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Figure 1: Our interactive analysis and visualization framework exploits progressive computation and seamless local or remote
execution of embedded domain-specific language (EDSL) scripts to provide a highly flexible platform for the exploration of
large-scale, disparately located data. As illustrated in the system pipeline (a), what differentiates the proposed system from existing
techniques is the ability to utilize an embedded domain-specific language to specify data analysis workflows. The execution
model of the runtime is shown in (b). The interactive runtime continuously processes data requests, publishes incremental results,
and responds immediately to user input.

ABSTRACT

As our ability to generate large and complex datasets grows, access-
ing and processing these massive data collections is increasingly
the primary bottleneck in scientific analysis. Challenges include
retrieving, converting, resampling, and combining remote and often
disparately located data ensembles with only limited support from
existing tools. In particular, existing solutions predominantly rely on
extensive data transfers or large-scale remote computing resources,
both of which are inherently offline processes with long delays and
substantial repercussions for any mistakes. Such workflows severely
limit the flexible exploration and rapid evaluation of new hypotheses
that are crucial to the scientific process and thereby impede scientific
discovery. Here we present an embedded domain-specific language
(EDSL) specifically designed for the interactive exploration of large-
scale, remote data. Our EDSL allows users to express a wide range
of data analysis operations in a simple and abstract manner. The
underlying runtime system transparently resolves issues such as
remote data access and resampling while at the same time maintain-
ing interactivity through progressive and interruptible computation.
This system enables, for the first time, interactive remote exploration
of massive datasets such as the 7km NASA GEOS-5 Nature Run
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simulation, which previously have been analyzed only offline or at
reduced resolution.

Keywords: Streaming, Analysis, Big Data, Climate, Dynamic,
Remote.

Index Terms: H.3 [INFORMATION STORAGE AND RE-
TRIEVAL]: Information Search and Retrieval—Online Informa-
tion Services; J.2 [PHYSICAL SCIENCES AND ENGINEERING]:
Earth and atmospheric sciences—Mathematics and statistics

1 INTRODUCTION

Interactivity has long been a desirable trait for most scientific visu-
alization systems. Instantaneous feedback from user input enables
flexible data exploration and analysis and streamlines the hypothesis
to evaluation circle, which is vital for data-driven scientific discov-
ery. However, most previous work focused either on fast queries
(i.e., FastBit [41]), or interactivity rendering (i.e., iso-surface ex-
traction [6]) instead of the whole process that transforms the raw
data into visualized images. More complex workflows are simply
assumed to be offline. For example, typical workflows may include
users spending hours or days downloading data to a local system,
writing scripts to extract the part of the data they need, and waiting
for these scripts to complete. Due to its overwhelming size, once
the data is extracted, users likely need to run the analysis on a high-
performance computing machine and wait for the results. Additional
postprocessing steps (e.g., building acceleration structures for ren-
dering) may still be necessary to generate the final visualization
from the analysis result. Furthermore, mistakes can carry a heavy
penalty, often requiring repetition of parts of this time-consuming
process. This toil severely limits a scientist’s ability to conduct
effective data-driven experiments.
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As our ability to generate large datasets and our reliance on dis-
tributed data storage grows, accessing and aggregating the data for
analysis and visualization is an increasingly challenging task. On
one hand, it is difficult to automate and streamline the workflow.
Describing even comparatively simple analysis workflows such as
averages or comparisons can quickly become nontrivial if multiple
data sources, remote locations, or different resolutions or data for-
mats are involved. The resulting scripts and solutions are typically
customized for the specific analysis, difficult to adapt, and often
contain manual steps such as file transfers. On the other hand, the
inherent process latency can be prohibitive for a large dataset. Even
assuming sufficient computational resources, averaging terabytes
of climate ensembles cannot be done interactively using previous
solutions, which not only makes mistakes costly but also severely
impedes or even prevents a comprehensive exploration.

In the proposed work, we aim to address these challenges by
utilizing progressive algorithms in recognition of the utility of inter-
mediate or partial results for the realization of a genuinely interactive
data analysis and visualization environment. The key to streamlining
the data access and aggregation lies in the ability to allow the user to
focus on high-level logic while automating low-level data operations.
To this end, we introduce an embedded domain-specific language
(EDSL) to hide such low-level complexity from the user. For data
analysis workflows created using the proposed EDSL, the user can
focus on operations directly associated with the analysis, such as
statistical operations and comparison, whereas details such as the
source location, data transfer, file formats, and grid resolutions, are
automatically handled by the language runtime system. To speed up
data processing, the system accesses and transfers the least amount
of data possible for the given computation. The generality of the
EDSL allows great flexibility in its interpretation, enabling a suit-
able runtime system to exploit task parallelism appropriate for large,
dispersed data. The design of the runtime system focuses on mul-
tiresolution storage and visualization such that preliminary results
can be obtained without significant delay, followed by progressive
refinement. Our key contributions are:

1. An embedded DSL based on JavaScript that provides a simple
and abstract description of sophisticated analysis and visual-
ization workflows;

2. The corresponding runtime system that executes a given work-
flow in an interruptible, progressive manner and enables dy-
namic selection of various computational parameters; and

3. An end-to-end pipeline for automatic conversion and caching
that enables transparent multiresolution access to distributed
datasets of different formats.

