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Figure 1: The proposed method decomposes carefully selected linear projections into a set of axis-aligned projections, which are easier to
understand yet still retain the structure insight captured by the original linear projections. In the seawater temperature forecasting example
shown above, the first axis-aligned projection captures the dominant periodic structure, while the second one highlights an additional loop
that is different from one observed in the first projection. The relationship between linear projections and their axis-aligned decompositions
is encoded as a bipartite graph (shown in (a)). Dynamic projection transitions are used to illustrate the structural correspondence between
the linear and axis-aligned projections (shown in (b)).

Abstract
Two-dimensional embeddings remain the dominant approach to visualize high dimensional data. The choice of embeddings
ranges from highly non-linear ones, which can capture complex relationships but are difficult to interpret quantitatively, to
axis-aligned projections, which are easy to interpret but are limited to bivariate relationships. Linear project can be consid-
ered as a compromise between complexity and interpretability, as they allow explicit axes labels, yet provide significantly more
degrees of freedom compared to axis-aligned projections. Nevertheless, interpreting the axes directions, which are often linear
combinations of many non-trivial components, remains difficult. To address this problem we introduce a structure aware de-
composition of (multiple) linear projections into sparse sets of axis-aligned projections, which jointly capture all information
of the original linear ones. In particular, we use tools from Dempster-Shafer theory to formally define how relevant a given
axis-aligned project is to explain the neighborhood relations displayed in some linear projection. Furthermore, we introduce a
new approach to discover a diverse set of high quality linear projections and show that in practice the information of k linear
projections is often jointly encoded in ∼ k axis-aligned plots. We have integrated these ideas into an interactive visualization
system that allows users to jointly browse both linear projections and their axis-aligned representatives. Using a number of
case studies we show how the resulting plots lead to more intuitive visualizations and new insights.

1. Introduction
With the ever-increasing emphasis on data-centric analysis, study-
ing high dimensional data has become a ubiquitous problem
in science and engineering. Traditional confirmatory data analy-
sis [Tuk80] (i.e., confirm/reject an hypothesis) requires users to
form relevant hypotheses before any analysis can be started. How-

† Both authors contributed equally to this work.

ever, deriving an intuitive understanding of the data in order to form
such hypotheses is becoming increasingly difficult. One common
approach is to use (interactive) visual exploration to inspire new
hypotheses and a large body of research has been focused on how
to make this process as intuitive and effective as possible.

While there exist a wide range of different approaches, two-
dimensional embeddings remain the most commonly used tech-
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nique to explore high dimensional data. The goal is to allow the
user to reason about high-dimensional relationships and structures,
i.e., correlations, clusters, etc., in a low dimensional, less abstract
context. To aid the user in obtaining new insights, these embed-
dings need to be both accurate, i.e., reflect the high-dimensional
structures, and intuitive, i.e., allow for an easy interpretation. Un-
fortunately, these two goals often conflict in practice. On one end of
the spectrum non-linear embeddings, e.g., t-distributed stochastic
neighborhood embedding (t-SNE) [MH08], are good at capturing
complex relationships. However, the resulting embeddings are dif-
ficult to interpret quantitatively as directions in the plot do not nec-
essarily correspond to any coordinate, and distances can be severely
distorted. Conversely, axis-aligned projections are straightforward
to interpret, yet are very limited in the type of relationships they
can highlight.

Linear projections are often considered a good compromise be-
tween both objectives as they can arbitrarily increase the degrees of
freedom to find high dimensional relationships, while directly re-
lating directions in the plot to the original coordinates. Though the
distances in a linear projection are easy to interpret, the axes often
correspond to linear combinations of dozens of dimensions, many
of which are expressed equally strong. Consequently, this requires a
user to simultaneously reason about many different attributes which
are often overwhelming. One common approach aiming to address
this challenge is to enforce sparsity in both axes of a plot by prefer-
ring linear projections with fewer constituent coordinates [CG05].
However, this reduces the expressive power of the resulting linear
projections and unless taken to the extreme often still results in too
many relevant coordinate directions to be intuitive.

An attractive alternative is to consider a given linear projection
in light of several similar axis-aligned projections. However, the
straightforward solution of constructing a scatterplot matrix from
all (significant) constituent coordinate directions typically results
in too many combinations to be practical. Furthermore, there is lit-
tle control over how accurate the resulting plots represent the true
structure and many projections might be misleading rather than
helpful. Instead, we introduce a new approach to approximate a lin-
ear projection with a small number of axis-aligned projections via
generalization of sparse representations to the Riemannian space
of linear projections [TG07], coupled with a greedy dimension se-
lection technique. Furthermore, independent of how well the user
can interpret a single linear projection, as corroborated by several
recent related works [NM13, LWT∗15, WM17, LT16, LBJ∗16], an
effective exploration of most high dimensional data requires a di-
verse set of views. To this end, we extend the decomposition ap-
proach to the case of multiple linear projections with additional
constraint to reduce duplicated axis-aligned presentation. In par-
ticular, we define a measure of evidence using Dempster-Schafer
theory to convey how much of the information from multiple lin-
ear projections is explained by a certain axis-aligned one. In addi-
tion, we introduce a new optimization approach to construct mul-
tiple linear projections that are both accurate and diverse. Unlike
existing approaches, we do not focus exclusively on distinctive
2D patterns [LT16], which may lead to projections with poor em-
bedding quality, nor do we require a dense sampling of all possi-
ble projections [LBJ∗16], or expensive subspace clustering com-
putation [NM13, LWT∗15, WM17]. Instead, we introduce an iter-
ative optimization to explore the Grassmannian (i.e., the space of

all linear projections) with any convex embedding objective, e.g.,
principal component analysis (PCA), locality preserving projec-
tion (LPP). We achieve the co-optimization of both diversity and
quality, while still maintaining the convexity of the optimization to
solve the problem efficiently.

Finally, we integrate our approaches into an interactive visual an-
alytics interface that allows users to easily and intuitively interpret
high dimensional data through a multi-faceted lens of linear and
axis-aligned projections. Our contributions in detail are:
• A mathematical framework for representing a linear subspace as

a sparse set of axis-aligned subspaces in a structure-aware man-
ner;

• An optimization algorithm for identifying a diverse set of linear
projections by simultaneously optimizing for the accuracy and
diversity of the projections;

• A visualization tool that exploits benefits of both the linear and
axis-aligned projections by summarizing the relationships be-
tween the selected diverse set of linear projections and their cor-
responding axis-aligned projections.

