
Flavor of Computational
Geometry

Voronoi Diagrams

Shireen Y. Elhabian
Aly A. Farag

University of Louisville
March 2010

Pepperoni Sparse Pizzas
Olive Sparse Pizzas

Just Two Pepperonis

A person gets the part of the
pizza closest to their pepperoni.

Pizza with 3 Pepperonis

Each person gets the part of the
pizza closest to their pepperoni.

Four olives

Each person gets the part of the
pizza closest to their olive.

The State Forest has four fire
towers. We want to partition the

State Forest into four regions so that
the individuals in the fire towers are

searching for fires in the region
nearest to their own tower.

A Voronoi diagram
represents

the region of influence
around each of a
given set of sites.

Terminology

• Voronoi site - red dots
• Voronoi diagram -

edges of polygonal
regions

• Voronoi point - corners
of polygonal regions

Georgy Voronoy
• 1868-1908
• Ukraine-Poland
• Theory of numbers:

– Continued fractions
– Roots of an irreducible cubic

equation

• Winner of the Bunyakovsky
Prize from the St. Petersburg
Academy of Sciences.

• He defined the Voronoi
diagram

The Post Office Problem

Problem Statement

• Suppose we want to open a new branch for a supermarket chain
at a certain location.

• To predict whether the new branch will be profitable, we must
estimate the number of customers it will attract.

• Thus we need to model the behavior of our potential customers:
how do people decide where to do their shopping?

• A similar question arises in social geography, when studying the
economic activities in a country: what is the trading area of
certain cities?

Post Office: What is the area of service?

q

q : free point

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

Assumptions

• The price of a particular good or service is the same at
every site;

• The cost of acquiring the good or service is equal to
the price plus the cost of transportation to the site;

• The cost of transportation to a site equals the
Euclidean distance to the site times a fixed price per
unit distance;

• Consumers try to minimize the cost of acquiring the
good or service.

Geometric Interpretation

• The assumptions in the model induce a subdivision of the total
area under consideration into regions, the trading areas of the
sites, such that the people who live in the same region all go to
the same site.

• Our assumptions imply that people simply get their goods at the
nearest site, a fairly realistic situation.

Definitions and Basic
Properties

Voronoi Diagram

q

q : free point

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

pj

Voronoi Cell

Structure of Voronoi Cell

We now take a closer look at the
Voronoi diagram. First we study the
structure of a single Voronoi cell.

p q

h(p,q) h(q,p)

Half-plane
contains q

Half-plane
contains p

r

Structure of Voronoi Diagram

What does the complete Voronoi
diagram look like?

• We just saw that each cell of the diagram is the intersection of a
number of half-planes.

• So the Voronoi diagram is a planar subdivision whose edges are
straight.

• Some edges are line segments (having starting and ending points)
and others are half-lines (only having starting point).

• Unless all sites are collinear there will be no edges that are full
lines.

Voronoi Diagram Example: 1 site

Two sites form a perpendicular bisector

Voronoi Diagram is a line
that extends infinitely in
both directions, and the
two half planes on either
side.

Collinear sites form a series of parallel lines

Non-collinear sites form Voronoi half lines
that meet at a vertex

A Voronoi vertex is
the center of an empty
circle touching 3 or
more sites.

v

Half lines

A vertex has
degree ³ 3

Voronoi Edges and Vertices

What does the complete Voronoi
diagram look like?

q

q : free point

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

CP(q) : Largest empty
circle of q

CP(q)

A Voronoi vertex is
the center of an empty
circle touching 3 or
more sites.

A vertex q
of Vor(P)

q
CP(q)

q

CP(q)

pi

pj

A point q on an edge
of Vor(P)

Voronoi Cells and Segments

v

v

Unbounded CellBounded Cell

Segment

Voronoi Cells and Segments

Who wants to be a Millionaire?

vWhich of the following is true for
2-D Voronoi diagrams?

