
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Visual numerical steering in 3D AGENT code system for advanced
nuclear reactor modeling and design

Hermilo Hernandez a,⇑, Jovana Knezevic b, Thomas Fogal c, Todd Sherman a, Tatjana Jevremovic a

a The University of Utah, Nuclear Engineering Program, 50 S. Central Campus Dr., Salt Lake City, UT 84112, USA
b Technische Universität München, Computation in Engineering, Arcisstr. 21, 80290 Munich, Germany
c The University of Utah, Scientific Computing and Imaging Institute, 72 S. Central Campus Dr., Salt Lake City, UT 84112, USA

a r t i c l e i n f o

Article history:
Received 22 November 2012
Accepted 7 December 2012

Keywords:
Numerical steering
AGENT code
Deterministic neutron transport codes
Method of Characteristics
R-functions
Numerical visualizations

a b s t r a c t

The AGENT simulation system is used for detailed three-dimensional modeling of neutron transport and
corresponding properties of nuclear reactors of any design. Numerical solution to the neutron transport
equation in the AGENT system is based on the Method of Characteristics (MOCs) and the theory of R-func-
tions. The latter of which is used for accurately describing current and future heterogeneous lattices of
reactor core configurations. The AGENT code has been extensively verified to assure a high degree of
accuracy for predicting neutron three-dimensional point-wise flux spatial distributions, power peaking
factors, reaction rates, and eigenvalues. In this paper, a new AGENT code feature, a computational steer-
ing, is presented. This new feature provides a novel way for using deterministic codes for fast evaluation
of reactor core parameters, at no loss to accuracy. The computational steering framework as developed at
the Technische Universität München is smoothly integrated into the AGENT solver. This framework
allows for an arbitrary interruption of AGENT simulation, allowing the solver to restart with updated
parameters. One possible use of this is to accelerate the convergence of the final values resulting in sig-
nificantly reduced simulation times. Using this computational steering in the AGENT system, coarse MOC
resolution parameters can initially be selected and later update them – while the simulation is actively
running – into fine resolution parameters. The utility of the steering framework is demonstrated using
the geometry of a research reactor at the University of Utah: this new approach provides a savings in
CPU time on the order of 50%.

Published by Elsevier Ltd.

1. Introduction

1.1. The AGENT (Arbitrary Geometry Neutron Transport) methodology

The AGENT (Arbitrary Geometry Neutron Transport) methodol-
ogy (Fogal et al., 2010; Hursin et al., 2006; Hursin and Jevremovic,
2005; Jevremovic et al., 2010, 2009, 2006, 2002; Xiao and Jevrem-
ovic, 2010a, 2010b; Xue and Jevremovic, 2008; Yang and Jevremo-
vic, 2010a,b) provides a solution to the Boltzmann neutron
transport equation using the Method Of Characteristics (MOCs)
that is merged with the theory of R-functions (Rvachev, 1967;
Shapiro, 1991) in capturing all details of geometrical and material
heterogeneities of present and future reactor designs. The R-func-
tions modeler as used in AGENT provides a representation of com-
plex domains through a combination of simple primitive objects.
Using R-functions, a Boolean combination of primitive objects (de-
scribed by their corresponding simple domain functions) are com-
bined into a single analytical equation representing that complex

domain. This allows for great flexibility in hierarchical organization
of any type of reactor geometry. The modeler is equally general as a
Monte Carlo combinatorial geometry based approach, but is
incomparably simpler, more intuitive and most importantly faster.
In addition, the AGENT modeler permits automatic submesh gen-
eration, i.e. small-sized flat-flux zones as required for refined
MOC accuracy. Visualization of simulation results from AGENT
runs is available for a wide range of platforms including mobile de-
vices (Jevremovic et al., 2011).