2. Related Work
Generating low-dimensional embeddings of high-dimensional data
is an extensively studied area in many related fields such as data
mining, machine learning, and visualization. In the visualization
community, instead of focusing solely on the general objective of
dimensionality reduction, considerable efforts have been devoted
to user-driven exploration and interpretation of high-dimensional
data. In this section, we will discuss related approaches that rely on
both axis-aligned and linear projections for exploratory analysis.

2.1. Axis-Aligned Projection
Scatterplot matrix (SPLOMs) is one of the most popular meth-
ods for visualizing high-dimensional data, where each plot is an
axis-aligned projection. However, due to the quadratic increase in
the number of plots as dimension grows, several methods (e.g.,
Scagnostics [WAG05] and rank-by-feature framework [SS04])
have been proposed to help identify "interesting" plots that are wor-
thy of the user’s attention. Scagnostics [WAG05] supplies the user
with multiple types of measures, e.g., clumpy, skinny, each cap-
turing a specific pattern in the scatterplot. Combined, the different
measures help user select a diverse set of axis-aligned projections.
For an extensive review of the various quality measures, please re-
fer to the survey articles [BTK11, LMW∗17].

Compared to the well-known approaches that rely on ranking
quality measures, the proposed approach is fundamentally differ-
ent. Instead of filtering directly on all axis-aligned projections, we
search for structures in the space of linear projections and then use
axis-aligned projections to help explain the structure observed in
them. In other words, linear projections are used as a guide for
discovering diverse views of the data and as a bridge to connect
the high-dimensional space with axis-aligned projections. For data
with relative high-dimensions, the linear projection stage also helps
avoid the quadratic complexity of the scatterplot matrix.

2.2. Linear Projection
Many widely adopted dimension reduction methods, such as prin-
cipal component analysis [AW10] and Fisher’s discriminant analy-
sis [MRW∗99], are linear in nature. These methods are often easy
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to compute and capture structures that are of great interest for anal-
ysis (e.g., linear correlation, clusters in subspaces). However, a sin-
gle linear projection only provides a limited view of the data, and
hence might not reveal other important structures. As a result, sev-
eral visualization approaches have resorted to creating multiple 2D
projections or a series of projections (often referred to as a tour)
to provide a more comprehensive view of the data. The classical
Grand Tour method [Asi85] visualizes data through a series of
2D projections that explore the space of all linear projections in
a space-filling manner. However, due to the size such a space, a
complete tour may not be possible, even in moderate dimensions.

Instead of aiming for a complete tour, an alternative approach
is to devise a measure to identify “interesting” projections. In the
projection pursuit, we seek for 2D projections by optimizing a
quality measure function [FT74]. One example is the Holes mea-
sure [CBC93], which finds projections where there is a gap be-
tween two clusters of points. For a given measure, the global
extrema provides the user with only one view of the data. In
order to address this limitation, the Grassmannian Atlas frame-
work [LBJ∗16], adopts tools from topological data analysis, in
lieu of the global optimization, and identifies multiple local ex-
trema of the quality measure, thus identifying a complementary set
of linear projections. Recently, subspace clustering/selection based
methods [LWT∗15, TMF∗12, NM13, YRWG13, WM17], have en-
abled structure-driven exploration, particularly while identifying
important linear projections. Broadly, these methods decompose
the high-dimensional data into lower-dimension subsets and project
them separately to focus on local features. These techniques often
assume the given data is a point cloud in high-dimensional space,
for analyzing a multivariate function defined in such as space, the
active subspace [CDW14] method can be applied to study the re-
sponse surface of the function in a lower dimensional subspace.
Besides using structure/pattern based quality measures to deter-
mine “interesting” projections, one can also explicitly consider di-
versity as an objective in the view optimization process. For ex-
ample, Lehmann et al. [LT16] proposed to construct a set of 2D
projections that are most dissimilar to each other after accounting
for rotation and translation of the views. However, by not optimiz-
ing for the structure preservation of the resulting embeddings, this
approach can produce views that do not strongly agree with the
structure in high dimensions. Compared to the existing methods,
the proposed algorithm considers both the quality, i.e., how well
the current projection preserves neighborhood structure, and diver-
sity, i.e., maximal separation from the previously selected ones, of
the projections.

Reasoning about the meaning of the axes that are expressed as
linear combinations of many different properties can be very chal-
lenging. Existing methods [Mor92, CG05] aim to reduce the num-
ber of non-zero components in the linear combination. In partic-
ular, the interpretable dimensionality reduction technique [CG05]
employs an explicit sparse constraint to the linear projection bases,
which yield simpler coordinates for the analysis. However, these
techniques do not resolve the fundamental burden of interpreting
axes as linear combinations, which can be particularly challenging
in high dimensions. In contrast, the proposed method provides a
set of axis-aligned projections that are inherently easier to inter-
pret, while being maximally descriptive of the linear projections
that guided their selection.

Finally, the ability to compare and fuse projections is another
important problem. In [PPM∗15] Pagliosa et al. proposed the pro-
jection inspector in order to explore the spaces defined by known
projection techniques and enable users to generate new projections
"on-the-fly" by interpolating between existing ones.
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Figure 2: Illustration of the linear projection decomposition algo-
rithm. Given a linear subspace, we iteratively find a best matching
axis-aligned one, remove its contribution from the linear projection
and continue until no additional axis-aligned subspace can provide
better structure preservation than the ones picked so far.