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above

Degenerate Case: no bounded cells L

v

Summary
of

Voronoi Properties

A point q lies on a Voronoi edge between sites pi and pj
if and only if the largest empty circle centered at q
touches only pi and pj

– A Voronoi edge is a subset of locus of points equidistant
from pi and pj

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

A point q is a vertex if and only if the largest empty
circle centered at q touches at least 3 sites

– A Voronoi vertex is an intersection of 3 more segments,
each equidistant from a pair of sites

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

Complexity of Voronoi
Diagrams

Voronoi diagrams have linear complexity
{|v|, |e| = O(n)}

Intuition: Not all bisectors are Voronoi edges!

e

e : Voronoi edge

pi

pi : site points

Claim: For n ³ 3, |v| £ 2n - 5 and |e| £ 3n - 6

Proof: (Easy Case)

…

Collinear sites à |v| = 0, |e| = n – 1

Recall …

Claim: For n ³ 3, |v| £ 2n - 5 and |e| £ 3n - 6

Proof: (General Case)

• Euler’s Formula: for connected, planar graphs,
|v| – |e| + f = 2

Where:

|v| is the number of vertices

|e| is the number of edges

f is the number of faces

Recall …

Claim: For n ³ 3, |v| £ 2n - 5 and |e| £ 3n - 6

Proof: (General Case)

• For Voronoi graphs, f = n à (|v| +1) – |e| + n =
2

epi

v¥

To apply Euler’s Formula, we
“planarize” the Voronoi diagram
by connecting half lines to an extra
vertex.

Moreover,

and

so

together with

we get, for n ³ 3

||2)deg(
)(

ev
PVorv

×=å
Î

),(PVorvÎ" 3)deg(³v

)1|(|3||2 +³× ve

2||)1|(| =+-+ nev

63||
52||

-£
-£
ne
nv

Constructing Voronoi
Diagrams

Intuitions

Given a half plane intersection algorithm…

Given a half plane intersection algorithm…

Given a half plane intersection algorithm…

Given a half plane intersection algorithm…

Repeat for each site

Running Time:
O(n2 log n)

Can we do better ?!!!

Constructing Voronoi
Diagrams

Fortune’s Algorithm

• Half plane intersection O(n2 log n)

• Fortune’s Algorithm

– Sweep line algorithm

• Voronoi diagram constructed as horizontal line sweeps
the set of sites from top to bottom

• Incremental construction à maintains portion of
diagram which cannot change due to sites below sweep
line, keeping track of incremental changes for each site
(and Voronoi vertex) it “sweeps”

What is the invariant we are looking for?

Maintain a representation of the locus of points q that
are closer to some site pi above the sweep line than to
the line itself (and thus to any site below the line).

e
v

pi

Sweep Line

q

Which points are closer to a site above the sweep line
than to the sweep line itself ?

Sweep Line

pi

q

The set of parabolic arcs form a beach-line that bounds
the locus of all such points

Equidistance

Break points trace out Voronoi edges.

Equidistance

Sweep Line

pi

q

Break points do not trace out edges continuously in the actual
algorithm. The sweep line stops at discrete event points as will

be shown later.

Arcs flatten out as sweep line moves down.

Sweep Line

pi

q

Eventually, the middle arc disappears.

Sweep Line

pi

q

We have detected a circle that is empty (contains no
sites) and touches 3 or more sites.

Sweep Line

pi

q

Voronoi vertex!

Beach Line properties

• Voronoi edges are traced by the break points as
the sweep line moves down.

– Emergence of a new break point(s) (from formation
of a new arc or a fusion of two existing break
points) identifies a new edge

• Voronoi vertices are identified when two break
points meet (fuse).

