control flow graph: 1) a predicate identifying
loop headers (Hdr), and 2) a mapping for the calculated loop
depth (Depth). In Listing 1, the basic blocks containing j <

dims[1] and i < dims[0] would be the loop headers. Loop
depth is the nesting level of the provided basic block. In

Listing 1, the assignment to row has a depth of 1, whereas
assignment to the element in data has a loop depth of 2.

Using this model of program execution, we consider the
problem of automatically identifying memory regions that
house data that a user would want to visualize. We model
these as a set of constraints on type classes. An instance of
the type class allows one to visualize data within a simula-
tion.

We currently support searching for N -dimensional (“ND”)
data arrays. This type is parameterized by a base address,
a length (in bytes), the number of dimensions ndims, an
array of dimensions dims, and finally the type of the data.

class ND base length ndims dims type

∧ ∃m ∈ Heap : base→ m (1)

∧ BT (base) = type (2)

∧ T (dims) ∈ Array ∪ Pointer (3)

∧ BT (dims) ∈ Integers (4)

∧ T (ndims) ∈ Integers (5)

∧ ndims > 0 (6)

∧ Wr(IP tr) ∈ [base, base + length] (7)

∧ ∃b ∈ BB(Where(IP tr)) :

∧ IP tr /∈ b

∧ Hdr(b)

∧ Depth(K(IP tr)) > Depth(b) (8)

We use the → notation to mean “points to”; the first con-
straint simply states that the data of interest live on the
heap. As simulation data is large, it rarely fits on the stack
or even in statically initialized memory. The second con-
straint conveys that the base type matches a parameter of
our model, such as FP (floating point). The third and fourth
constraints dictate that the dimensions are stored in a lin-
ear list of integers, and the fifth and sixth say that that the
length of that dimension list is a positive integer.

The 7th and 8th constraints are complex and intertwined.
First, the application must write into the relevant memory
block. Secondly, the basic block where the data are written
must be deeper than another basic block that contains a loop
header. That is to say that the data write occurs within a
loop.

The formulation gives rise to a pattern matching prob-
lem. The classes of interest are the patterns, and the space
to match within is the running process’ Memory. In List-
ing 1, the parameter bindings are: data for base, the size
of the allocation (not shown, but assumed to be dims[0] ×

dims[1] × sizeof(float)) for length, dims for dims, and
2 for ndims.

We do not claim our set of properties is perfect, though
they have proven remarkably effective for our uses thus far.
There are a number of promising approaches for discovering
new invariants automatically [14, 12, 17], as well as low-
hanging fruit (e.g. ‘the memory is written to a file’). In the
future, we wish to allow simulation authors to specify these
constraints at runtime. The penalty for a lax specification
would be too many visualization windows popping up; the
penalty for too strict a specification would be too few win-
dows popping up. The author would see either error almost
immediately.

4. IMPLEMENTATION
We seek to realize the aforementioned ‘search’ for a given

simulation process. At first glance static analysis is the best
tool for this task, however it runs into difficulties proving
some of the properties. The pernicious problem is aliasing
in C-based languages. A statement as trivial as ‘x = &y;’
creates two names for the same memory; thereafter, proving
that a write to ‘*x’ changes or does not change ‘y’ can be
anywhere from unambiguous to undecidable.

A lesser reason to shy away from static analysis is the
computational expense, of which the largest for us is build-
ing control flow graphs. Especially for languages that enjoy
methods for exponential code expansion (e.g. C++ tem-
plates), building CFGs for the entire program would be pro-
hibitively expensive. A more targeted mechanism is desir-
able.

For this and other reasons we utilize static analysis tech-
niques judiciously sourced by dynamic analysis. To receive
a notification when a particular memory location is writ-
ten, we use page protection to detect writes to it. Address
0xdeadbeef is address 0xdeadbeef, regardless of the vari-
able name used to access it, and thus there is no need to
solve the aliasing problem. Control flow graph construction
and analysis are still expensive, but we isolate their con-
struction to the functions of interest. Of particular note
and perhaps surprise to the scientific visualization commu-
nity is that binary analysis need not be lossy as compared
to source analysis [16].