2 RELATED WORK

In this section, we examine related work and discuss how it compares
with our efforts.
General Integrated Visualization Environment. To lower the ac-
cess barriers for complex visualization techniques, integrated visu-
alization systems, such as VisIt [7] and Paraview [2], have been in-
troduced to allow domain scientists to easily visualize their datasets
using different algorithms, such as iso-surfaces, volume rendering,
and streamlines. However, even though these integrated systems
provide extensive visualization capabilities and customized scripting,
it is necessary to manually specify data types, and explicitly define
the exact data structures that will be produced by the built-in scripts.
Even simply combining data of different resolutions is non-trivial.
Furthermore, these applications are not capable of displaying incre-
mental updates necessary to maintain interactivity, and therefore
entail workflows that involve scripts and processes with many of
the same characteristics as the offline workflow. Essentially, the ex-
ploratory analysis process suffers from high “latencies” in the sense

that parameter modifications or other changes require potentially
lengthy reevaluations.
Domain-Specific Visualization Systems. Besides the general inte-
grated visualization environment, many systems focus on a specific
domain such as climate analysis (UV-CDAT [35], DV3D [27]). By
concentrating on a more specific application, these systems usually
have fewer but more specialized capabilities. For example, UV-
CDAT is designed for climate data visualization. By incorporating
many standard analysis and visualization techniques for climate data,
the scientists have an easy-to-use tool that is adequate for most visu-
alization needs. However, for a modified workflow, as pointed out by
our collaborator, the scientists is often required to write customized
code to fill in missing features in these domain-specific visualiza-
tion systems. He suggests the proposed embedded domain-specific
language can tremendously simplify and streamline such a process.
Remote Data Access. Scientific analysis tools such as VisIt and
Paraview enable complex workflows but struggle with remote data,
and setting up the workflows can be difficult. Local data analysis
tools can benefit from protocols such as OPeNDAP [1] that provide
local access to remote data, but these protocols are tied to the same
limitations as the underlying fixed-resolution data formats they serve,
and do not do anything to facilitate the hierarchical access needed to
scale interactive systems to extremely large data sizes.
Workflow Management Systems. There exist sophisticated dis-
tributed workflow management systems like Pegasus [11] and Ke-
pler [25], but these are defined largely for offline use for which
robustness to failures, data provenance, workflow abstraction, and
reliability are the key concerns, and their use is not amenable to the
requirements of an interactive system.
Domain-Specific Languages. Languages such as Diderot [18] and
ViSlang [33] are specialized DSLs designed for visualization and do
not handle remote data. Our work is intended for data processing
of possibly remote data often used for the analysis and comparison
of scientific datasets, rather than focused purely on visualization-
specific tasks. Other DSLs, such as Ebb [3] and Simit [19], are
designed for physical simulation while abstracting execution envi-
ronments to enable CPU, GPU, and parallel execution of common
code. Others, such as Vivaldi [8], combine a specialized DSL for
visualization with a mixed execution model. Our DSL and asso-
ciated runtime enable interactive exploration through progressive
remote data access and interruptible analyses rather than reducing
total computation time by utilizing such hybrid execution back-
ends. The results of our processing nodes could be used as input
for visualization-specific DSLs such as Vivaldi or Diderot, enabling
these languages to be used for the visualization of a wider range of
local and remote data. Languages such as Ebb or Simit could be
useful to perform more efficient server-side computation for which
interruptibility may be less desirable than fast computation.
Runtime Loop Optimizations. Portability and optimization of
analysis programs is an issue that has been addressed with the use of
directives such as provided by OpenACC [5] and OpenMP [10],
cross compilers that create optimized versions of some other
code [13, 26], and wrappers to provide a specific specialized set of
portable optimized functions. Thrust [17], RAJA [32]. Kokkos [14]
provides vector libraries to manage multidimensional arrays with
polymorphic layouts and map those operations to fast manycore
implementations. Overall, these works focus on providing specific
optimizations of existing code rather than enabling a simple semantic
for scientists to express iterative computations.

3 BACKGROUND

In this work, we strive to present the user with intermediate or
partial results quickly and then progressively refine them. One as-
pect we exploit is the spatial resolution of data. As a result, we
build the proposed system on top of an existing multiresolution
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data storage and visualization framework. The ViSUS Visualiza-
tion Framework [30, 31] enables streaming access to arbitrarily
high-resolution imagery through the use of an efficient multires-
olution data reordering based on the hierarchical Morton Z-order
space-filling curve [29]. As illustrated in Fig. 2, by utilizing a
multiresolution data layout, data can be loaded and visualized at
coarse resolution, then successively refined as more data is streamed
into the system. Without loading the full dataset, preliminary results
can be rapidly obtained. Localized queries are also optimized using
the Morton data order, the layout of which naturally favors local
rectilinear queries. The proposed DSL and runtime are logically
separated from the underlying multiresolution data format used by
the system. Multiresolution formats range from simple octree to
more complex multiresolution scheme such as [16, 37]. The data
format used in this work could be replaced by one of these other
multiresolution approaches and the work would still retain most of
the benefits provided by the proposed DSL. Details of the multireso-
lution and data reordering algorithms are outside the scope of this
work, and readers are encouraged to explore the references above for
more information. Similar to other integrated visualization systems
(e.g., VisIt or Paraview), the ViSUS framework also includes a set
of common visualization algorithms, such as volume rendering and
iso-surface extraction. The framework is multithreaded and imple-
ments a directed acyclic graph, message-based dataflow pipeline
such that messages can be “published” by a given node to connected
nodes. The multithreaded implementation enables visualization and
computation tasks to be carried out simultaneously.

Figure 2: Illustration of multiresolution data loading compared to
loading from a “flat” row-major format. Using multiresolution IDX,
coarse resolution data can be loaded in much less time, providing
quick preliminary results.

4 METHOD

In this section, we discuss the design and implementation of the
embedded domain-specific language (EDSL) and complementary
runtime system. The overall system is illustrated in Fig. 1(a). The
pipeline works as follows. An EDSL script is executed incrementally
on the visualization client. When data is needed by the script, the
client requests it from the multiresolution server, which first checks
its local cache and if found immediately fulfills the request. If cached
data is not found, the server requests the on-demand data reordering
service to produce a multiresolution version of the data, which is
cached and sent to the client. The visualization client produces
results incrementally as they are computed. What differentiates the
proposed system from existing progressive visualization techniques
is the ability to utilize an embedded domain-specific language to
specify data analysis workflows that hide the complexity originating
from combining multiple input sources and spatial resolutions, and
an interruptible script processing engine that facilitates progressive
computation. Such a design provides the user tremendous expressive
power to write custom, reusable analysis workflows suitable for rapid
data exploration.