3. Axis-Aligned Decomposition of a Linear Projection
As discussed the introduction, the overarching goal of this work is
to find a set of axis-aligned projections that jointly represent a linear
projection well. A naive approach might use all pair-wise combi-
nations of all dimensions that are active in a given linear projec-
tion. However, in practice, this will likely result in an overwhelm-
ing number of scatterplots. A more sophisticated variant of this idea
is to use sparse coding on the Grassmannian manifold (the space of
all linear subspaces) [HSSL13], which can be used to find a small
set of axis-aligned projections. More specifically, let V be a basis
of the linear subspace one is interested in andQ be the index set of
all pair-wise combinations of dimensions, |Q| =

(d
2
)
, then to find

the L best axis-aligned subspaces, one can used the formulation of
Harandi et al. [HSSL13]:

β = argmin
{βi}

‖VVT −
|Q|

∑
i=1

βiZiZT
i ‖2

F ,

subject to ‖β‖0 ≤ L. (1)

Here VVT is the extrinsic representation for a point (a linear sub-
space) V on the Grassmannian and Z’s

i are axis-aligned subspaces.
Note that this optimization is data independent, i.e., the error con-
siders only the distance on the Grassmannian. This is not ideal for
two reasons: First, the chosen Z’s

i may result in poor projections
either because they create significant distortions or their structure
is not relevant to V; and second, some of the Z’s

i may result in
very similar and thus redundant projections. The latter is common
in data sets with highly correlated dimensions. Consider the ex-
treme case of duplicated pairs of dimensions, which result in iden-
tical projections yet are maximally far apart on the Grassmannian.
Instead, we propose to explicitly look for axis-aligned projections
that encode the same structure as the given linear one. More specif-
ically, we follow the approach shown in Figure 2: Given a linear
subspace, we iteratively find a best matching axis-aligned one, re-
move its contribution from the linear projection on the Grassman-
nian to estimate the residual subspace and continue until no addi-
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tional axis-aligned subspace can provide better structure preserva-
tion than the ones picked so far.

3.1. Algorithm
We are interested in preserving the structure of a linear projection
which we define as the set of all pairwise distances. Given a set of
n points X in Rd and the basis of a linear subspace V, the projected
coordinates Y are given as Y = VT X. The structure we want to pre-
serve are pairwise distances ||yi−y j||2 for all j, i ∈ 1, ...,n, using a
pair of dimensions from X. In practice, we know that preserving all
distances accurately is infeasible and thus we typically restrict the
distances to a set of nearest neighbors, i.e., j ∈Nk(i), whereNk(i)
defines the k-nearest neighbors of yi computed using the subspace
defined by V.

In order to find a pair of dimensions that best preserves the
neighborhood distances we modify the image masking technique
of [DD14]. Note that, for a uniformly distributed set of random
masks of dimension 2, i.e., can use only two of the d dimensions in
X, one can expect a compaction factor of

√
2/d in the true dis-

tances from X. However, in our case, it is sufficient for the se-
lected dimensions to agree with the structure of Y. Hence, we start
by constructing the matrix C where each row corresponds to the
difference vectors for all neighboring i, j pairs squared element-
wise, [(x1

i − x1
j)

2, ...,(xd
i − xd

j )
2], referred to as unnormalized se-

cants. Similarly, we construct the unnormalized secants relative to
the projection V and compute vector b with ‖yi− y j‖2. Note that,
C and b correspond to secants in the ambient high-dimensional and
projected spaces respectively. The optimal axis-aligned projection
can then be found by optimizing:

α = argmin
α

‖Cα−b‖2
2

subject to 1T
α = 2,α ∈ {0,1}d . (2)

The non-zero entries in α then indicate the two dimensions of
the axis-aligned projection that best preserves the nearest-neighbor
distances. Rather than solving this optimization directly as a binary
integer program, we use a greedy procedure that selects one dimen-
sion from X at a time. This is carried out by choosing the dimension
with the minimal structural distortion in Eq. (2). The mask vector
α has a one-to-one correspondence with the index setQ, and let us
denote the corresponding index by iα. The axis-aligned subspace
obtained is denoted by Ziα ∈ Rd×2. We can now describe the full
algorithm as shown below:
Algorithm 3.1 Optimize for Ω given V and L (maximum number
of axis-aligned subspaces)

1. Initialize axis -aligned projections Ω =∅, subspace U = V
2. While |Ω| ≤ L:

a. Compute optimal Ziα to approximate U using (2)
b. Measure structural distortion ei = ‖Cα−bi‖2 for U and Ziα
c. If ei < δmin(e j), j ∈Ω and δ < 1.0, continue, else break
d. Update set of axis-aligned projections: Ω←Ω∪ iα
e. Solve the least squares optimization in (3) and compute the

residual on the Grassmannian: R = VVT −∑i∈Ω βiZiZT
i

f. Reproject: Update U with two principal eigen vectors of R

In the above algorithm, e j measures the structural error between
a linear projection and its decomposition into axis-aligned projec-
tions. The decomposition algorithm will not pick an axis-aligned

subspace if adding another subspace to the decomposition does not
significantly improve the approximation. The parameter δ indicates
the factor of improvement in the structural distortion and was set to
0.95 in all our experiments.
While the structural distortion metric is used to qualitatively eval-
uate the usefulness of the selected axis-aligned subspace in ex-
plaining the linear subspace, we estimate the residual subspace that
could potentially contain information about the data, that is not de-
scribed by the chosen axis-aligned subspace. Note that, this resid-
ual does not have a direct interpretation in the Euclidean space.
Instead, this approximation is on the Grassmannian, where a linear
subspace is represented as weighted sum of axis-aligned subspaces
on the manifold. This is analogous to PCA decomposition in the
Euclidean space. This is carried out by first solving the following
least squares optimization on the Grassmannian:

βΩ = argmin
β

‖VVT − ∑
i∈Ω

βiZiZT
i ‖2

F +λ‖β‖2, (3)

and estimating the residual subspace as shown in steps 2e and 2f
(Algorithm 3.1) respectively. However, the residual subspace need
not always promote the selection of another relevant axis-aligned
subspace, particularly when the dimensions are inherently corre-
lated. In such cases, redundant axis-aligned subspaces with similar
structure could be chosen. To avoid that behavior, in step 2c, we
compare the structural distortion for the chosen axis-aligned sub-
space to those picked so far and terminate if there is no improve-
ment in the distortion. Note that for some linear projections V, there
exists no good axis-aligned projections and the residual R remains
high or even increases as more Zis are added. Note that this does
not mean there is no axis-aligned subspace close to V, but rather
they do not preserve the structure of V. To combat this challenge,
we set an upper bound on the number of axis-aligned subspaces
that can be chosen. This novel combination of axis-subspace se-
lection and residual computation enables a robust and high-quality
decomposition.