Not all of the 8 aforementioned properties are worthy of
exposition; variable type information, for example, is straight-
forwardly sourced from the binary’s debug information. In
the next subsections, we focus on three of the larger issues:
efficiently tracking memory, control flow graph analysis, and
teasing out the dimensions of an array from the instruction
stream of the code accessing it.

4.1 Memory tracking
Any heap-allocated memory might potentially be of inter-

est to us. We utilize a ptrace(2)-based supervisor on the
target program, and model each allocation using the finite
state machine in Figure 11. Memory regions begin in the
‘null’ state and change state based on events observed in the
simulation process. This event tracking induces overhead,
but in the absence of events simulation execution proceeds
at native speeds.

1We note that ptrace was explicitly chosen for portability.
Previous work relied on LD_PRELOAD [8], and that created
issues porting to some supercomputers.

null malloc

mreturn allow

dealloc

denyheader

Figure 1: Finite state machine governing memory
regions of interest. Regions transition between the
states based on events observed in the observed sim-
ulation process. Basic information is obtained in the
malloc and mreturn states. The allow state initial-
izes parameters for visualization and enables unfet-
tered access to the memory. header states build up
the dimensions of the data. The deny state reen-
ables access detection.

Allocations cause us to begin tracking a memory region.
We implement this event notification using a breakpoint on
malloc calls. By examining the stack and return address, we
can create a map of the heap-allocated memory in the pro-
cess. Overhead for this operation is predominantly context
switching between the simulation process and our supervi-
sor.

The allow and deny states solve the access detection prob-
lem. As mentioned earlier, solving the aliasing problem
would be prohibitively expensive. Inserting checks at ev-
ery instruction that modifies memory is another alternative,
but Antoniu and Hatcher previously demonstrated this to
be too expensive for our needs [2]. Instead, we rewrite allo-
cations of interest, enabling write protection on the returned
memory. This causes the simulation to trap when altering
the data of interest, notifying our supervisor. To avoid the
performance issue of a notification on every access, we catch
only the first per function.

4.2 Control flow
The memory tracking described above enables our super-

visor to track most of the events it needs. To pinpoint the
remaining events we use analysis based on the local control
flow. When a region is accessed, we build the local control
flow graph for the currently-executing function. Our super-
visor computes common compiler analysis information and
uses the results to define per-node depth as well as perform
loop header identification, as shown in Figure 2.

Our loop header identification relies on the common def-
initions of reachability and dominance [18]. Our current
algorithm is known to be fallible in the presence of harmful
gotos, but we have found it is reliable in practice and cheap
to compute. We deem a basic block to be a loop header
when the basic block:

Figure 2: Simplified control flow graph for a small
function that smooths a 3D array (the 3D analog
of Listing 1). Analysis identifies loop headers and
the nesting level (‘Depth’) of each basic block. On
access, the loop tree is traversed to determine the
dimensionality of the array.

1. has exactly 2 in-edges,

2. has exactly 2 out-edges,

3. is reachable from one or both out-edges,

4. is dominated by exactly one in-edge, and

5. the dominating in-edge does not directly-dominate the
other in-edge

In the future, we hope to simplify our flow graphs into loop
trees [18]. This will resolve some of the possible ambiguities
and modestly improve memory consumption.

We currently use Dyninst’s ParseAPI [9] to compute the
initial graph, and then perform the analysis with custom
code. Other tools in this domain are DynamoRIO [3], Pin [11],
and Valgrind [13]. All of these tools are capable of sophisti-
cated binary transformations. However, our needs are mod-
est and Dyninst presently represents the majority of our
overhead. In the future we hope to replace this with cus-
tom graph construction code that can more effectively limit
computation to the region of interest.