The embedded language introduced next is designed to permit the
types of interpretation necessary for an interactive system without

compromising expressiveness or accuracy, and the runtime system
and scripting engine introduced in Section 4.2 enable interactive
execution of these scripts.

4.1 Data Processing Embedded DSL

Our goal is to provide a simple and abstract language for describing
rich data processing tasks that relieves users from having to deal
with mundane tasks such as data import and resampling (also called
“regridding”) and allows for incremental execution suitable for an
interactive environment. We assert that necessary modifications to
the host language can be limited to three aspects, discussed in the
following sections, to be sufficient to facilitate interactive evaluation
of generic data processing scripts.

1. A new built-in data type that abstracts the common modalities
of scientific data (e.g., scalar or vector field data) and can be
used directly as a first class citizen of the language without
regard to format, resolution, or location of the underlying data;

2. A hinting mechanism to facilitate incremental production of
the results of ongoing computations (i.e., long-running scripts)
by indicating to the runtime system appropriate opportunities
at which the current state of the computation can be shown;
and

3. A generic multidimensional iterator for loops that can be per-
formed in any order (e.g., for computing an average) that
permits nonlinear evaluation of the loop body by the runtime
system such that incremental results potentially converge faster
toward the final result, and allows for parallelization of these
loops.

In the remainder of this section, we will explain each language
addition in detail and present a simple example script to illustrate
them.
Abstract Data Type. An abstract data type is necessary in order
to enable spatiotemporal data manipulation using a uniform and
generic interface without regard to format, resolution, or location.
The use of this type avoids embedding details in the data processing
scripts concerning the management of the underlying data. The
runtime system will handle data loading, resampling, and conversion
to a common format. We chose to make this a built-in type of the
EDSL to enable features such as operator overloading that might not
otherwise be feasible in the host language.

The specific methods provided by our EDSL include statistical
summary operations such as mean and variance, multifield opera-
tions that perform element-wise amalgamation such as average and
maximum, and operations such as convolve that involve some degree
of global dataset-wide access. A complete listing of the abstract data
type methods is provided in the addendum. Operator overloading
is provided to enable natural expression of element-wise operations
between fields of the new data type or with scalars. These methods
are sufficient for constructing arbitrarily sophisticated scripts for the
computation of temporal averages, rank correlations, image segmen-
tations, maximum intensity projections, and other types of output
used in scientific data analyses.
Explicit Data Publishing Hints. Streaming algorithms provide in-
cremental results based on incoming data that represent the best pos-
sible computation for the currently available input. These snapshots
of ongoing computations present the user with an approximation
of the final results of long-running operations, enabling errors to
be caught and addressed much sooner. Feedback is particularly
desirable for users of an interactive system, but for script-driven
analysis the best times to show these incremental results are not
always apparent. Attempting automatic determination could result
in showing incorrect or undesirable results, such as when a script
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utilizes an output variable as a temporary. In order to show pro-
gressive results for streaming computations while avoiding output
at the wrong time, we introduce the doPublish primitive operation,
which indicates appropriate times for the scripting engine to send
the current computation results, designated output in Listing 1 be-
low, to the visualization system. Using this primitive enables the
corresponding workflows to be progressive with partial results being
computed and updated continuously. The doPublish primitive has no
effect on the computation itself, and can be safely ignored, enabling
the runtime system to refresh output presented to the user at intervals
suitable to maintain interactivity.
Generalized Multidimensional Iterators. To complement the pro-
gressive asynchronous updates enabled by doPublish, we introduce
an iterator for order-independent loops called unordered. This gen-
eralized facility allows for a variety of beneficial execution methods
to be utilized by the runtime system, and provides for the expression
of multidimensional loops that is both elegant and flexible. The
unordered primitive accepts as parameters the name of the variable
to be used as an index inside the loop and the extents of the loop
iterator. Loop indices are considered constant within the body of the
computation. The result of the loop should be the same regardless
of the order of execution (except for floating point differences that
would be expected to occur anyway), and it is considered a bug for
the user to construct an unordered loop body that depends on some
particular order of execution. In addition to parallelization, other
useful interpretations of unordered loops are described in detail in
Section 4.2.

The proposed EDSL described in this section primarily consists
of JavaScript extended with these carefully chosen primitives and
new built-in data type for scientific data. It allows users to express
common workflows in an abstract manner, suitable for interactive
execution. In Section 4.2, we introduce a runtime scripting engine
designed for progressive, interactive execution of these EDSL scripts
for computations over arbitrarily large, disparately located datasets.
An example script is presented next that illustrates the EDSL features
described above.
Example Script. Listing 1 shows an example of a basic incremental
computation using the proposed EDSL. The script makes use of
Welford’s method [20, 40] to compute a monthly average of hourly
temporal climate data. The script is able to express in very terse
terms a significant operation without the user needing to explicitly
address input formats, data resolution, or output type. Notice the
use of the overloaded arithmetic operators +, -, += in the statement
output += (f-output) / (i+1). For this expression, output and f are
members of our new abstract data type representing the current state
of the incremental average computation and the field at the current
timestep of the iteration, respectively. The unordered loop could be
interpreted just like a normal for loop, but using this facility enables
other execution methods as described in Section 4.2. The double
opening and closing brackets around the two statements designate a
critical section. If the loop were executed in parallel by the runtime
system, these would be necessary to ensure that the current output
and the running count are updated atomically.