3.2. Example
We use a simple example dataset to intuitively illustrate the decom-
position process. As shown in Figure 3, we decompose the LPP
linear projection of the iris dataset (4D: sepal_w, sepal_l, petal_w,
petal_l) into two structurally unique axis-aligned projections. As
we can see, in Figure 3(b) (c), each of the axis-aligned projection
uses two of unique dimensions in the 4D dataset.

The compactness (i.e., avoid duplication) of the axis-aligned rep-
resentation is one important goal of the proposed algorithm. There
are likely many axis-aligned projections that contain similar pat-
terns in the iris data, however, the proposed technique ensures that
each axis-aligned projection captures a unique structure. For the
iris data example, in Figure 3, the axis-aligned projection (b) is ex-
tracted first. Structurally, it is very close to the linear one. After
the contribution of the axis-aligned projection (b) is removed from
the linear projection (a) using Grassmann analysis, the second axis-
aligned projection (c) reveals a slightly different projection. In ad-
dition to being compact, the decomposition preserves the neighbor-
hood structure from the linear projection with high fidelity. In or-
der to demonstrate this, we compute the per-point precision-recall
quality measure (see details in Section 4.4, the higher the value the
better) of the linear projection with respect to the high dimensional
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data. Further, we evaluate the aggregated per-point measures from
the corresponding axis-aligned projections. For the aggregation, we
use the maximum of the quality measure for each point across the
different axis-aligned projections. As showed in Figure 3(d), the
histograms of the quality measure from both the cases highly over-
lap, indicating that for every point at least one of the axis-aligned
projections captures the neighborhood relationship observed in the
linear projection.

(a) Linear 

(c) Axis-Aligned 2 (d) Embedding Quality

(b) Axis-Aligned 1

sepal_l
p
e
ta

l_
l

sepal_w

p
e
ta

l_
w

Figure 3: The axis-aligned decomposition of a linear projection
of iris dataset. The LPP linear projection is shown in (a), the cor-
responding axis-aligned decomposition is shown in (b) (c). In (d),
we demonstrate that the two axis-aligned projection (combine) pre-
serve the neighborhood structure as well as the original LPP linear
projection, as measured by the precision-recall based quality mea-
sure (details about the measure are discussed in Section 4.4)

4. Decomposition of Multiple Linear Projections
In the previous section, we described our algorithm for identifying
a concise set of axis-aligned projections that maximally describe
the neighborhood structure observed in a given linear projection.
However, as corroborated by several recent efforts [LT16,LWT∗15,
WM17], finding a diverse set of representative projections is crucial
for obtaining a comprehensive understanding of high-dimensional
data. Therefore, it is imperative to consider the scenario of obtain-
ing a group of axis-aligned projections that jointly describe multi-
ple linear projections of the data.

However, decomposition of multiple linear projections presents
additional challenges. First, finding a desirable set of representative
linear projections is very hard. Even though many existing methods
try to identify multiple interesting projections of the data, none of
them explicitly optimize for both the diversity (i.e., cover various
aspects of the data) and the trustworthiness of the projection (i.e.,
make sure the projection is not misleading). Ignoring either of the
objectives may lead to undesirable results. Second, the decompo-
sition of multiple linear projections entails the risk of redundancy,
i.e., multiple axis-aligned projections may capture similar structure,
and the challenge of aggregation, i.e., measuring the importance of
an axis-aligned projection that is part of multiple linear projection
decompositions.

List of Selected 
Linear Projections

Grassmannian

Projection 
Quality  
e.g., LPPDiversity 

Objective
Quality

Objective

Optimization

Add

Search Space

Newly Identified
Linear Projection

Figure 4: Illustration of the linear projection searching algorithm.
The proposed optimization is carried out on the Grassmannian (i.e.,
the space of all 2D linear subspaces). When selecting a new linear
projection, we consider both the projection quality (i.e., how well
the projection preserves high-dimensional neighborhoods), as well
as diversity (i.e., is the projection sufficiently different from the ones
we already selected).

In this section, we present our approach for finding multiple lin-
ear projections (see Figure 4) by jointly optimizing for embed-
ding quality and diversity, using tools from Grassmann analysis.
We generalize the algorithm in Section 3.1 by sequentially com-
puting the decomposition for each of the linear projections. In this
process, we avoid redundancy by promoting reuse of axis-aligned
subspaces that were already chosen for another linear projection
decomposition, thus producing a highly compact set of scatterplots
for the user. Finally, we use tools from Dempster-Schafer theory to
define an evidence measure, which aggregates the contributions of
each axis-aligned projection to the multiple linear projections.

4.1. Finding Representative Linear Projections
Given the data matrix X ∈ Rd×n, our criterion for obtaining repre-
sentative linear projections is that the inherent structure of the data
points is preserved. This ranges from recovering the directions of
maximal variance (PCA) to neighborhood structure (Locality Pre-
serving Projections [Niy04]) or class separation (Local Discrimi-
nant Embedding [CCL05]). Despite the varied nature of these tech-
niques, all linear dimensionality reduction methods can be viewed
through the lens of graph embedding.
Table 1: Formulating linear dimensionality reduction techniques
using the unified graph embedding framework in [YXZ∗07]

Method Similarity Graph Penalty Graph
PCA Wi j = 1/n, i 6= j B = I

LPP Wi j = exp(−γ‖xi−x j‖2),
if i ∈N ( j) or j ∈N (i)

B = D

LDE Wi j = 1, if ci = c j
B = D′−W′,

W ′i j = 1, if ci 6= c j

In this approach, we represent each vertex of a graph as a low-
dimensional vector that preserves relationships between the vertex
pairs, where the relationship is measured by a similarity metric that
characterizes certain statistical or geometric properties of the data
set. Let G = {X,W} denote a undirected graph, where the matrix
W ∈ Rn×n is the similarity matrix between all pairs of samples
in X. The Laplacian of the graph G can be defined as L = D−
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W, where Dii = ∑ j 6=i Wi j. Denoting the linear projection by V and
the corresponding embedding as Y = VT X, the problem of graph
embedding can be written as:

min
tr(VT XBXT V)=ε

tr(VT XLXT V), (4)

where tr(.) denotes the trace operator, the matrix B corresponds to
the Laplacian of an optional penalty graph, typically used to regu-
larize the learning, and ε is a penalty constraint. The solution to (4)
can be obtained using generalized eigenvalue decomposition. Ta-
ble 1 lists the appropriate construction of the similarity graph and
penalty graph Laplacians L and B for PCA, LPP and LDE.