4.3 Symbolic execution
As described in the class ND of Section 3, we assume a

relation between loop headers and the basic blocks that are
contained within those loops and accessing memory. The
loop variable must be involved: if it were not, the access
would be loop-invariant and hoisted out of the loop, either
explicitly by the programmer or implicitly by the compiler.
We assume a stronger relation, however: that the loop con-
ditions imply the dimensionality of the memory regions ac-
cessed therein.

Loop conditionals do not definitively describe the format
of the data. We have however found them to be remarkably
accurate, and the loop nesting to be practically infallible.
Still, we allow the user to override these discovered bounds,
at which point our tool degrades to only identifying where

visualization should be performed. More work is needed in
this area.

Our general approach is to differentiate the loop bound
from the induction variable in the loop conditional. Listing 3
gives the basic block for a real-world loop conditional (what
might be implemented for i < dims[0]):

MOV %rdx , [% r i p+0x20507]
MOV %rax , [%rpb−0x60]
CMP %rdx , %rax
JB −0x275

Listing 3: Instructions within a sample loop header.
The induction variable and the loop bound appear
as arguments to the CMP instruction.

We would like to know which of %rdx and %rax in List-
ing 3 is the loop bound. Unfortunately a myopic view of the
CMP instruction is insufficient for operand classification: the
source of the values is in the two MOV instructions. We use
Algorithm 1 to track the source of operands by interpret-
ing each instruction in the basic block. A heuristic that the
induction variable is a local variable is used to differentiate
the loop bound from the induction variable.

Algorithm 1 Tracking virtual register sets to identify the
source of data. The algorithm begins at a loop header basic
block and symbolically executes each instruction. The re-
sultant data structure can be used to query the source of an
instruction operand’s value.

1: register[*] := UNKNOWN
2: instruction := bbaddr . first instruction in loop header
3: repeat . foreach instruction in the basic block
4: if instruction.Opcode = MOV then
5: mov := (MovInstruction)instruction
6: if mov.source ∈ register then
7: register[mov.target] := register[mov.source]
8: else if mov.source ∈Memory then
9: register[mov.target] := mov.source +

10: memdiff[mov.source]
11: end if
12: end if
13: if instruction.Opcode = ADD then . track ∆addr
14: add := (AddInstruction)instruction
15: if add.dest ∈ register ∧ register[add.dest] 6= UN-

KNOWN then
16: register[add.dest] += add.source
17: end if
18: if add.dest ∈Memory then
19: memdiff[add.dest] += add.source
20: end if
21: end if
22: SUB, MUL, etc. cases omitted for brevity
23: instruction := next(instruction)
24: until instruction.Opcode = CMP

It is not strictly true that induction variables must be lo-
cal variables. However, we have only seen this assumption
violated in artifically-constructed test programs. Data de-
pendency information and def/use sets [18] should make this
more robust in the future.

Each iteration of this process gives a single loop bound.
By following the state machine in Figure 1 and setting break-
points up the chain of the loop tree, we derive the full set

Figure 3: Volume rendering of the temperature field
from a PsiPhi simulation [15]. Array shape informa-
tion and data were pulled from the running simula-
tion and given to an ad hoc simple volume renderer.
Instrumentation and rendering time is on the order
of milliseconds whereas a timestep can take seconds.
User interaction was limited to transfer function de-
sign.

of bounds. At the function boundary, we enter the ‘deny’
state and re-enable memory protection for that region.

4.4 Visualization
Our contribution is in the approach to program under-

standing, though rendering is required to demonstrate these
aspects. We have implemented a simple GLSL-based vol-
ume renderer and a python-based yt [19] backend thus far.
Figure 3 shows the former with data sourced from a com-
bustion simulation. In the future, we hope to incorporate
backends using established visualization tools such as Im-
ageVis3D, VisIt, and/or ParaView [7, 4, 1].