Listing 1: EDSL script for incremental computation of a temporal
average using hourly data from the 7km GEOS-5 Nature Run simu-
lation. Notice the ability to succinctly express a significant operation
without explicitly addressing input format, resolution, dimension, or
output type.
/ / Computes r u n n i n g average
f i e l d = ’TOTSCATAU’ ; / / a e r o s o l s c a t t e r i n g
s t a r t = q u e r y t i m e ; / / c u r r e n t t i m e
wid th = 720 ; / / 720 hours (30 days )

o u t p u t = Array . New ( ) ; / / i n i t i a l i z e o u t p u t
v a r i =0 ;
u n o r d e r e d ( t , [ s t a r t , s t a r t + wid th ] ) / / 1d i t e r a t o r , i n d e x t

{
f = i n p u t [ f i e l d +” ? t ime =”+ t ] ; / / read f i e l d a t t i m e t

/ / c r i t i c a l s e c t i o n f o r r u n n i n g average :
/ / average and c o u n t must be upda ted a t o m i c a l l y
{{

o u t p u t += ( f−o u t p u t ) / ( i + 1 ) ; / / We l fo rd ’ s method
i ++;

}}

d o P u b l i s h ( ) ; / / show c u r r e n t r e s u l t
}

For comparison, a similar computation in the VisIt expressions
Python-based EDSL would require creating a specific class template
structure in which the user must explicitly define output type and
dimensions and manually create the VTK arrays to be computed
by the script. The VisIt EDSL contains a specific function for
computing temporal averages, average over time, but this type of
specialization, in addition to being unnecessary in the proposed
EDSL, does not facilitate progressive display of in-progress results
that are a focus of the proposed system in order to provide quick and
preliminary visualization.

Please refer to the Appendix of this work for a comprehensive
specification of the EDSL.

4.2 Progressive Runtime System

Now we present the complementary runtime system for the EDSL
presented in section 4.1, which incorporates an interruptible script
processing engine to evaluate scripts in an interactive manner by
enabling tuning of any necessary parameters in order to enable com-
putations to be performed quickly and incrementally. Through the
genericity of the EDSL, the runtime system also enables direct and
transparent transition from a local execution to a distributed work-
flow, including server-side execution and caching. To demonstrate
the scripting engine presented here, we wrote our own JavaScript
interpreter, used by the engine to directly execute scripts without any
compilation to byte code or significant optimization. Type-checking
is enabled at runtime using exceptions, which display the problem-
atic line of the script and a detailed error message to the user to
enable debugging. The presented runtime system utilizes techniques
such as multiresolution streaming and low-discrepancy sampling to
produce progressive results from streaming input data. The goal of
the system is to minimize the tradeoffs between accuracy and speed
while continuously providing useful results during interactive data
exploration.

The following paragraphs describe the features of the runtime
system that enable practical data exploration through interactive
interpretation of EDSL scripts, including implementation of the built-
in scientific data type, design of the progressive scripting engine,
making effective use of order-independent loops and parallelization,
and our method for remote or distributed script processing.
Multiresolution Streaming. Our runtime system reads and caches
input data using a lossless multiresolution format that provides ef-
ficient coarse-to-fine data loading and much faster access to local
regions of interest compared to traditional row- or column-major
order data [29]. In order to provide transparent access to multiresolu-
tion data from other data formats, an on-demand reordering facility
is presented in section 4.3. Multiresolution data can be used to
provide fast cursory computations by displaying the result of an
initial coarse-resolution execution while refining it to provide more
details when they are needed. The results of computation using
coarse-resolution data can also be surprisingly accurate. One of our
case studies in section 5 compares these results by performing the
same computation at different resolutions. See Fig. 11 in that section
for more details.
Built-in Data Model. The runtime scripting engine utilizes a fast
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C++ Array type to provide efficient implementations of the opera-
tions defined for the EDSL built-in data type, similar to the numpy
package for Python [39]. Since datasets can be manipulated without
regard to their location, the runtime system uses additional metadata
associated with a script to map its inputs to their corresponding local
or remote data locations. Data read from remote locations is auto-
matically cached on the local system, and the results of a given script
execution can be cached as well, allowing comparison of new results
with previously computed data. Finally, the EDSL specifies element-
wise operations that can be performed independent of the resolution
of the operands. Variables of this type must be implicitly resampled
to the same resolution to be combined or compared. By default, the
scripting engine uses upsampling to the largest resolutions in each
dimension of the given operands and linear interpolation for resam-
pling. These methods, however, can be changed by the user at any
time without modification to the original script. Resampling data in
order to perform computations among different models is a serious
impediment for scientists, and we present a powerful case study
in section 5 that demonstrates our system’s ability to effortlessly
facilitate comparison of multiple climate ensembles.
Progressivity and Incremental Results. When the runtime script
interpreter encounters doPublish in a script, it can produce, or “pub-
lish”, the current state of an ongoing computation to provide the
user with important and timely feedback. Such a call can be safely
ignored by the downstream visualization without adverse effects
to the computation, enabling results to be displayed at suitable in-
tervals to maintain interactivity. The scripting engine implements
doPublish as an asynchronous callback that creates a copy of the cur-
rent computation output to be displayed by the visualization client.
If a previously published result has not yet been displayed by the
visualization system, that result is simply replaced with the new
output, ensuring smooth performance of the rest of the system while
allowing script execution to continue uninterrupted.

Figure 3: Results of a temporal average computation (Listing 1)
via two different orderings for the inner loop. The error (plotted as
RMSE) between the precomputed result and the incremental result
decreases quickly when utilizing the low-discrepancy van der Corput
sequence of timesteps versus a simple linear sequence.
Loop Order and Parallelization. The EDSL presented in section
4.1 introduced the unordered primitive to allow explicit declaration
of order-independent multidimensional loops. These calculations
are common in scientific data analyses, yet their properties are rarely
exploited. For many iterative calculations, using an input ordering
with low discrepancy can lead to faster convergence of successive
iterations to the final solution compared to a simple linear sequence.
The desirable qualities of a low-discrepancy ordering are uniformity
and incrementality, such that samples are evenly distributed over
the given range, and decent coverage will have been achieved if the
processing is terminated at any point in the sequence [24].

