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ABSTRACT

GPU-based clusters are an attractive option for parallel volume ren-
dering. One of the key issues in parallel volume rendering is load
balancing, keeping a balanced workload per node is essential for
improving performance. A good number of dynamic load bal-
ancing schemes have been proposed throughout the years. How-
ever, most of these approaches require runtime dynamic data move-
ment or data duplication. For the large datasets routinely gener-
ated by scientific applications, frequent data transfer can be pro-
hibitively expensive. In this work, we propose a static load balanc-
ing scheme. By optimizing data placement, a balanced workload
can be achieved with minimal or no data movement, therefore im-
proving the rendering speed and user experience.
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1 INTRODUCTION

With the ever increasing amount of available computing re-
sources scientific simulations are able to represent highly complex
phenomena at unprecedented scale and resolution. This also intro-
duces tremendous challenges for understanding and analyzing ex-
tremely large datasets. Parallelization of visualization algorithms is
one of the most effective approaches to meet the challenges. Vol-
ume rendering as one of the standard visualization algorithms is our
focus. Most parallel volume rendering algorithms can be divide into
two major categories: Sort First (screen space task partition) and
Sort Last(object space task partition). For large scale datasets, ob-
ject space partition is usually employed. Screen space task partition
innately requires a globally shared memory access pattern which is
undesirable for extremely large datasets. Sort last algorithms divide
the problem domain in 3D space and assign part of the dataset to
different nodes (machines). The final image is generated by sorting
the fragments produced by each node and compositing them using
alpha blending. The overall rendering speed will be determined by
the slowest node, so an equally distributed workload is essential for
good performance.

In volume rendering, the rendering speed is a function of camera
parameters (position and orientation), so during an interactive visu-
alization session the workload on each node will be varying. The
well known load balancing scheme is based on tree-like data parti-
tioning and dynamic data reassignment. During runtime, it dynam-
ically reassigns the workload based on the performance measure
for each leaf node. This scheme works best under shared memory
architectures since data reassignment requires no copy operation.
However, for GPU clusters and supercomputers data movement is a
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critical component. As the dataset size grows rapidly, it is increas-
ingly expensive, in terms of energy, to shuffle data between nodes.
In this work, we describe a novel static load balancing scheme
based on assigning multiple blocks (a block is a 3D rectangular do-
main containing a small subset of the entire volume) per node and
optimizing the global data layout. Our static data layout scheme
greatly reduces the correlation between per node workload with
camera position and angle, therefore dramatically improving the
load balancing without data reassignment.
In particular, we make the following contributions:
e Introduce the interleaved multi-block layout scheme and a
compatible GPU-based compositing mechanism.
e Provide a procedure to generate block layouts that are load
balanced.
e Achieve almost near optimal load balance without any data
movement or data duplication.

2 RELATED WORKS

Parallel volume rendering has been an active research area for
decades. However, new challenges continue to motivate researchers
to re-evaluate established techniques. Most methods for handling
large scale volumetric data follow the sort-last architecture, where
data is distributed among the nodes [7]. The images generated by
each node are then composited by variations of the following al-
gorithms: direct send approach by Neumann [6] and binary-swap
algorithm [3]. Several studies have investigated load balancing, in-
cluding Muller et al. [5] and Marchesin et al. [4], employ a kd-
tree for dynamically reassigning the data in a cluster. Marchesin
et al. [4] found that changing the view (zooming in on parts of the
data, for example) leads to a significant load imbalance. This is
very challenging and critical for interactive parallel rendering. Our
proposed algorithm is intended to address this while eliminating
the data transfer overhead exists in other dynamic load balancing
schemes.

3 DESIGN

In our work, the data is divided into much finer blocks in compar-
ison to prior efforts. Each node renders a selected group of these
blocks, which span the entire domain. By re-arranging the blocks
intelligently, we can potentially make every node have a similar
workload profile even when camera parameters vary.

Block based data partitioning is commonly used in volume ren-
dering for out of core rendering, kd-tree based load balancing,
empty space skipping, etc. In our approach, the blocks rendered by
one particular node are interleaved with blocks from other nodes.
This means we cannot generate a simple image per node for the
compositing phase. Instead every small image buffer rendered from
each individual block will need to be stored. This would potentially
increase the compositing time. However, for the GPU-cluster based
volume renderer the compositing time is very small compared to the
rendering time (less than 10% [2]). Also, by using GPUs for com-
positing, the compositing phase takes only around 6-7% of the total
rendering time for our test dataset.

The most straight forward implementation of multi-block ren-
dering is to render one block, read back the image, and then repeat
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Figure 1: How balanced is each approach? (a) single block per node, (b) multi-block per node, (c) multi-block per node with block layout
optimization. In both (b) and (c) the block size is 256. The x-axis corresponds to the different camera positions, while the y-axis depicts
the rendering time. Colored line represent different node in the cluster. Unaligned lines means unbalanced load while overlapped lines show

perfectly balanced load.
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Figure 2: Here we provide the performance different between sev-
eral test setups. The yellow line is the single block scheme, the red
line is the multi-block scheme (256 block size) with simple round
robin, the blue and green line is the multi-block scheme with blocks
layout optimization(with 256 and 512 block size).

this for all the blocks. However, launching large numbers of ren-
dering passes with very low computing load is a very inefficient
way to use current generation GPUs. We prefer to render all blocks
in one single pass. In our implementation, single pass interleaved
multi-block rendering is achieved by utilizing scatter write. CUDA
is utilized for its efficiency and ease of use in scatter write.

We evaluate with two mechanisms to generate the interleaved
block layout. In the first, we map the block location to a “linear”
index (z x dimensionX x dimensionY +y x dimensionX + x), and
assign one of every N blocks, where N is the number of nodes, to
each node (simple round-robin). This fails to produce a very bal-
anced load, since it doesn’t intentionally take spatial locality into
consideration. Since our goal is to assign the nearby blocks to dif-
ferent nodes, a z-order index will ensure blocks with similar in-
dices are spatially close. By replacing the “linear” index with the
z-order [1] index, the load balance result is improved. A detailed
comparison between single block method and these approaches is
depicted in the results section.

4 PRELIMINARY RESULTS

We evaluate our approach on the GPU cluster “Tukey” at Argonne
National Laboratory. Each Tukey node is equipped with 2 Tesla
M2070 GPUs, and the test volume is a 2048 x 2048 x 2048 regular
grid (8GB - unsigned char). In order to measure the load balancing
performance of different approaches, we measured the rendering
time for a number of unique views on every node - a 280 degree
camera rotation, with two zooming operations along the camera

path, which correspond to the two peaks seen in the figures. In
Figure 1, we compare the single block scheme with our proposed
multi-block schemes. It clearly demonstrates the efficacy of our
method in achieving static load balancing under drastically chang-
ing views. From (a) to (c), we gain better load balance by intro-
ducing multi-blocks per node and by reorganizing the multi-block
block layout pattern. In Figure 2, we notice that improving the load
balancing dramatically improves the rendering performance. One
drawback of the multi-block per node scheme could also be ob-
served in figure 2. Performance improves when using a block of
size 512 instead of 256. This is mainly due to rendering multiple
blocks. However by using a larger block we lose some load balance
benefit. Eventually a tradeoff needs to be made between balanced
loads and rendering overhead.

5 FUTURE DEVELOPMENT

We plan to extend our work to handle adaptive mesh refinement
(AMR) datasets. We also plan to improve the block layout algo-
rithm by optimizing various parameters.
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