The MOC requires as flexible as possible selection of a number
of azimuthal and polar directions along with a refined netting of
neutron tracks (either specified by track number or by separation
in between them). An additional parameter of great importance
for achieving acceptable MOC accuracy is the possibility to ade-
quately submesh the geometry. The theory of R-functions in the
AGENT methodology allows for a flexible yet refined selection of
a number of azimuthal and polar directions of neutron motion
along straight rays (tracks) defined by the distance among them,
and a geometry-independent method of creating submeshes of
the entire reactor core. A user-defined number of rays is generated
for each azimuthal and polar direction, and intersections of

0306-4549/$ - see front matter Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.anucene.2012.12.008

⇑ Corresponding author.
E-mail address: hermilohdez@gmail.com (H. Hernandez).

Annals of Nuclear Energy 55 (2013) 248–257

Contents lists available at SciVerse ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene



Author's personal copy

neutron tracks with the reactor geometry are found for each sur-
face within the geometrical domain. The three-dimensional (3D)
AGENT methodology is realized via a combination of the two-
dimensional (2D) radial MOC solution along the reactor assembly
plane and the one-dimensional (1D) MOC solution, taking special
care to conserve the axial neutron leakage. The whole reactor core
3D solution methodology is based on the so-called ‘‘flux tunneling’’
in between the assembly faces through conserved angular flux val-
ues per assembly face segments (edges) along the angular direc-
tions. All these main aspects of the AGENT methodology are
briefly illustrated in Fig. 1.

1.2. Improving accuracy and speed of AGENT with steering function

In general, the MOC methodology requires a detailed survey of
the most optimal combination of resolution parameters to achieve
the highest accuracy yet with as reasonably as possible short CPU
time and computational memory occupation. The AGENT method-
ology allows for a two step optimization for finding the most accu-
rate MOC solution: in step 1, a coarse MOC resolution is selected
(small number of azimuthal and polar angles and wide ray separa-
tion but with a fine submesh). This quickly provides initial esti-
mates for the scalar and angular flux values as input to step 2,
during which the fine resolution parameters are inputed. These
two steps may not always produce the best result, and the survey
may continue before the best estimate is found. In collaboration
with Technische Universität München, we have adopted a compu-
tational steering framework into the AGENT code system allowing
for the fast search of the best estimate. In general, computational
steering is a powerful concept that allows scientists to interactively
control a computational process during its execution in order to
gain insight on how certain parameters affect the final
computational result, the algorithmic behavior, as well as identify

avenues for further optimizations and improvements of numerical
convergence toward an accurate solution.

2. Simulation steering framework in the AGENT code system

Computational steering allows scientists to interactively control
a computational process during its execution. In many cases, this is
done to guide the simulation towards the solution to an ‘interest-
ing’ problem, as opposed to one which is expected or lacks certain
desired features. In this work, we utilize a computational steering
solution to speed-up the simulation by limiting resolution until a
particular simulation state is reached (Mulder et al., 1999). The
steering function (‘‘component’’) is introduced into the AGENT
code system with a user-interface that provides an instant (interac-
tive) communication platform for selecting desired changes to the
simulation program at runtime. There are two primary state-of-
the-art approaches for doing this: checkpointing and process
interruption.

2.1. Checkpoints implementation

A set of checkpoints are inserted at fixed places in the code, and
are used to test if an input has changed on the user’s side. If some-
thing has changed, the instrumentation reconfigures internal data
structures as appropriated, and backs up the simulation to be con-
sistent with the modified inputs. Such an approach has several dis-
advantages. Firstly, it involves major code modifications, making
the implementation of such an approach tedious for the end-user
(researcher) writing the simulation code. As a consequence, de-
spite the advantages that computational steering may offer,
researchers become reluctant to apply the concept in their applica-
tions. The second disadvantage is the difficulty in making the right
decision as to where to insert these checkpoints, since the answer

Fig. 1. The AGENT methodology for hexagonal reactor core geometry.

H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257 249



Author's personal copy

to that question is entirely simulation dependent, and, moreover,
problem-size dependent. In order to guarantee the immediate re-
sponse of the computational model to user modifications, one
would have to estimate this in advance, based on the experience
gained by previous program runs. Another disadvantage is the
inevitable trade-off between frequent polling (at considerable
computational cost) and responsiveness to new user input. In addi-
tion to the insertion of checkpoints, a common approach is in
assigning one thread per simulation process exclusively to check
for updates from the user, but this presents logistical issues in
coordinating access to shared data, as illustrated in Fig. 2.