Consider the incremental average script from Listing 1. This
script could simply use a for loop, but since the final result of the
computation does not depend on the order of loop iterations, we can
choose a superior ordering that converges significantly faster. Fig. 3

illustrates the difference of using a linear ordering compared to the
low-discrepancy sequence introduced by van der Corput [12] for
the incremental result of this computation. For higher dimensional
iterators, the Halton sequence [15] can be used. Fundamentally, any
evaluation order can be chosen at runtime for these loops, allowing
the flexibility to choose different orderings, for example to maximize
the use of cached data.

(a) (b) (c)

Figure 4: Result of 100 iterations (of 1000 total) for calculating
maximum intensity projection of microscopy volume. Each iteration
adds a 2d slice. (a) Linear order. (b) Low-discrepancy order. (c)
Final MIP.

Another example of the utilization of low-discrepancy loop or-
derings is shown in Fig. 4. High resolution microscopy is used
by neuroscientists to examine cortical tissue samples to study the
connectivity of the brain. To aid in clarifying the imaged neurons,
which may not always be obvious from the 3d visualization, a max-
imum intensity projection is often used. This type of projection
accumulates the maximum intensity value of each voxel along a
given axis and presents a 2d image of the result. The incremental
computation of this projection is demonstrated using both linear
and low-discrepancy orderings. The results after processing the first
100 slices using each ordering are shown in Fig. 4 along with the
final result of the computation. Note in this case how much faster
the results of the incremental computation approach the final result
when using the low-discrepancy sequence. Using this technique
interactively enables faster and more dynamic comprehension of
custom regions of interest within massive microscopy volumes.

Figure 5: Comparison of parallel unordered loop execution for
increasing thread counts for two algorithms: maximum intensity
projection and zonal rank correlation. Dashed lines indicate perfect
scaling. Tests conducted on a 16-core Intel Xeon E7-8890 v3 @
2.50GHz running openSUSE 13.1 using locally cached data.

Finally, parallelization of unordered loops potentially enables
faster evaluation by executing multiple iterations simultaneously.
Parallel execution may require more delicacy in the implementation
of an analysis script, and the double bracket {{ ... }} notation was
incorporated into the EDSL in order to denote a critical section.
Code within these sections will be executed atomically with respect
to the other threads, ensuring correct functionality of parallel code
without overly complicating or cluttering the resultant scripts. The
number of threads is controlled by the runtime system and provided
to the EDSL script, so scripts can be scaled to the available system
resources without modification.

Parallel loop execution is implemented in the scripting engine
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using a thread pool for each unordered loop and assigning the work
of one iteration to each thread, with a shared context of global
variables and a thread-local context for variables introduced in the
iteration block. Critical sections are facilitated by using a shared
lock per loop. This strategy enables nested unordered loops, but
one should beware of the potential explosion of tasks and consider
rewriting the loop to instead utilize a multidimensional version of the
unordered iterator. As shown in Fig. 5, parallelizing the execution
of order-independent loops can provide a modest speedup even for
relatively naive algorithms. Permitting simple scripts to make better
use of processing resources is a benefit to the user that permits more
practically useful interactive data exploration.
Server-side Processing. The multiresolution data server contains
an identical version of the scripting engine used by the visualization
client (see Fig. 1). Server-side processing can be utilized to perform
computations using remote resources and thereby reduce data trans-
mission. For example, when combining many ensemble members
into a single average, the amount of data to be sent to the client can
be dramatically reduced by first combining the inputs on the server
and then sending only the result to the client. On the other hand, if
server-side resources are scarce or in high demand, it may be more
efficient to transmit data directly to the client, perhaps at lower reso-
lution to reduce network bandwidth. The runtime system specifies
whether or not to perform a computation remotely without requiring
any modification to the input script, enabling a single script to be
executed on either the client or the server. Multiple scripts can be
incorporated within larger dataflows to mix both client- and server-
side processing. The location on which to execute a computation is
currently specified by the user on a per-script basis, but future work
will aim to address automatic selection based on available resources.

For the implementation of the runtime system, we extended the
ViSUS framework mentioned in section 3 to include a new scripting
engine that enables execution of generic EDSL scripts in a manner
that is both progressive and accurate by making effective use of
multiresolution data, asynchronous output, flexible iterator orderings,
remote computation resources, and parallelization. A novel data
ingest system was also added to automatically resample the various
input datasets specified in the script to a common domain during
I/O. High-level support was added to the UI for the selection of
the various runtime parameters, such as the default order used for
multidimensional iterators.

Figure 6: Data server with on-demand conversion. Data movement
is shown with thick arrows, requests with thin arrows. When data
is requested (a), the data server first checks the cache (i), and if not
cached the requested data is converted on-the-fly (ii) and sent to the
client (b).

4.3 On-demand Data Reordering

Although some simulation frameworks have adopted multiresolution
formats as their default output [21], many existing datasets are not
stored in this fashion and must be converted prior to use.
On-demand Conversion. We propose a data reordering service
that converts requested data on-the-fly to the multiresolution format
utilized by our data analysis runtime system. This system operates
transparently to the client, enabling access to data from other formats
without requiring explicit preprocessing.