– Decimation of an old arc identifies new vertex

Constructing Voronoi
Diagrams

Data Structures

Data Structures

• Current state of the Voronoi diagram

– Doubly linked list of half-edge, vertex, cell records

• Current state of the beach line

– Keep track of break points

– Keep track of arcs currently on beach line

• Current state of the sweep line

– Priority event queue sorted on decreasing y-coordinate

Discrete sweep steps, rather than a continuous sweep

Doubly Linked List (D)

• Goal: a simple data structure that allows an
algorithm to traverse a Voronoi diagram’s
segments, cells and vertices

e
v

Cell(pi)

Doubly Linked List (D)
• Divide segments into uni-directional half-edges

• A chain of counter-clockwise half-edges forms a cell

• Define a half-edge’s “twin” to be its opposite half-edge of the
same segment

e

v

Cell(pi)

Doubly Linked List (D)

• Cell Table
– Cell(pi) : pointer to any incident half-edge

• Vertex Table
– vi : list of pointers to all incident half-edges

• Doubly Linked-List of half-edges; each has:
– Pointer to Cell Table entry

– Pointers to start/end vertices of half-edge

– Pointers to previous/next half-edges in the CCW chain

– Pointer to twin half-edge

Balanced Binary Tree (T)
• Internal nodes represent break points between two arcs

– Also contains a pointer to the D record of the edge being traced

• Leaf nodes represent arcs, each arc is in turn represented
by the site that generated it

– Also contains a pointer to a potential circle event

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

pi

pj
pk

pl

l

Event Queue (Q)

• An event is an interesting point encountered by the
sweep line as it sweeps from top to bottom

– Sweep line makes discrete stops, rather than a continuous
sweep

• Consists of Site Events (when the sweep line
encounters a new site point) and Circle Events (when
the sweep line encounters the bottom of an empty circle
touching 3 or more sites).

• Events are prioritized based on y-coordinate

Site Event

A new arc appears when a new site appears.

l

Site Event

A new arc appears when a new site appears.

l

Site Event

Original arc above the new site is broken into two

à Number of arcs on beach line is O(n)

l

Circle Event

An arc disappears whenever an empty circle touches
three or more sites and is tangent to the sweep line.

Sweep line helps determine that the circle is indeed empty.

Circle Event!
Sweep Line

pi

q

Voronoi vertex!

Event Queue Summary
• Site Events are

– given as input

– represented by the xy-coordinate of the site point

• Circle Events are

– computed on the fly (intersection of the two bisectors in between
the three sites)

– represented by the xy-coordinate of the lowest point of an empty
circle touching three or more sites

– “anticipated”, these newly generated events may be false and need to
be removed later

• Event Queue prioritizes events based on their y-coordinates

Summarizing Data Structures

• Current state of the Voronoi diagram

– Doubly linked list of half-edge, vertex, cell records

• Current state of the beach line

– Keep track of break points

• Inner nodes of binary search tree; represented by a tuple

– Keep track of arcs currently on beach line

• Leaf nodes of binary search tree; represented by a site that generated the
arc

• Current state of the sweep line

– Priority event queue sorted on decreasing y-coordinate

Constructing Voronoi
Diagrams

Algorithm

1. Initialize

• Event queue Q ß all site events

• Binary search tree T ß Æ

• Doubly linked list D ß Æ

2. While Q not Æ,

• Remove event (e) from Q with largest y-coordinate

• HandleEvent(e, T, D)

Handling Site Events

1. Locate the existing arc (if any) that is above the
new site

2. Break the arc by replacing the leaf node with a sub
tree representing the new arc and its break points

3. Add two half-edge records in the doubly linked list

4. Check for potential circle event(s), add them to
event queue if they exist

Locate the existing arc that is
above the new site

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

• The x coordinate of the new site is used for the binary search
• The x coordinate of each breakpoint along the root to leaf path

is computed on the fly

pi

pj
pk

pl

lpm

Break the Arc

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

Corresponding leaf replaced by a new sub-tree

pi

pj
pk

pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Different arcs can be identified
by the same site!