2.2. Interruption implementation

We chose to use an elegant and straightforward integration
framework, previously proven to give excellent results in other
engineering applications (Fogal and Krüger, 2010; Knežević et al.,
2011). This framework provides instant responses for user interac-
tion with only minimal code modifications. The main idea of the
framework is to exploit user-generated interrupts, i.e. signals, to
interfere with the regular operation of the simulation. Signals
may be raised by an operating system to notify a program about
an error which occurred (e.g., floating point exception), or by a user
by a keyboard event (in Unix-based systems CTRL-C by default for
program termination e.g. but there are also other keyboard-gener-
ated signals possible). The default action for such a signal is to ter-
minate the process; however this computational steering
framework utilizes a signal handler to override that operation
and provide the user with the opportunity to modify the state of
the running simulation.

The user may send the signal at any point during program exe-
cution. However, this means that the program could be executing
any arbitrary piece of code at that point in time; if the simulation
was interrupted after acquiring a resource, we do not want to alter
the program state such that the resource is never released. To
workaround this problem, instead of directly modifying important
state, the signal handler simply rewrites loop indices so that inner
loops are considered ‘done’. When the signal handler returns, the
control is given back to the function which was executed once
the signal has occurred, and it may continue from exactly that (pre-
viously saved) state. This ensures any required cleanup occurs
whilst avoiding the heavy cost of finishing the current iteration
at the old data values. Finally, the simulation code is instrumented
at its outermost loop to check and see if a user interruption has oc-
curred, and if so it updates the relevant simulation variables.

In AGENT, these updates may refer to changing the convergence
criteria parameters, the MOC resolution parameters (such as a
number of polar and azimuthal angles and ray separation), maxi-
mum number of iterations, etc. Depending on the nature of the
modification, appropriate re-initialization steps for the data have
to be taken at the beginning of the new iteration, to ensure the cor-
rect execution of the AGENT simulation.

2.3. Illustration

The whole computation is intended to be restarted by manipu-
lating the iteration vector i = (idx1, idx2, . . ., idxn), (i.e. the loop indi-
ces idxi of all loops) by setting each loop index to be some value out
of its actual range, as shown in the following pseudo code:

for (t T0 to TN) do //iterations over time
reinitialize_data() //(re)initialize MAX1,MAX2 and other
necessary data
for (idx1 1 to MAX1) //in the case of interrupt, MAX1 and
MAX2 are both set to !1

for (idx2 1 to MAX2)
process(data[idx1][idx2]) //can be interrupted at any

point

2.4. Visualizing the effect of numerical steering framework in AGENT

To make an informed decision on the new AGENT parameter set, a
user must be able to understand the efficacy of the in-progress solu-
tion. Thus the simulation periodically outputs the current state to
disk. Visualization software converts that data into a representable
form, and the results are displayed for the user’s evaluation.

A common mode of operation for simulations is to run the sim-
ulation code on a remote computing resource, such as a supercom-
puter. This presents a problem for visualization software, which
typically runs on the user’s desktop and therefore cannot directly
access the data. To solve this problem, we have implemented a cli-
ent/server solution: a simple daemon process runs on the server
and brokers access to the data to clients. Client applications are
presented with a list of available iterations of the currently running
simulation, which is dynamically updated as the simulation pro-
gresses. Requesting a data set sends it over to the client machine
and automatically loads up the ImageVis3D volume rendering tool
to visualize the data (Knezevic et al., 2011). Fig. 3 shows the use of
ImageVis3D client to visualize the main AGENT simulation param-
eters after multiple iterations have been completed.

3. Effect of steering framework in enhancing AGENT’s speed and
accuracy

3.1. Parameters of interest to test the effect of steering framework

In addition to all MOC parameters as required to be selected in
producing the best estimate result, the AGENT code utilizes (as
many other similar methodologies in solving neutron transport
equation) in using an iterative process; two criteria are applied
to validate the convergence of iterative solution: the first criterion
is related to relative difference of the multiplication factors be-
tween any two iterations, defined as:

kdiff ¼
knew ! k

k

!!!!