Fig. 6 shows an overview of the system. When a data request is
made by the client application to the multiresolution IDX data server
(a), the server first checks its cache for the data (i), and if found, the
request is fulfilled directly (b). Otherwise, the server makes a call to
the on-demand service (ii), which reads the full-resolution data and
writes the multiresolution version to the data cache, This lossless
reordering of the original data is now sent to the requester (b) and is
also available for future requests by other users. The cache size is
maintained by periodically removing least recently used data when
the size grows beyond a specified maximum level. Data reordering
is a computationally light task, and the time required to convert a
given volumes is dominated by the time to read the original data and
to write the reordered version. In general, the on-demand conversion
system does not introduce a significant overhead, since the data
would have to be downloaded anyway, and the initial conversion
time may be amortized over many future requests. Reordered data
facilitates interactive analysis and visualization that would in many
cases be impossible if the data remained in its original format. The
transparent, on-demand data reordering service described in this
section is utilized for climate analysis in the examples described in
Section 5. This implementation is briefly described next.

Figure 7: Computation time when input data is converted on-demand
versus already cached on the server. Temporal average of daily
data (90 timesteps) from NIMR HadGEM2-AO “Historic”. Local
caching disabled. Each timestep is 32-bit floating point, resolu-
tion 192x143x8. Our progressive environment revealed serious and
previously unnoticed errors in the original data.

On-demand Reordering for Climate Data. We have integrated
the proposed on-demand service at part of the Earth System Grid
Federation (ESGF) at Lawrence Livermore National Laboratory
(LLNL). The service provides for converting both local and remote
climate datasets to the multiresolution IDX format. The reordering
service is implemented as a python-based web service with read-
only access to hundreds of terabytes of (possibly remote) climate
data stored in the NetCDF format [34]. The typical method by
which a user of climate data federated by ESGF acquires new data
is to first search for the desired dataset using the ESGF search page,
then to manually select and download the datasets to be studied.
These data may be very large and contain many fields not needed
for the desired experiment, wasting time and local storage space.
The multiresolution datasets provided by our service incorporate
all fields and the entire time span of a given dataset, but no actual
data is converted until it is specifically requested. This efficiency
makes it simple for scientists to add or remove an unexpected field
from their computations without converting unnecesary data. Fig. 7
shows the time required to compute a seasonal temporal average
(see Listing 1) when data is converted on-demand versus when it
already exists in the server cache. Note that client-side caching was
disabled for this test.

5 RESULTS

In this section, we demonstrate the usability of the proposed system
for various analysis scenarios in real-world scientific applications.
All scripts for constructing these workflows can be found in the
Appendix of the paper.
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5.1 Climate Simulation

Global climate research has become a major undertaking of many
governments and organizations in order to understand the primary
causes of the unusual warming observed over the past several
decades, as well as to determine the extent to which this warming
can be mitigated by changes in human behavior such as a reduction
in carbon dioxide emissions.

According to domain scientists, as computational capability in-
creases, these models become more sophisticated and the size of cli-
mate simulation output grows dramatically (up to Petabytes for simu-
lations with extremely high spatial and/or temporal resolution). The
increasing size and complexity of climate datasets has placed a huge
burden on scientists to effectively perform analysis and visualization
tasks. By utilizing the proposed system, scientists can streamline
and automate large amounts of manual operations such as down-
loading, converting, or resampling. The analysis tasks themselves
can be concisely expressed in the reusable and easy-to-understand
EDSL. For each type of analysis task, the same script can be used
directly with only minor changes (or none at all). The significant
time-savings and convenience provided by our framework enables
scientists to focus on core analysis tasks, and encourages them to
experiment more. This experimentation allowed an error in a widely
used public dataset to be discovered (see Fig. 9 from the Annual
Zonal Average example below).

(a) FGOALS Model Average (b) MIROC5 Model Average

(c) Two Models Average (d) Two Models Difference

Figure 8: The comparison between climate simulation model ensem-
bles.

Multimodel Ensemble Comparison. There are numerous climate
models from different countries and institutions. One of the impor-
tant tasks of climate research is to validate these models against
historical observations as well as compare them with each other [36].
These models can then be used in experiments that try to predict
future climate under a variety of conditions such as increased or
decreased anthropogenic emissions. For each model (and a given
experiment), a collection of runs is generated, each with differ-
ent parameters and/or initial conditions. Such a collection is often
referred as an ensemble. These models are created by different in-
stitutions with different computational resources, and therefore the
grid resolution of the output data is usually different. As a result,
resampling is necessary for comparison. Compared to the tedious
manual workflow that is often adopted by domain scientists, our
system utilizes remote data directly, streaming even very large data
interactively at reduced resolutions, refining as necessary, and im-
plicitly resampling the requested datasets to a common resolution
for proper comparison.

In Fig. 8(a), we visualize the temperature average from an en-
semble of the FGOALS model (12 run ensemble). The average
of the same experiment for the MIROC5 model (12 run ensemble)
is shown in Fig. 8(b). The average and difference of these two
models are illustrated in Fig. 8(c) and (d). As we can easily see
from Fig. 8(d), these two models demonstrate greatest divergence
in the area between the Tibetan plain and the Indian subcontinent.

By using our system, such observations can be obtained on-the-fly
without tedious data conversion and grid resampling.
Annual Zonal Average. Another interesting analysis called a zonal
average can be applied to climate data. The temperature field zonal
average in Fig. 9(a) shows the daily data for a whole year summa-
rized in one figure. The average for the entire line of longitude is
computed at each latitude for daily data. In the plot, along the x-axis
each vertical line corresponds to one day’s planetary average. As we
can see in Fig. 9(a), the temperature corresponding to each latitude
changes over time, indicating seasonal variation.
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(b) Humidity field

(a) Temporature field

Figure 9: Annual zonal average of temperature and humidity. In
(a), the daily spatial temperature average changes as we move along
the temporal axis, which illustrates the change of seasons in a year.
In (b), the duplication error in the humidity data is indicated by the
bands along the temporal axis.