However, since the intrinsic dimensionality of data is often
greater than 2, any 2D projection will invariably result in infor-
mation loss. Hence, it is necessary to consider multiple 2D pro-
jections to obtain a more comprehensive view of the data. Similar
to the approach in [LT16], we incorporate diversity as a quality
measure to infer multiple projections. However, instead of compar-
ing the structure of the two 2D projections, we propose to directly
compare their corresponding subspaces on the Grassmannian man-
ifold [YL14], while ensuring the embedding quality is not entirely
compromised. We use the squared chordal distance to compare two
subspaces Vi and V j on the Grassmannian:

ρ
2(V j,Vi) = 2−‖VT

i V j‖2
F = 2−Tr

(
VT

j ViVT
i V j

)
.

Our algorithm begins by inferring a linear projection for X by
solving (4) for the desired embedding objective, e.g. LPP. Subse-
quently, we find the second projection that not only provides a good
quality embedding but is also far from the first subspace. Assum-
ing that we need to compute the ( j+ 1)th subspace, its diversity is
measured as the sum of distances between that subspace and all the
previous i = {1, . . . , j} subspaces, i.e.,

j

∑
i=1

ρ
2(V j+1,Vi) = 2 j−Tr

(
VT

j+1

j

∑
i=1

(
ViVT

i

)
V j+1

)
.

Hence, the optimization problem for computing the j + 1th sub-
space is

V j+1 = argmin
VT XBXT V=ε

Tr

(
VT

(
XLXT +α

j

∑
i=1

(
ViVT

i

))
V

)
, (5)

where α is the trade-off parameter between embedding quality and
the dissimilarity between subspaces. Here, the first term corre-
sponds to the conventional graph embedding cost, while the second
term penalizes the total similarity of the new projection direction
to the already chosen ones. Since the comparison on the Grassman-
nian is independent of the data, in some cases, two different sub-
spaces that are well separated can still produce 2D projections with
similar structure. In order to avoid choosing redundant subspaces,
we also verify if the actual projection can be obtained through a
simple affine transformation of one of the previously found projec-
tions.

Finally, it is important to choose appropriate stopping criteria for
determining when the algorithm should be terminated. In the pro-
posed algorithm, we terminate the search when the next projection
cannot meet a minimal quality requirement (to ensure that the se-
lected embedding preserves high-dimensional structural informa-

tion) or a minimal distance requirement (to ensure diversity with
respect to projections already selected).

4.2. Decomposition
Using the algorithm in Section 3.1, we can perform the decompo-
sition of each of the linear projections independently into a set of
relevant axis-aligned subspaces. However, in such a case, there is
a risk of redundancy, i.e. multiple axis-aligned projections with a
similar structure can be picked. In order to avoid, we maintain a
global set Ω

G (initialized as an empty set), and sequentially per-
form decomposition of the candidate linear projections. While pro-
cessing each of the linear projections, we modify the greedy de-
composition as follows: We allow the selection of an axis-aligned
subspace only if its structural preservation property is superior to
any of the subspaces already included in the set Ω

G. In other words,
this process ensures that Ω

G contains a pruned set of axis-aligned
subspaces that can jointly preserve the structure in the set of candi-
date linear projections.

4.3. Inferring Evidence Measures
When considering the decomposition of multiple linear projections,
the same axis-aligned subspace may contribute to more than one
linear subspace. Therefore, to evaluate how much the axis-aligned
subspace contributes to understanding the data on a whole, we pro-
pose to estimate evidence scores based on structural distortions.

Dempster-Shafer theory (DST) is a general framework for rea-
soning with uncertainty [S∗76], which we will utilize to understand
the degree of belief of each axis-aligned subspaces in describing
the data. Let Θ be the universal set of all hypotheses, i.e., the set
of all 2D axis-aligned subspaces in our case, and 2Θ be its power
set. A probability mass can be assigned to every hypothesis A ∈ 2Θ

such that, µ(∅) = 0,∑A∈2Θ µ(A) = 1, where ∅ denotes the empty
set. This measure provides the confidence that hypothesis A is true.
Using DST, we can compute the uncertainty of the axis-aligned
subspaces in representing a linear subspace using the belief func-
tion, ∑B⊆A µ(B), which is the confidence on that hypothesis being
supported by strong evidence. Using principles from DST, we can
easily combine the evidence from multiple sources. In our case,
this corresponds to combining beliefs of an axis-aligned subspace
in describing multiple linear subspaces.

Given the set of axis-aligned subspaces Ω for a linear subspace V,
the mass corresponding to the axis-aligned subspace Zi, where i ∈
Ω is given as µ(Zi). This is estimated by computing the structural
distortion ei = ‖Cα−bi‖2 and defining the mass η to be the inverse
of ei defined as:

η = η0

(
1− ei

max({e j} j∈Ω)

)
(6)

Here η0 is a parameter in the interval [0,1] (chosen closer to 1) that
upper bounds the mass of any single hypothesis.

We apply Dempster’s combination rule to combine beliefs of Zi
from all linear projections. Assuming that there are P linear sub-
spaces denoted by the orthonormal bases {Vi}P

i=1, the total mass
can be accumulated as

µ(Zi) = 1−
P

∏
p=1

(
1−η0

(
1−

ei
p

max({e j
p} j∈Ω,1≤p≤P)

))
. (7)
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(b) Axis-Aligned to Linear Relationship(a) Linear to Axis-Aligned Relationship (c) Histogram of Per-Point Quality Measure

low high

Figure 5: Projection Relationship View. As showed in (a)(b), the decomposition relationship is illustrated by a bipartite graph, the edges of
the graph connect linear projections and their constituent axis-aligned projections from the proposed decomposition. The currently selected
projection is highlighted with a red background. As illustrated in (c), for each projection, the histogram of per-point precision-recall quality
measure is shown for illustrating how well a given projection preserves the neighborhood structure of the full dimensional data.