!!!! ð1Þ

The second criterion is related to the maximum relative differ-
ence of zone flux for all zones (a zone being defined as the smallest-
sized flat-flux area in the core geometry), defined as:

/diff ;max ¼ max
/i;new ! /i

/i

!!!!

!!!! for all zone i
" #

ð2Þ

When kdiff < e1 and /diff,max < e2, the calculation is considered con-
verged; otherwise, the iterations will proceed until convergence is
complete, or until reaching a maximum (user defined) number of
iterations.Fig. 2. Typical user-simulation interactive steps with checkpoints steering approach.

250 H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257



Author's personal copy

Therefore, the effect of the numerical steering functionality
introduced into AGENT is then analyzed during the full core simu-
lation of the University of Utah TRIGA research reactor (UUTR). The
UUTR has a hexagonal core structure with different types of fuel
elements including the reflector elements and moderators,
and as such represents a very heterogeneous system. By setting
h1 = 0.00001 and h2 = 0.0001 for this work there a number of other
AGENT resolution parameters available as follows (refer to Fig. 1):

a. Number of polar angles (held fixed for this work).
b. Number of azimuthal angles (nh).
c. Ray separation (dA).
d. Number of boundary edges per reactor core face (nb).

3.2. AGENT search for best estimate

In order to obtain the best estimate for a MOC-based solution
to neutron transport in reactor geometries, an optimization be-
tween resolution parameters (as described previously) is re-
quired. The process is often time consuming. As an example, we
describe the best estimate for a 3D AGENT model of the UUTR
core as it was determined in the past using the standard optimi-
zation process (Yang et al., 2010); the parameters are: nh = 36,
nb = 44 and dA = 0.1 cm. The simulation reached the convergence
criteria at the 155th iteration with total CPU time of approxi-
mately 5 h. The initial flux values were set to zero at the begin-
ning of the simulation. For this configuration, seven energy
groups were used and the reactor core was divided into 20 axial
planes, with 9414 zones per each plane, thus totaling over
180,000 zones. Since the scalar flux is calculated for each zone,

the convergence for scalar neutron flux is slow. Fig. 4 shows
the scalar neutron flux values normalized to unit absorption;
the highest fast neutron flux values are found at the center of
the core; the water and heavy water rods located at the lower
right corner and upper left corner of the core elliptically shape
the neutron flux at the intermediate energy levels; thermal neu-
tron flux peaks in water regions.

3.3. Monitoring the AGENT live simulation

In this section we show now how the AGENT live simulation of
the UUTR as an example, may be monitored; if a user starts the
AGENT simulation with a coarse resolution (say, nh = 8, nb = 44
and dA = 1.2 cm) in order to use the coarse solution as input for
the refined model, the user needs to verify that under this set of
parameters the simulation converges. The solution should con-
verge faster for k but the convergence for neutron flux toward h2

is slower. After the execution, the convergence can be monitored,
and as soon as the k value is greater than 1.0 the calculation can
be interrupted. For the aforementioned coarse example, the k value
became greater than 1.0 after 80 s of AGENT simulation at the 56th
iteration step. After interruption, the MOC resolution parameters
are refined (changing dA from 1.2 cm to 0.9 cm for example) allow-
ing the solution to converge quickly. Fig. 5 illustrates the value of
kdiff (between the two iteration values) for interrupted and un-
interrupted simulation cases, as a function of the number of itera-
tions. Since interruption took place at the iteration step 56, we ob-
serve a peak at the iteration number 57 in kdiff. On the other side,
Fig. 6 shows the values for /diff,max (max relative difference of zone
flux). For the interrupted scheme, the solution converges after 167

Fig. 3. Instrumented steering framework in AGENT – the user runs AGENT on a remote server (terminal, top left); as iterations complete, visualizations become available
appearing in locally-running ImageVis3D instance.

H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257 251



Author's personal copy

Fig. 4. AGENT radial neutron flux distribution of the UUTR per each of seven energy groups (the first two energy groups are in the fast region, the following two energy groups
are in the resonance region and the last three energy groups are thermal).

Fig. 5. AGENT kdiff for the UUTR as a function of number of iterations when refining the MOC resolution parameters with steering framework.