By utilizing our system for cursory exploratory analysis, the sci-
entist also revealed a serious set of errors in the daily 3d data from
NIMR (the Korean National Institute of Meteorology Research). As
illustrated in Fig. 9(b), the zonal average shows unnatural bands
along the horizontal (temporal) direction, which indicated unchang-
ing daily data for each 30-day period. In this particular ensemble, it
turns out that for each month, a single day’s data was erroneously
duplicated for the entire month. Once we observed the flaw in one
field, it was trivial to check the other 3d fields that also exhibited
the error by simply changing the variable name in the script. The
on-demand data conversion system transparently converted these
other fields that would otherwise have required manual download
to be examined. In addition, the low-discrepancy ordering of the
unordered loops used to generate the zonal averages ensured that
incoming data provided the best possible incremental representation
of the entire zone. What might have required significant manual
effort and hours of computation was able to be achieved in minutes
and at a glance.
Rank Correlation Analysis. Next we demonstrate the efficacy of
our EDSL and runtime for performing a more complicated type of
analysis. Studying correlation plays an important role in analyzing
climate data. Rank correlation can be used for measuring relevance
between different variables, examining a model’s performance by
comparing its variables to corresponding observations, and even
comparing different regions in a single model. According to our
collaborator, rank correlation [4,23,28] is a widely used but relatively
new technique for climate analysis that is rarely implemented in
domain-specific analysis tools. Instead, scientists must manually
write code to compute these correlations. Listing 2 shows the main
loop of an EDSL script that incrementally computes rank correlation.
Notice the use of overloaded operators for summation (+=) and
scaling (/ ) of the 3d fields. The algorithm is based on Welford’s
method to compute the running variances of the two fields that are
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necessary to calculate the rank correlation.

Listing 2: EDSL script for incremental computation of Pearson’s
rank correlation using hourly 3d data from the 7km GEOS-5 Nature
Run simulation.
/ / Pearson ’ s rank c o r r e l a t i o n o f two v a r i a b l e s over t i m e
v a r i = 0 ;
u n o r d e r e d ( t , [ s t a r t , s t a r t + wid th ] )
{

f = d a t a s e t 1 [ f i e l d 1 +” ? t ime =”+ t [ 0 ] ] ;
g = d a t a s e t 2 [ f i e l d 2 +” ? t ime =”+ t [ 0 ] ] ;

/ / c r i t i c a l s e c t i o n :
/ / up da t e r u n n i n g average , v a r i a n c e , and c o r r e l a t i o n
/ / w . r . t . t h e i r c u r r e n t v a l u e s and t h e g i v e n i n d e x
{{

v a r oldMf = Mf ;
v a r oldMg = Mg;

/ / r u n n i n g average
Mf += ( f−Mf ) / ( i + 1 ) ;
Mg += ( g−Mg ) / ( i + 1 ) ;

/ / r u n n i n g v a r i a n c e
Vf += ( f−Mf ) * ( f−oldMf ) ;
Vg += ( g−Mg) * ( g−oldMg ) ;

/ / r u n n i n g c o r r e l a t i o n
Vfg += ( ( oldMf−f ) * ( oldMg−g ) ) * ( ( i + 0 . 0 ) / ( i + 1 . 0 ) ) ;
v a r Sf = Visus . Array . s q r t ( Vf / i ) ;
v a r Sg = Visus . Array . s q r t ( Vg / i ) ;
o u t p u t = Sfg / ( Sf *Sg* i ) ;
i ++;

}}

d o P u b l i s h ( ) ; / / d i s p l a y i n c r e m e n t a l r e s u l t
}

The combined power of the EDSL and progressive runtime system
enables interactive visualization and analysis of extremely massive
climate simulation data.

(a) Coarse resolution

(b) Full resolution

Figure 10: Pearson rank correlation between hydrophilic and hy-
drophobic black carbon on the 7km GEOS-5 Nature Run dataset. (a)
Coarse resolution rank correlation. (b) Full-resolution rank correla-
tion.

The two-year Non-hydrostatic 7-km Global Mesoscale Simula-
tion “Nature Run” [9] created by NASA is one of the largest climate
simulation datasets to date and an example of the future of global
climate modeling. The full-resolution raw data is available in the
standard NetCDF4 format, but the time and space required to down-
load it locally seriously inhibit access and analysis. We rely on the

on-demand conversion system described in Section 4.3 to handle the
complexity of data loading and format conversion. The on-demand
system utilizes the OPeNDAP protocol to load requested compo-
nents of the massive 7km GEOS-5 “Nature Run” simulation residing
at NASA. The converted multiresolution data are stored in the data
cache at LLNL. The large fields of this dataset require more time to
convert, but such time would have been spent downloading the data
anyway. Furthermore, once converted, the fields can be accessed
interactively at different resolutions by any future users.

In this example, we try to understand the relationship between
hydrophilic and hydrophobic black carbon (both important environ-
mental pollutants [38]). Hydrophobic black carbon is believed to
transform into its hydrophilic sibling shortly after emission from
various sources, especially industrial. In order to quickly evaluate
this theory, we apply rank correlation between these two fields us-
ing remote data cached at LLNL. Each timestep of the 3d fields
is approximately 1.5 GB, and our cursory analysis considered 744
timesteps, over 1.1 TB of data. Other data analysis systems would
be unable to handle a volume of data this large. Yet by specifying
a diminished resolution and utilizing an incremental algorithm, our
script was able to start showing the results of the calculation almost
immediately, and complete it for an interactively selected subregion
in only a few minutes. As illustrated in Fig. 10 (a), a coarse reso-
lution of the data was selected by the user to rapidly identify the
preliminary result. The final result using the full dataset is illustrated
in Fig. 10 (b).

Figure 11: Comparison of data size, computation time, and root-
mean-square error (RMSE) for various resolution levels in the com-
putation of the Pearson rank correlation.