Here ei
p denotes the structural distortion obtained for the pth linear

projection using the ith axis-aligned subspace. Finally, the normal-
ized evidence measure of the axis-aligned subspace Zi is given by

evid[i] =
µ(Zi)

max
(
{µ(Z j)}

|Q|
j=1

) ,∀i = 1, · · · , |Q|. (8)

4.4. Precision-Recall Measure.
In order to provide an independent measure of accuracy to validate
the quality of any 2D projections, we employ a per-point precision-
recall based measure (Figure 5(c)). The concept of precision and
recall are widely used in information retrieval and machine learn-
ing to evaluate false negative and false positive errors. While being
independent of the optimization objective, this provides a natural
trade-off between precision and recall metrics, which are both cru-
cial for information visualization [VPN∗10]. In our visualization,
we measure precision and recall of the preserved neighborhood for
each data point in the projection with respect to the high dimen-
sional data. We define the neighborhoods for a point i in the origi-
nal data and the visualization domain as,Nk(i), andN ′k′(i) respec-
tively where k and k′ denote the number of points in the neigh-
borhood. The precision and recall values are then computed as,

Precision =
|Nk(i)∩N ′

k′ (i)|
k′ , Recall = |Nk(i)∩N ′

k′ (i)|
k . For a given k

and k′ we estimate fidelity = 0.5∗Precision+ 0.5∗Recall. For all
results in this paper, we fixed both k and k′ at 30. The value of
30 was chosen roughly based on the sizes of the datasets we dealt
with in the experiments. This fidelity is used only to demonstrate
how well the axis-aligned subspace matches the linear projection
and hence its choice is not essential to the overall algorithm or the
visualization.

5. Projections Relationship Visualization
The previous sections discussed the computation pipeline that iden-
tifies diverse, representative linear projections and subsequently
decomposes them into a compact set of axis-aligned projections.
Though we can execute this pipeline directly as an offline ana-
lytic tool, visualizing the relationships between the linear and axis-
aligned projections can not only present the computation results
in a more accessible format but also help users develop additional
insights. In this section, we discuss the design choice and the func-
tionality for projection relationships visualization.

Design Goal. To design an effective visual encoding, it is im-
portant to first identify the exact information we want to commu-
nicate. For projection relationships, the key information we want

to convey is the correspondence between a linear projection and
its axis-aligned decomposition. One interesting property is the bi-
directional nature of the relationships, i.e., a linear projection can
be decomposed into multiple axis-aligned projections, while the
same axis-aligned projection can also contribute to multiple lin-
ear projections. Besides visualizing the connectivity among projec-
tions, we also want to help users develop a qualitative understand-
ing of the structures captured in a linear projection via the decom-
position into axis-aligned ones. Therefore, it is critical to broadly
understand the point-wise correlation, i.e., which part of the lin-
ear embedding corresponds to the axis-aligned one. In particular, a
meaningful animated transition from linear projection to the axis-
aligned projection can help highlight such a relationship.

To achieve these two design goals, we devised two visualization
components: the projection relationship view and the projection
transition view. The functionality and the rationale for the design
choices are discussed in the following sections.

Projection Relationship View. The projection relationship view
provides an overview of the linear and axis-aligned projections and
encodes their decomposition relationships. As discussed in Sec-
tion 4, the proposed computation method first obtains the repre-
sentative linear projections and then decomposes them into axis-
aligned ones. To express the two stages in the computation and vi-
sually separate linear and axis-aligned projections, we encode the
projections and their connections as a bipartite graph.

As illustrated in Figure 1(a), the projections are encoded as nodes
in the graph, where linear projections correspond to nodes on the
left column, and the axis-aligned projections are nodes on the right
column. Their decomposition relationship is expressed as edges in
the bipartite graph. A natural advantage of such an encoding is
that the bi-directional nature of the connectivity can be intuitively
expressed. As illustrated in Figure 5(a)(b), we show the decom-
position relationship from a linear (source) to axis-aligned projec-
tions (targets), as well as the aggregation relationship from an axis-
aligned projection (source) to the linear ones (targets) it describes.
The source (also the actively selected one) node is filled in light red
and the edges from source to targets are displayed as red lines. In
addition, the thickness of the line indicates the evidence contribu-
tion (discussed in Section 4.3) of the axis-aligned projections for
explaining the structure of the associated linear projection. More-
over, the order of the axis-aligned projections are ranked by the
evidence values. The exact value is shown on the top left corner
of the axis-aligned projection thumbnail. Finally, we allow the user
to filter out axis-aligned projections (as well as the corresponding
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linear ones if all their decomposed axis-aligned projections are re-
moved) if they have a very small evidence score (e.g., 0.05 is used
for most examples illustrated in the results). This operation enables
the user to focus on important relationships and projections, and
de-clutter the visualization space.

For each node, as illustrated in Figure 5(c), we use the projection
result as thumbnails to provide a direct illustration of the configu-
ration and structure of the point embeddings. However, the embed-
ding alone may not inform the user how well the given projection
preserves the inherent neighborhood structure or class separation
in high-dimensions. Hence, in order to obtain a qualitative under-
standing of the embeddings, for every projection, we attach a his-
togram plot of the per-point precision-recall quality measure (dis-
cussed later in this section), with respect to the high dimensional
data. This will help users evaluate the amount of distortion in both
linear and their constituent axis-aligned projections. For example,
histograms concentrated to the far right are highly superior embed-
dings.

Linear
Projection

Axis-Aligned
Projection

Figure 6: Animation projection transition from a linear projection
to one of its constituent axis-aligned projections. As we can observe
from the transition, the structure of the linear projection is well
preserved in the axis-aligned one, which can be easily explained
using the chosen variables.

Projection Transition View. The projection transition (Fig-
ure 1(b)) illustrates the point-wise correspondence between the lin-
ear and the axis-aligned projections through an animated transition
between them. The starting and ending points for the animation are
always defined by linear subspaces (axis-aligned is a special case of
linear subspace). Consequently, in order to generate a meaningful
transition, it is important to ensure that every frame in the animation
corresponds to a valid, linear projection. In this work, we utilize a
linear projection matrix interpolation technique, similar to the one
discussed in [BCAH97].