4.5 Performance
Performance is a cause for concern, as our instrumenta-

tion’s theoretical upper bound is on par with valgrind-level
instrumentation [13]. Fortunately, in practice we have found
the slowdown to be approximately 4x for real-world pro-
grams. There is much work still to be done in this regard:
the largest limitation is that we currently visualize every
timestep’s results, at tremendous overheads.

Figure 4 looks at multiple aspects of performance across
this set of programs. The red ‘Uninstrumented’ bar repre-
sents an upper bound on performance. ‘Trace’ inserts break-
points at ‘malloc’, ‘free’, and their return addresses, mea-
suring what it costs to start and stop the execution of the
simulation program. Simulations that utilize more regions
of dynamic memory will see higher overheads due to this
aspect. However, the graph does not capture the phased
nature of these processes: generally, our instrumentation is
heavy for allocation-heavy startup routines and lightweight
thereafter.

Figure 4’s ‘Relax’ and ‘allocs’ are artificial programs con-
structed to illustrate overheads. The main component of
‘Relax’ is Listing 1. ‘allocs’ does nothing but allocate mem-
ory, the worst case for our instrumentation. We note that

Figure 4: Performance of our evaluation programs
under different instrumentation scenarios. Note log-
arithmic scale. ‘Uninstrumented’ is the runtime of
the simulation without our interference. ‘Trace’ in-
terrupts for allocations; ‘Allocations’ reports allo-
cations as well, which requires reading more data
from the instrumented program. ‘Full’ does alloca-
tion tracking, access detection, analysis, and visual-
ization of the data.

real-world programs experience considerably lower overheads,
with the popular Linpack seeing a modest 15% slowdown.

5. CONCLUSIONS
We have elucidated a method and demonstrated a pro-

totype that eliminates the surface area between simulation
code and visualization tool. By recovering the loop struc-
ture of a target binary and carefully instrumenting memory
accesses, one can automatically insert visualization at ap-
propriate places in a running simulation.

5.1 Future work
The most glaring present omission is the lack of support

for data types beyond regular N -dimensional grids. An ob-
vious next target is related data types such as adaptive
mesh refinement data. Curvilinear grids may prove simple
as well, and meshes or point clouds would certainly be of
interest. An area of uncertainty is in data decomposition in
distributed memory simulations.

We do not seek to replicate the full functionality of tools
like VisIt or ParaView. We must therefore couple with one of
these tools; doing so would immediately increase the utility
of our prototype implementation.

We make a number of assumptions that are practically
but not strictly true. Each requires more investigation, and
aspects such as the specification used in our search require
more user control than we presently have made available.

While some of these issues involve significant engineer-
ing efforts, the work presented here demonstrates that there
is no need to modify simulation code to inject in situ vi-
sualization. We hope this encourages others to pursue 0-
modification approaches to in situ visualization.

6. ACKNOWLEDGMENTS
We thank Fabian Proch for help configuring a sample case

in PsiPhi, Matt Might for fruitful insight into program anal-
ysis topics, Chris Johnson & Chuck Hansen for early review
of the ideas here, and Ethan Burns for implementation re-
view.

This research was made possible in part by the Intel Vi-
sual Computing Institute; the NIH/NCRR Center for In-
tegrative Biomedical Computing, P41-RR12553-10; and by
Award Number R01EB007688 from the National Institute
of Biomedical Imaging and Bioengineering. The content is
the sole responsibility of the authors.

7. REFERENCES
[1] J. Ahrens, B. Geveci, and C. Law. ParaView: An

end-user tool for large data visualization. The
Visualization Handbook, 717:731, 2005.

[2] G. Antoniu and P. Hatcher. Remote Object Detection
in Cluster-Based Java. Research Report RR-4101,
2001.

[3] D. Bruening, Q. Zhao, and S. Amarasinghe.
Transparent dynamic instrumentation. In Proceedings
of the 8th ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments, VEE ’12, pages
133–144, New York, NY, USA, 2012. ACM.