The results of computation using coarse-resolution data can be
surprisingly accurate. Fig. 11 shows the root mean squared error
(RMSE) between the full-resolution and several partial-resolution
calculations of a 2d rank correlation within the NASA Nature Run
simulation. The graph shows the relationship among error metrics,
total computation size, and total computation time for each resolu-
tion level. The full-resolution computation requires nearly 100 GB
of data, but at low resolutions, the error is still quite reasonable and
the computation time is dramatically faster.

5.2 Combustion Simulation

Combustion simulation is crucial for modeling and analyzing com-
plex chemical and physical processes in the search for more efficient
energy utilization. One such environment is S3D [42], which has
been integrated with the PIDX library [22] to directly produce mul-
tiresolution output that can be utilized by our runtime system. These
simulations can produce up to terabytes of data per timestep and
involve extremely large domains and hundreds of fields. However,
by utilizing the multiresolution and progressive refinement, the sci-
entists can rapidly explore preliminary result instantaneously before
committing to a final static analysis.

One standard analysis of combustion simulation data is to explore
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discrete regions of burning flame within a specific range of mixed
fuel. The optional burning condition is usually achieved within such
a range. Typically, scientists will compute a derived field offline
by iterating through the full-resolution volumes of both the mixture
fraction and OH field and mask the OH field by mixture fraction
thresholds. Despite being a simple operation, due to the sheer size of
the data, this process is computationally intensive. As a result, scien-
tists often cannot repetitively experiment with different thresholds to
select the best one. Compared to the commonly used workflow, our
system enables scientists to interactively explore different thresh-
old values using a simple script. Fig. 12 illustrates the process of
applying the threshold. The OH field is shown in Fig. 12(a), and
the masked OH field where the mixture fraction of fuel and oxygen
is between 36%-40% is illustrated in Fig. 12(b). Utilizing coarse-
resolution data allows very rapid cursory exploration that can be
refined as necessary. The interactive exploration facilitated by this
work ensures that important data is not missed nor resources wasted
with unnecessary computation.

(a) (b)

Figure 12: Exploring discrete regions of burning flame within a
specific threshold of mixed fuel. (a) Shows the original OH field.
(b) Shows the application of the mask to the original OH field where
the mixture fraction of fuel and oxygen is between 36%-40%.

6 DISCUSSION

In this work, we introduced a simple yet expressive embedded script-
ing language that abstracts the location and resolution of input data
volumes, along with a runtime system to facilitate dynamic per-
formance tuning and loop interpretations for faster convergence
of incremental in-progress results. The internal data format used
by the runtime system enables efficient multiresolution data load-
ing, very fast access to regions-of-interest, multilevel architecture-
independent caching, and transparent on-demand data conversion.
As a whole, our system enables truly interactive analysis and visual-
ization workflows for massive simulation ensembles, closing a gap
in the existing technology. While our work is focused on structured
spatiotemporal dataset, similar concepts and language extensions
could be applied to unstructured data modalities in future work. We
conclude this work with a discussion of the benefits as well as some
of the current limitations of the system.

In order to evaluate the effectiveness of the proposed system, we
had to take into account all aspects of the data analysis process,
which often involves manual steps for data download and conver-
sion and the use of multiple applications in addition to the actual
computation. Because our system is intended to facilitate cursory
data exploration, the primary focus has been on incrementality and
interruptibility rather than optimization of any single computation.
The proposed work enables many time-saving advantages over ex-
isting applications, such as transparent multiresolution data access,
automatic resampling, and remote computation. To perform sim-
ilar analyses using existing techniques typically requires users to
manually download and resample specific variables of interest to
the system that will perform the computation, and then manually
construct and execute the various scripts used for the analysis. Each
step can be tedious and time-consuming, and this cumbersome pro-
cess curtails dynamic exploration of the analysis space. In contrast,
our lightweight system enables hypotheses to be more easily tested,
and even allows for more rapid discovery and validation of errors in

the underlying data, as described in the Annual Zonal Average case
study of Section 5.

The transparent data access enabled by the on-demand data re-
ordering system provides a tremendous advantage in simplicity to
enable multiresolution data access, but this system is intended as a
measure to ease the transition for users of legacy data. Though com-
putationally efficient, reordering large datasets that are not currently
provided in a multiresolution format still requires time to read and
write the data. We hope and anticipate that the use of reordered data
formats will become more common, and our demonstration of the
use of multiresolution data access to facilitate unprecedented inter-
active analysis of massive datasets such as the 7km NASA GEOS-5
Nature Run simulation adds to the growing body of evidence to
support adoption of such formats. The settings we selected for data
conversion in this work result in cached datasets that are between
17-28% larger than the original data. However, there are many
tuning parameters that can be selected for data reordering such as
multiresolution bit string, block size, and methods of compression.
The IDX format utilized for this work supports variable-size blocks,
and different data orderings within the blocks themselves, either row-
major or Hz order. These each provide trade-offs in terms of disk
usage, access time, and compressibility. Data storage is an ongoing
area of research and more importantly, the methods demonstrated
by this work can utilize any similar type of data format to equal
advantage. In other words, the proposed DSL is not tied to a specific
multiresolution format.

The EDSL runtime presented here provides an option to perform
the computation of a script using remote resources. This can be
used to manually construct dataflows that utilize a combination of
resources including remote servers, local systems, or GPU hardware.
For future work, we would like to explore using more dynamic
selection in order to make the best use of distributed computational
resources. We adopted JavaScript as our host language because it
was simple to write our own interpreter, but in the future, we intend
to explore alternatives such as Python. Finally, we hope to extend
the runtime with the ability to cache derived fields, i.e., averages, so
that they could be shared like any other data in the system. In this
manner our system could be utilized with other applications such
as UV-CDAT or VisIt as a preliminary data processing facility that
updates local data to be visualized by those applications.
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