Ultimately, we hope to utilize such a transition to connect the
qualitative insights we gain from the axis-aligned projections with
the structure captured in the linear projection. As illustrated in Fig-
ure 6, as we can see the two elongated clusters in the linear projec-
tion corresponds to a similar structure in the axis-aligned projection
that can be explained by two variables.

6. Case Studies
In the following sections, we apply the proposed technique to sev-
eral real word datasets to illustrate its effectiveness in capturing
and explaining structures in linear projections via their axis-aligned
decompositions. The examples include both labeled and unlabeled
data, with dimension ranging between 7 and 52.

6.1. Wine Dataset
The UCI wine dataset is a commonly used dataset for testing clas-
sification techniques. The data consists of 13 attributes describing

the characteristics of three types of wines (different cultivars). The
data has a well-defined class structure, therefore, finding a good
linear projection to reveal the class separation is not a particularly
challenging task. However, due to the complex linear combination
of the projection bases (vectors are dense with many active dimen-
sions with similar coefficients), interpreting the separation structure
in terms of individual data dimensions can be difficult. By utilizing
the class separation objective from Local Discriminant Embedding
(LDE) (see Table 1), as illustrated in Figure 7, we identify two lin-
ear projections, where the three classes are well-separated (colored
by red, brown, green) in the first one. The disparity of class sep-
aration between the first and second projection indicates that the
algorithm is balancing the trade-off between the quality objective
with diversity objective. By augmenting the linear projections with
the relevant axis-aligned ones, our tool provides a more intuitive
view of the data. As illustrated in the first axis-aligned projections
(Figure 7), despite being less effective in distinguishing the classes
than the original linear projection, still captures separation pattern
and linked specific dimensions (e.g., color intensity, proline) with
the class separation behavior.

Linear Axis-Aligned 

Figure 7: UCI Wine dataset. The red, brown and green classes cor-
respond to three types of wines. The axis-aligned projections illus-
trate which dimensions can produce a class separation structure
agree with the linear projections obtained with the LDE objective.

6.2. Climate Simulation Crashes Dataset
An increasingly common approach to study the variability uncer-
tainty inherent in different climate models is to compute large en-
sembles of simulations with varying input parameters. However,
these studies often include parameter combinations that are not well
tested or may even be inconsistent with each other. As a result, it
is not uncommon for the simulation to fail for a subset of runs. In
this situation, it is important to diagnose what parameter (combina-
tions) are involved in a crash to guide the debugging. Here we use
a dataset which records successes and failures encountered during
simulations of the CCSM4 climate model [LKT∗13]. The ensem-
ble consists of 540 latin hypercube samples (18 input parameters)
of which 46 correspond to failures. The objective of the study is
to find the relationship between the parameter combinations and
failure cases, which can help determine the potential cause for the
simulation crashes.
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As illustrated in Figure 8(a), we utilize the LDE class separation
objective to produce the four representative linear projections, in
which the success and failure cases are reasonably separated (de-
spite some local overlaps). However, as before it is difficult to de-
termine exactly which dimensions contribute most to separating
the success cases from failure cases. We decompose these linear
projections to verify if we can obtain a meaningful pattern in the
axis-aligned projections, which can, in turn, reveal the direct impact
of parameters on the simulation crashes. As we can observe from
the decomposition in Figure 8(a), despite the diversity of the lin-
ear projections, we notice that all linear projections are effectively
described (evidenced by the edge thickness) by the highest ranked
axis-aligned projection. Note that, the ranking order is determined
based on the evidence scores obtained as discussed in Section 4.3.
The same plot is enlarged in Figure 8(b), which reveals that the
combination of high values for the attributes vconst_2, vconst_3
corresponds to all failure cases (except one outlier) colored by red.
There is undoubtedly overlap between red and green regions, which
indicates that other factors likely exist for precisely determining the
outcome. Nevertheless, based on the decomposition result, we can
easily identify the most useful axis-aligned projection from the ex-
haustive set of 18×(18−1)

2 combinations.

sucess
failure

Linear Axis-Aligned

vconst_2

v
co
n
st
_3

(a) (b)

Figure 8: Climate Simulation Run Crashes. The red points corre-
spond to the simulation crashes, and the green ones correspond to
successful runs.

6.3. Seawater Temperature Forecasting Dataset
Time-series analysis and forecasting are required in many applica-
tions, and in particular, long term prediction is very challenging.
For this experiment, we consider the sea water temperature fore-
casting dataset [LL07], which is a time series of weekly tempera-
ture measurements of sea water over several years. Each data point
is a time window of 52 weeks, which is shifted one week forward
for the next data point. Altogether there are 823 data points and
52 dimensions. The original goal of this data is to predict the fu-
ture temperatures based on previous time steps. For this analysis,
we hope to identify the repeated pattern, and more interestingly
whether or not out-of-ordinary patterns exist in the time series.

Note that, this moving-window representation of a time-series is
commonly referred as a delay embedding and is know to reveal pe-
riodic structure in the form of loops. The periodic nature is thus
very well captured in the first linear projection obtained using LPP

based embedding optimization (Figure 1(a)). This projection has
high embedding quality when compared to rest of the projections,
as indicated by the quality measure histograms and it captures the
overall periodic pattern of the data. The corresponding axis-aligned
projection, as illustrated in the top row of Figure 1(b), shows a side
view of the same pattern. The second linear projection identifies a
very interesting pattern. We can notice that there is a second loop,
different from the strong loop found in the first linear projection.
By viewing the transition from this projection to its correspond-
ing axis-aligned projection, new insights about the structure are re-
vealed. As shown in the bottom row of Figure 1(b), the axis-aligned
projection contains an inner loop with most of the samples and an
outer loop with a much smaller number of points, thus revealing
the presence of two different periodic structures. In another word,
our decomposition shows a meaningful separation between the two
dominant periodic structures, which is critical information for un-
derstanding the complexity of this prediction task.

