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Abstract
This paper evaluates features of graph coloring algorithms imple-
mented on graphics processing units (GPUs), comparing coloring
heuristics and thread decompositions. As compared to prior work
on graph coloring for other parallel architectures, we find that the
large number of cores and relatively high global memory band-
width of a GPU lead to different strategies for the parallel im-
plementation. Specifically, we find that a simple uniform block
partitioning is very effective on GPUs and our parallel coloring
heuristics lead to the same or fewer colors than prior approaches
for distributed-memory cluster architecture. Our algorithm resolves
many coloring conflicts across partitioned blocks on the GPU by it-
erating through the coloring process, before returning to the CPU to
resolve remaining conflicts. With this approach we get as few color
(if not fewer) than the best sequential graph coloring algorithm and
performance is close to the fastest sequential graph coloring algo-
rithms which have poor color quality.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Algorithms, Performance

Keywords Graph coloring, Parallel algorithm, GPU, CUDA

1. Introduction
Graph coloring refers to the assignment of labels or colors to ele-
ments of a graph (vertices or edges) subject to certain constraints.
In this paper, we consider the specific problem of assigning colors
to vertices so that no two neighboring vertices (vertices connected
by an edge) have the same color. There are several known applica-
tions of graph coloring like assigning frequencies to wireless access
points, time-tabling and scheduling, register allocation and printed
circuit testing among others. The aim is usually to have as few col-
ors as possible as quickly as possible.
Graph coloring is NP-hard, and even computing a n1−ε-

approximation of the chromatic number of a graph is NP-hard
[5]. Therefore, a number of heuristics have been developed to as-
sign colors to vertices; some commonly used heuristics include
First Fit(FF), Largest Degree Order(LDO) and Saturation Degree
Order(SDO) [2]. These heuristics tend to trade off minimizing the
number of colors and execution time but generally the faster algo-
rithms have poor coloring quality while the slow ones tend to yield
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fewer colors. Combinations of these algorithms have also been
used to create better heuristics like the combined SDO& LDO [2].
This paper examines a graphics processing unit (GPU) map-

ping of parallel graph coloring. Prior parallel graph coloring algo-
rithms have been evaluated on conventional shared-memory mul-
tiprocessors [4] or distributed systems [3] but to the best of our
knowledge, this is the first study of how GPU architectures affect
performance gains and number of assigned colors in a parallel im-
plementation. Our study demonstrates that features of the GPU ar-
chitecture significantly impact the algorithms selected. Specifically,
the support for efficient fine-grain multithreading facilitates strong
performance gains over CPU implementations. Because hundreds
or even thousands of threads can be applied to the parallel coloring,
we can obtain as few colors as the best sequential algorithm while
operating nearly as fast as the fastest sequential algorithms.
GPUs have different architectures compared to parallel comput-

ers where most of the parallel graph-coloring algorithms are run.
The main differences is that they have many processors, for exam-
ple, a Tesla S1070 processor has 240 cores, but each of the cores is
slower than a state-of-the-art CPU. Also, a GPU stores the data in
the global memory which all the cores can readily access.

2. Algorithm
In this paper, we propose a framework based on the G-M algorithm
[4], which is adapted for an NVIDIA GPU platform. In addition,
two new heuristics are proposed to match the parallelism exploited
by the GPU, which are shown to give better coloring quality than
FF that is comparable to Sequential FF running time.

2.1 The Graph Coloring Framework

Algorithm 1 Graph Coloring Framework
Phase 1 : Graph Partitioning −CPU
Logically partition graph into subgraphs
Identify boundary nodes
Count neighbors outside the subgraph for each vertex

Phase 2 : Graph Coloring & Conflict Solving −GPU
while Number of color conflicts is high do
Color graph using the specified heuristic
Identify color conflicts

Phase 3 : Sequential Conflicts Resolution − CPU
Residual conflicts are eliminated

Phase 1: Graph Partitioning: The graph is initially padded
with empty nodes so that it is exactly divisible by the total number
of threads (p). Each thread equally takes n/p vertices, which is a
load-balanced approach.
Phase 2: Graph Coloring & Conflicts detection: Each thread

assigns colors to its subgraph but checks the whole graph before al-



Figure 1. First row: Average Colors vs Threads (Subgraph size) - Second row: Value below each bar shows the best average color and their
matching time is indicated on the y-axis.

locating colors. We tried four heuristics including two new heuris-
tics (MAX OUT and MIN OUT) for color allocation:

i) First Fit: Allocate the smallest possible color to each vertex -
no specific criteria is used to choose which vertex to color first.

ii) SDO& LDO: Color is allocated to the vertex having the highest
saturation and then highest degree.

iii) MAXOUT: Color is allocated to the vertex having most neigh-
bors out of the subgraph and then highest degree.

iv) MIN OUT: Color is allocated to the vertex having fewest
neighbors out of the subgraph and then highest degree.

Conflicts occurring between vertices in different subgraphs are
identified by assigning one thread per boundary node which checks
for color conflicts and reset the color of these nodes to null.
Phase 3: Sequential Conflicts Resolution Dropping to the

CPU to solve the conflicts is common in many approaches but given
that we have many small partitions, we tend to have lots of conflicts
and resolving that on the CPU can be quite slow. So we do multiple
passes of step 2 on GPU until the number of conflicts become very
small and can be quickly solved sequentially on the CPU.

3. Experiments and Results
The algorithm has been implemented using the CUDA API and the
tests were carried out on a Tesla S1070 with real graphs from the
University of Florida Sparse Matrix Collection[1]. In this paper we
will focus on 3 different graphs shown in Table 1.

Name Colors Time(ms)
n m Δ FF SDO& LDO FF

hood 220,542 5,273,947 76 42 36 104
pkustk10 81,920 2,114,154 89 42 42 39
pwtk 217,918 5,926,171 179 57 48 48

Table 1. Graph properties and sequential coloring baselines: n-
number of vertices,m -number of edges,Δ- max degree.

To investigate the impact of parallel graph coloring algorithms
on both performance and number of colors obtained, the number of
threads is linearly incremented and the timing and color obtained is
compared and the results are shown in Figure 1.
The results (average of 10 runs) show that MAX and MIN

generally yield fewer colors and we also notice that good coloration

is obtained at relatively small subgraph sizes. For pwtk, coloring
gets worse at subgraph sizes of around 9. We believe that this is due
to unfortunate partitioning as if the vertices are shuffled and then
colored, we do not see that peak. [2] explains why SDO & LDO is
better than FF.MAX andMIN substitute choice based on saturation
for SDO & LDO for vertices in or out of the subgraph. This favors
vertices which have more connection to the other vertices.
In terms of speed among the parallel graph coloring algorithms,

First Fit is the fastest followed by SDO & LDO, MIN and MAX
which take roughly the same amount of time. MIN and MAX are
at least twice as slow as they require twice as much memory access
compared to SDO & LDO.
The best combination of good coloring and high performance is

given by Parallel SDO & LDO; its running time is within a factor
of 2 of sequential First Fit.

4. Conclusion
The proposed GPU implementation provides much better coloring
quality in terms of number of colors used, and the running time is
comparable to sequential FF (known as the fastest sequential col-
oring algorithm). Running on GPU introduces overheads but the
hundreds of cores allows for extreme parallelism and the nonde-
terminism makes initial bad choices less damaging allowing Paral-
lel First Fit to give better colors than the Sequential one. In many
cases, it can even beat colors reported in [3].
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