Fig. 6. AGENT /diff,max for the UUTR as a function of number of iterations when refining the MOC resolution parameters with steering framework.

Table 1
AGENT code performance versus MOC resolution parameters for the UUTR.

UUTR core Total number of
iterations

CPU time (s) (gain in CPU
time (%))

keff

Medium-level resolution (no interruption; scalar and angular flux guess according to default values) 157 1000 1.02328
Low ? medium level resolution (simulation started with low resolution, interrupted at iteration step 56 and

continued with medium level resolution)
159 843 (16) 1.02411

High-level resolution (no interruption; scalar and angular flux guess according to default values) 157 8511 1.02265
Low ? high level resolution (simulation started with low resolution, interrupted at iteration step 56 and

continued with high level resolution)
158 6634 (22) 1.02331

252 H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257



Author's personal copy

iteration steps, while in the case of non-interrupted simulation the
convergence is very slow, reaching the criteria after 2214
iterations.

3.4. Interrupting AGENT live simulation while achieving higher
accuracy and reducing the total CPU time

In this example we show the effect of the interruption early on
during the AGENT simulation for the UUTR. The AGENT iterative
process starts with low-level resolution: nh = 8, dA = 0.9 cm and
nb = 44 (in accordance to previously illustrated example). The
interruption is introduced at an early stage of the simulation, i.e.
as soon as the keff value reaches 1.0. Two independent cases are
then analyzed to compare the gain in CPU time with interruption.
Table 1 shows the total number of iterations and CPU-time for fully
converged AGENT simulations of the UUTR with respect to two dif-
ferent simulation schemes (medium-level resolution and high-level
resolution) in comparison to simulations that started with a low le-

vel resolution scheme and then were interrupted after the 56th
iteration to continue the iterative process until convergence with
higher resolution parameters (low ? medium level resolution and
low ? high level resolution):

% Medium-level resolution (nh = 20, dA = 0.45 cm and nb = 44).
% Low ? medium level [(nh = 8, dA = 0.9 cm and nb = 44)
? (nh = 20, dA = 0.45 cm and nb = 44)].
% High-level resolution (nh = 32, dA = 0.1 cm and nb = 44).
% Low ? high level resolution [(nh = 8, dA = 0.9 cm and

nb = 44) ? (nh = 32, dA = 0.1 cm and nb = 44)].

It can be observed from Table 1 that the low ? medium resolu-
tion interruption scheme consumes approximately 85% of the CPU
time with respect to the medium-level resolution simulation with-
out interruption. For the low ? high case, better results are seen,
improving simulation time by 22% as compared to the running at
high-level resolution without interruptions.

Fig. 7. AGENT best estimate as a function of ray separation survey for the UUTR full core model with and without steering framework (interruption).

Table 2
AGENT survey for the ray separation toward best estimate for the UUTR.

dA (cm) Non-interrupted scheme (8 azimuthal & 2 polar angles) Interrupted scheme (Fig. 7)
CPU time for the best estimate = 11,407 s CPU time for the best estimate = 8682 s

keff CPU time (s) Sum CPU time (s) Iterations keff keff error (%) CPU time (s) Sum CPU time (s) CPU time gain (%) Iterations

0.90 1.02362 598 – 159 – – – – – –
0.70 1.02370 714 1312 158 1.02372 !0.002 677 1275 5.2 157
0.60 1.02358 793 2105 157 1.02361 !0.003 732 2007 7.7 156
0.40 1.02385 1149 3254 158 1.02387 !0.002 933 2940 18.8 155
0.25 1.02403 1788 5042 157 1.02405 !0.002 1339 4279 25.1 154
0.20 1.02395 2082 7124 157 1.02398 !0.003 1512 5791 27.4 154
0.10 1.02399 4283 11,407 157 1.02401 !0.002 2891 8682 27.4 154
0.05 1.02402 8441 19,848 157 1.02404 !0.002 5484 14,166 32.5 154

H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257 253



Author's personal copy

Fig. 8. AGENT keff versus ray separation for the ray separation survey with and without interruption.