[4] H. Childs, E. Brugger, B. Whitlock, J. S. Meredith,
S. Ahern, K. Bonnell, M. Miller, G. Weber,
C. Harrison, D. Pugmire, T. Fogal, C. Garth,
A. Sanderson, E. W. Bethel, M. Durant, D. Camp,
J. M. Favre, O. Ruebel, P. Navratil, M. Wheeler,
P. Selby, and F. Vivodtzev. VisIt: An End-User Tool
for Visualizing AND Analyzing Very Large Data,
pages 357–372. CRC Press, October 2012.

[5] M. Dorier, R. R. Sisneros, T. Peterka, G. Antoniu,
and D. B. Semeraro. Damaris/Viz: a nonintrusive,
adaptable and user-friendly in situ visualization
framework. In Large Data Analysis and Visualization,
October 2013.

[6] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer,
P. Marion, B. Geveci, M. Rasquin, and K. E. Jansen.
The ParaView Coprocessing library: A scalable,
general purpose In Situ visualization library. In Large
Data Analysis and Visualization, pages 89–96. IEEE,
2011.

[7] T. Fogal and J. Krüger. Tuvok, an Architecture for
Large Scale Volume Rendering. In Proceedings of the
15th International Workshop on Vision, Modeling,
and Visualization, November 2010.

[8] T. Fogal, F. Proch, A. Schiewe, O. Hasemann,
A. Kempf, and J. Krüger. Freeprocessing:
Transparent in situ visualization via data interception.
In Proceedings of the 14th Eurographics Conference on
Parallel Graphics and Visualization, EGPGV, Wales,
2014. Eurographics Association.

[9] B. P. M. Giridhar Ravipati, Andrew Bernat and J. K.
Hollingsworth. Towards the deconstruction of dyninst.
Technical report, UW Madison, June 2007.

[10] M. Hall, D. Padua, and K. Pingali. Compiler research:
The next 50 years. Commun. ACM, 52(2):60–67, Feb.
2009.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’05, pages 190–200, New York,
NY, USA, 2005. ACM.

[12] B. McCloskey, T. Reps, and M. Sagiv. Statically
inferring complex heap, array, and numeric invariants.
In Proceedings of the 17th International Conference on
Static Analysis, SAS’10, pages 71–99, Berlin,
Heidelberg, 2010. Springer-Verlag.

[13] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In
Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’07, pages 89–100, New York,
NY, USA, 2007. ACM.

[14] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest.
Using dynamic analysis to discover polynomial and
array invariants. In Proceedings of the 34th
International Conference on Software Engineering,
ICSE ’12, pages 683–693, Piscataway, NJ, USA, 2012.
IEEE Press.

[15] F. Proch and A. M. Kempf. Numerical analysis of the
cambridge stratified flame series using artificial
thickened flame les with tabulated premixed flame
chemistry. In Combustion and Flame, volume 161,
pages 2627–2646, 2014.

[16] T. Reps, J. Lim, A. Thakur, G. Balakrishnan, and
A. Lal. There’s plenty of room at the bottom:
Analyzing and verifying machine code. In Proceedings
of the 22Nd International Conference on Computer
Aided Verification, CAV’10, pages 41–56, Berlin,
Heidelberg, 2010. Springer-Verlag.

[17] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken.
Data-driven equivalence checking. In Proceedings of
the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages
#38; Applications, OOPSLA ’13, pages 391–406, New
York, NY, USA, 2013. ACM.

[18] L. Torczon and K. Cooper. Engineering A Compiler.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2nd edition, 2011.

[19] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W.
Skillman, T. Abel, and M. L. Norman. A multi-code
analysis toolkit for astrophysical simulation data.
Astrophysical Journal Supplement Series, 192, 2011.

[20] B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel
in situ coupling of simulation with a fully featured
visualization system. In Proceedings of the 11th
Eurographics conference on Parallel Graphics and
Visualization, pages 101–109. Eurographics
Association, 2011.