6.4. NIF Engineering Simulation Dataset
The National Ignition Facility (NIF), a collaboration between
Lawrence Livermore, Los Alamos, and Sandia National Labora-
tories as well as The University of Rochester and General Atomics,
is aimed at demonstrating inertial confinement fusion (ICF), that is,
thermonuclear ignition and energy gain in a laboratory setting. Fun-
damentally, the goal of NIF is to search the parameter space to find
the region that leads to near-optimal performance, in terms of the
energy yield. The dataset considered here is a so-called engineer-
ing or macro-physics simulation ensemble in which an implosion
is simulated using various different in parameters, such as, laser
power, pulse shape etc.. From these simulations scientists extract a
set of drivers, physical quantities thought to determine the behav-
ior of the resulting implosion. These drivers are then analyzed with
respect to the energy yield to better understand how to optimize
future experiments. The dataset consider in our analysis consists
of 1304 samples with 6 drivers: down scatter fraction (dsf), peak
velocity (pv), entropy (sument), (totrhorba), pressure at the centre
(prcent), and hotspot radius (hsrad).

For this exploratory analysis, we choose the LPP objective to
find the diverse set of representative linear projections. Figure 9(a)
shows the two representative linear projections produced by our
approach, and the two axis-aligned projections that describe the
structures induced in the linear embeddings. The projection with
the highest evidence is comprised of the attributes pv, pcent, which
reveals the two elongated protruding clusters. The transition from
the linear projection to the {pv, pcent} subspace (top row of Fig-
ure 9(b)) illustrates the small structural differences between them.
As we can see in the axis-aligned plot, the high/low value of pv
roughly corresponds to two protruding clusters. The second high-
est projection reveals a strong linear correlation between totrhorba
and dsf. Interestingly, the precision-recall based quality measure
indicates that the second axis-aligned projection contains signifi-
cantly more artifacts than the first one, yet the evidence measure
claims both axis-aligned projections capture important structures.
To help explain the cause of the projection error, we apply a transi-
tion between the two projections (bottom row of Figure 9(b)). Here
we notice that the two clusters in the original linear projection be-
come overlapped while transitioning to the {totrhorba,hsrad} plot.
Consequently, we infer that there are two geometrically distinct re-
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gions in the high-dimensional space where the attributes totrhorba,
dsf are strongly correlated. Due to the overlap in the axis-aligned
projection, the neighborhood structure is partially lost (as indicated
by the histogram of the quality). Nevertheless, our algorithm is able
to correctly determine that this relationship is valid and assigns a
high evidence score.

(b)
dsf

to
tr
h
o
rb
a

prcent

p
v

Linear Axis-Aligned

(a)

thd_yield

Figure 9: NIF Simulation Data. Our proposed approach reveals
the presence of two true clusters in the attribute pv and a strong
correlation between the attributes dsf and totrhorba, though the
projection artifacts mask the neighborhood structure.

Consulting with the relevant physicists, we have confirmed that
the correlation observed between the two attributes agrees with the
underlying physics. More importantly, the axis-aligned projection
that captures the two protruding clusters in the linear projection
are very useful, since that structure is inherently more challenging
to interpret in a linear projection as stated by the physicists in a
previous study (part of the motivation for this work).

7. Discussion
This work introduced a novel algorithm for decomposing structure-
preserving linear projections into a compact set of interpretable
axis-aligned scatterplots. Combined with a novel optimization tech-
nique for generating representative linear projections and an in-
tuitive visual interface, we allow users to explore complex high-
dimensional data and make connections between the observed
structure (e.g., clusters, correlations) and the actual data dimen-
sions. By jointly examining the structure preservation effectiveness
of linear projections via the quality measure histograms and the ev-
idence of the axis-aligned plots via the edge thicknesses in the re-
lationship view, the users can obtain a good understanding of how
much of the inherent high-dimensional structure can be explained
by the data dimensions.

Moreover, the two components (identify representative linear
projections, decompose linear projections) of the proposed algo-
rithm can be used on their own or combined with other techniques.

For example, we can directly apply the decomposition algorithm
to the set of linear projections obtained by other comparable tech-
niques (e.g., [LT16]). In contrast to popular axis-aligned projection
finding approaches such as scagnostics that filter all possible 2D
axis-aligned projections with a pre-defined metric, the proposed
method approaches the problem from a completely different per-
spective and employs linear projection as the connection between
axis-aligned projections and the high-dimensional space.
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Figure 10: Comparison with scagnostics using the wine data.
Scagnostics is designed to capture nine pre-determined patterns
such as "Monotonic", "Convex", "Clumpy" shown here. By refer-
ring back to the result from the proposed method (Figure 7), we
can see both methods highlight the importance color intensify for
achieving class separation in a 2D axis-aligned subspace.

To provide a comparison, we apply the scagnostics on the wine
dataset. As illustrated in Figure 10, scagnostics can be very useful
for quickly identifying specific patterns, such as the correlation be-
tween variables ("Monotonic"), or clustering structure ("Clumpy").
However, since the selection criterion is solely determined by 2D
patterns, the selected axis-aligned projections may not necessarily
reflect the high-dimensional relationships. Compare to Scagnostics,
the proposed method emphasizes more on structure preservation
and identifies the link between linear and axis-aligned projections.
More importantly, for a dataset with large number of dimensions
(e.g., seawater data with 52 dimensions), the filtering based ap-
proach will likely be bound by computation cost. Nevertheless, by
referring back to the result from the proposed method (Figure 7),
we can see both methods highlighted the importance of color inten-
sify for achieving class separation in a 2D axis-aligned subspace.

As demonstrated by our case studies, the proposed method is
widely applicable to a broad range of unsupervised and supervised
analysis tasks. A potential limitation of this approach is that the
axis-aligned plots are not easily comparable to their correspond-
ing linear projections, when the attributes are categorical (binary
or multiple states) in nature. In our case studies, we are dropping
the categorical variables out of the analysis, if they exist. Due to
the efficiency of the proposed algorithm, our method can adapt to
both very high dimensions (>100), as well as large sample sizes
(>10000). The dominant complexity of the linear projection find-
ing step arises from the generalized eigenvalue decomposition of
the matrices of size d× d, where d is the number of dimensions.
On the other hand, the greedy algorithm for performing the decom-
position incurs a complexity of order O(dn), where n is the total
number of samples.
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