Fig. 9. AGENT CPU time versus ray separation for the ray separation survey with and without interruption.

Fig. 10. AGENT fission rates absolute percent error for the optimum ray separation (comparison between interrupted and non-interrupted scheme).

Table 3
AGENT survey for the most optimal number of azimuthal angles toward best estimate.

nh Non-interrupted scheme (0.1 cm ray separation & 2 polar angles) Interrupted scheme
CPU time for the best estimate = 35,815 s CPU time for the best estimate = 24,442 s

keff CPU time (s) Sum CPU time (s) Iterations keff keff error (%) CPU time (s) Sum CPU time (s) CPU time gain (%) Iterations

8 1.02340 4443 – 157 – – – – – –
16 1.02471 5584 10,027 156 1.02471 0.000 5178 9621 7.27 153
24 1.02405 7821 17,848 156 1.02410 !0.005 6507 16,128 16.80 153
36 1.02344 17,967 35,815 155 1.02348 !0.004 8314 24,442 53.73 153
40 1.02366 21,110 56,925 155 1.02373 !0.007 9715 34,157 53.98 152

254 H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257



Author's personal copy

4. Optimization of the AGENT resolution parameters in the
UUTR model using numerical steering framework

The main benefit of the steering framework is to interrupt com-
plex simulations, starting with coarse resolution parameters and,
at the interruption point, redefining them; the coarse MOC resolu-
tion parameters generate better initial flux values, thus reducing
the number of iterations and total CPU run times, approaching
the best estimate faster. In this section we show how the effect
of the steering framework is beneficial in shortening AGENT CPU
time while obtaining accurate best estimates. Using the UUTR core
model, the coarse resolution parameters are used to generate im-
proved initial flux values, and then the simulation is interrupted
and modified to utilize fine ray separation and a larger number
of azimuthal angels. The number of polar angles is kept the same;
using the Leonard and McDaniel scheme (Leonard and McDaniel,
1995), as well as the number of edges (set at 44) (see Fig. 1). The
steering functionality was turned ON at the early stage of the
simulation, i.e. as soon as keff value equals 1.0. The following is a

Fig. 11. AGENT keff versus number of azimuthal angles with and without interruption.

Fig. 12. AGENT CPU time versus number of azimuthal angles with and without interruption.

Fig. 13. AGENT fission rates absolute percent error for the optimum number of
azimuthal angles (comparison between interrupted and non-interrupted scheme).

Table 4
CPU time comparison for the AGENT modeling of the UUTR: Effect of numerical steering framework in comparison to non-interrupted scheme.

Comparison Non-interrupted scheme (s) Interrupted scheme (s) CPU time saving (%)

AGENT survey to find optimal ray separation (Table 2) 11,407 8682 24
AGENT simulation for optimal ray separation of 0.1 cm (Table 2) 4283 2891 33
AGENT survey to find optimal number of azimuthal angles (Table 3) 35,815 24,442 32
AGENT simulation for optimal number of azimuthal angles of 36 (Table 3) 17,967 8313 54

H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257 255



Author's personal copy

summary of the gain in optimization for the best estimate based on
the steering function in the AGENT code.

4.1. Optimum ray separation

As shown in Fig. 7, we consider two schemes: non-interrupted
AGENT simulation of the UUTR full core model with eight fixed azi-
muthal angles (nh = 8) and changeable ray separations (dA) as fol-
lows: 0.9, 0.7, 0.6, 0.4, 0.25, 0.20, 0.10, and 0.05 cm; the
interrupted scheme starts with dA = 0.9 cm and changes it at the
56th iteration (as soon as k approaches 1.0).

The keff CPU time and number of iterations after convergence
are presented in Table 2. The keff error (in %) represents the relative
error between the keff obtained with the interrupted scheme with
respect to non-interrupted scheme. The absolute relative error is
considerably small as expected. These small differences in keff val-
ues between the interrupted and non-interrupted schemes are
shown in Fig. 8. This figure also shows that the variation of keff

as a function of ray separation decreases with ray separation
becoming smaller; thus, the optimum ray separation is 0.1 cm.
The CPU time as a function of ray resolution is shown in Fig. 9;
the total gain for the optimal case is 27.4% (Table 2). The inter-
rupted and non-interrupted simulation for this optimal case was
also compared in terms of fission rates variations. Fig. 10 shows
the absolute percentage error in fission rate variations between
the interrupted simulation and non-interrupted simulation for
the optimum 0.1 cm ray separation. The highest absolute error is
as low as 0.06%.

4.2. Optimum number of azimuthal angles

After determining that the most optimum ray separation is
dA = 0.1 cm, the nh is changed to 8, 16, 24, 36, and 40 in the non-
interrupted simulations. For the interrupted procedure, all the sim-
ulations started with nh = 8 and the interruption was introduced by
changing nh to a higher number. The keff, CPU time and number of
iterations are summarized in Table 3. For these AGENT simulations
the maximum absolute relative error in keff was about 0.007% com-
pared to the values obtained with non-interrupted scheme. The
CPU time between the interrupted and non-interrupted schemes
is considerably reduced. The optimum solution is obtained for
the number of azimuthal angles of 36; the interrupted case con-
sumes only 46% of the total CPU time consumed by the non-inter-
rupted scheme simulation; thus the numerical steering provides a
significant CPU time saving.

Fig. 11 shows keff trend as a function of the number of azimuthal
angles. The discrepancy between the interrupted scheme keff value
with respect to the non-interrupted scheme increases as with the
number of azimuthal angles. However, for these UUTR simulations
these keff differences are relatively small as expected. Form Fig. 12
it can be observed that the use of numerical steering provides a
considerable savings of CPU time toward higher number of azi-
muthal angles (&54% for 40 azimuthal angles).

Fig. 13 shows the absolute percentage error of average fission
rates obtained at the end of the interrupted simulation with re-
spect to the non-interrupted calculation for the optimum number
of azimuthal angles (i.e. 36). The calculations for the interrupted
simulation show excellent agreement with the non-interrupted
scheme, with absolute error peaking at only 0.04%.

Table 4 shows a summary of CPU times in modeling the full 3D
UUTR core without any simplifications or assumptions, in conclud-
ing the benefit of steering function. It can be seen that the CPU time
savings are indeed significant, ranging from 24% to up to 54%.

5. Conclusion

We have introduced a new feature into AGENT, a deterministic
neutron transport methodology, based on the concept of computa-
tional steering. The steering showed to be extremely well suited for
the Method of Characteristics methodologies where survey time
increases with the complexity of simulation geometry. This func-
tion is non-existent in the neutron transport codes based on deter-
ministic methods. Our analysis proved that this new feature is
highly desirable due to its ability to provide significant CPU time
savings while preserving the accuracy. In the case of our AGENT
code we showed the importance and advantage of providing the
new functionality to the user in being able to monitor the code
execution and alter the solution parameters. For example, by start-
ing an AGENT simulation with a coarse resolution and then inter-
rupting it early on, the user can drastically accelerate the overall
time-to-convergence simulation run. Also, at runtime, the user
can correct initial resolution parameters thereby increasing the
accuracy of the simulation. The steering interruption function
was shown to be an effective tool in increasing of up to 54% the
overall efficiency of the AGENT simulations.

References

Fogal, T., Krüger, J., 2010. Tukov: an architecture for large scale volume rendering.
In: Proceedings of the 15th International Workshop on Vision, Modeling and
Visualization, Siegen, Germany, November 15–17, 2010.

Fogal, T., Xiao, S., Yang, X., Krueger, J., Jevremovic, T., 2010. Visualization as a bridge
between chemical and nuclear engineering simulations. In: Proceedings of the
AIChE Annual Meeting, Salt Lake City, UT, USA, November 7–12, 2010, p. 231.

Hursin, M., Jevremovic, T., 2005. AGENT code – neutron transport benchmark
example and extension to 3D lattice geometry. Nuclear Technology & Radiation
Protection 20 (2), 10–16.

Hursin, M., Xiao, S., Jevremovic, T., 2006. Synergism of the method of characteristics,
R-functions and diffusion solution for accurate representation of 3D neutron
interactions in research reactors using the AGENT code system. Annals of
Nuclear Energy 33, 1116–1133.

Jevremovic, T., Itoh, T., Inaba, Y., 2002. ANEMONA: multiassembly neutron transport
modeling. Annals of Nuclear Energy 29 (17), 2105–2125.

Jevremovic, T., Hursin, M., Satvat, N., Hopkins, J., Shanjie, X., Godfree, G., 2006.
Performance, accuracy and efficiency evaluation of a three-dimensional whole-
core neutron transport code AGENT. In: Proceedings of ICONE14 International
Conference on Nuclear Engineering, Miami, Florida, USA, July 17–20, 2006, pp.
435–445.

Jevremovic, T., Xiao, S., Satvat, N., Gert, G., 2009. Neutron transport benchmark
examples with web-based AGENT. Nuclear Engineering and Design 238, 1975–
1986.

Jevremovic, T., Yang, X., Xiao, S., Satvat, N., 2010. Modeling reactors with AGENT:
verification, validation, efficiency, analysis and 3D-visuals on iPod. In:
Proceedings of the INREC10 Conference, Amman, Jordan, March 21–24, 2010.

Jevremovic, T., Fogal, T., Choe, D., Yang, H., Krüger, J., 2011. The role of virtual
engineering and EMERGING visualization tools in nuclear engineering
education and training at the University of Utah. In: Proceedings of the
NESTet Conference, Prague, Czech Republic, May 15–18, 2011.

Knezevic, J., Frisch, J., Mundani, R.P., Rank, E., 2011. Interactive computing
framework for engineering applications. Journal of Computer Sciences 7 (5),
591–599.

Knežević, J., Mundani, R., Rank, E., 2011. Interactive computing-virtual planning of
hip joint surgeries with real-time structure simulations. International Journal of
Modeling and Optimization 1 (4), 308–313.

Leonard, A., McDaniel, C.T., 1995. Optimal polar angles and weights. Transactions of
the American Nuclear Society 73, 171.

Mulder, J.D., van Wijk, J.J., van Liere, R., 1999. A survey of computational steering
environments. Future Generation Computer Systems 15 (1), 119–129.

Rvachev, V.L., 1967. Geometric Applications of Logic Algrebra. Naukova Dumka,
Kiev, Ukraine.

Shapiro, V., 1991. Theory of R-Functions and Applications: A Primer. Cornel
University, Ithaca, NY.

Xiao, S., Jevremovic, T., 2010a. High performance reconfigurable hardware
acceleration applied to neutron transport computation based on the AGENT
methodology. In: Proceedings of the ICONE18 Conference, vol. 2, Xi’an, China,
May 17–21, 2010, pp. 205–219.

Xiao, S., Jevremovic, T., 2010b. FPGA hardware acceleration for high performance
neutron transport computation based on AGENT methodology. In: Proceedings
of the PHYSOR Conference, vol. 1, Pittsburg, PA, USA, May 9–14, 2010, pp. 492–
505.

Xue, Y., Jevremovic, T., 2008. Full hexagonal core modeling with the AGENT code. In:
Proceedings of the ANS Annual Meeting, Anaheim, CA, USA, June 8–12, 2008.

256 H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257



Author's personal copy

Yang, X., Jevremovic, T., 2010a. Solving the time-dependent transport equation
using time-dependent method of characteristics and Rosenbrock method. In:
Proceedings of the ICONE18 Conference, vol. 2, Xi’an, China, May 17–21, 2010,
pp. 211–216.

Yang, X., Jevremovic, T., 2010b. Spatial time-dependent reactor kinetics
methodology based on the method of characteristics. In: Proceedings of the
PHYSOR Conference, Pittsburg, PA, USA, May 9–14, 2010, pp. 373–386.

Yang, X., Xiao, S., Choe, D., Jeveremovic, T., 2010. Neutronics modeling of TRIGA
reactor at the University of Utah using AGENT, KENO6 and MCNP5 codes. In:
Proceedings of the RRFM Conference, Marrackech, Morocco, March 21–15,
2010.

H. Hernandez et al. / Annals of Nuclear Energy 55 (2013) 248–257 257