Add a new edge record in the doubly
linked list

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pm pl

< pl, pm>

< pm, pl>

pl

pi

pj
pk

pl

l
pm

New Half Edge Record
Endpoints ß Æ

Pointers to two half-edge
records

l
pm

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge

– Triples with new arc in the middle do not have
break points that converge

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge

– Triples with new arc in the middle do not have
break points that converge

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge

– Triples with new arc in the middle do not have
break points that converge

Converging break points may not
always yield a circle event

• Appearance of a new site before the circle event
makes the potential circle non-empty

l

(The original circle event becomes a false alarm)

Handling Site Events

1. Locate the leaf representing the existing arc that is
above the new site

– Delete the potential circle event in the event queue

2. Break the arc by replacing the leaf node with a sub
tree representing the new arc and break points

3. Add a new edge record in the doubly linked list

4. Check for potential circle event(s), add them to
queue if they exist

– Store in the corresponding leaf of T a pointer to the new
circle event in the queue

Handling Circle Events

1. Add vertex to corresponding edge record in doubly
linked list

2. Delete from T the leaf node of the disappearing arc
and its associated circle events in the event queue

3. Create new edge record in doubly linked list

4. Check the new triplets formed by the former
neighboring arcs for potential circle events

A Circle Event

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Add vertex to corresponding edge record

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Half Edge Record
Endpoints.add(x, y)

Half Edge Record
Endpoints.add(x, y)

Link!

Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>

Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>

< pk, pm>

Create new edge record

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>

< pk, pm>

New Half Edge Record
Endpoints.add(x, y)

A new edge is traced out by the new
break point < pk, pm>

Check the new triplets for
potential circle events

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>

< pk, pm>

Q y…

new circle event

Minor Detail

• Algorithm terminates when Q = Æ, but the
beach line and its break points continue to trace
the Voronoi edges

– Terminate these “half-infinite” edges via a bounding
box

Algorithm Termination

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l

pm
pm pl

< pm, pl>

< pk, pm>

Q Æ

Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q Æ

Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q Æ

Terminate half-lines
with a bounding box!

Constructing Voronoi
Diagrams

Running Time Analysis

Handling Site Events

1. Locate the leaf representing the existing arc that
is above the new site

– Delete the potential circle event in the event queue

2. Break the arc by replacing the leaf node with a
sub tree representing the new arc and break
points

3. Add a new edge record in the link list

4. Check for potential circle event(s), add them to
queue if they exist

– Store in the corresponding leaf of T a pointer to the
new circle event in the queue

Running Time

O(log n)

O(1)

O(1)

O(1)

Handling Circle Events

1. Delete from T the leaf node of the
disappearing arc and its associated
circle events in the event queue

2. Add vertex record in doubly link list

3. Create new edge record in doubly link
list

4. Check the new triplets formed by the
former neighboring arcs for potential
circle events

Running Time

O(log n)

O(1)

O(1)

O(1)

Total Running Time

• Each new site can generate at most two new arcs

àbeach line can have at most 2n – 1 arcs

àat most O(n) site and circle events in the queue

• Site/Circle Event Handler O(log n)

à O(n log n) total running time

Is Fortune’s Algorithm Optimal?
• We can sort numbers using any algorithm that

constructs a Voronoi diagram!

• Map input numbers to a position on the number
line. The resulting Voronoi diagram is doubly linked
list that forms a chain of unbounded cells in the
left-to-right (sorted) order.

-5 1 3 6 7

Number
Line

Constructing Voronoi
Diagrams

Duality and degenerate cases

Voronoi Diagram/Convex Hull Duality

Sites sharing a half-infinite edge are convex hull vertices

e
v

pi

Degenerate Cases

• Events in Q share the same y-coordinate

– Can additionally sort them using x-coordinate

• Circle event involving more than 3 sites

– Current algorithm produces multiple degree 3
Voronoi vertices joined by zero-length edges

– Can be fixed in post processing

Degenerate Cases

• Site points are collinear (break points neither
converge or diverge)

– Bounding box takes care of this

• One of the sites coincides with the lowest point
of the circle event

– Do nothing

Site coincides with circle event:
the same algorithm applies!

1. New site detected
2. Break one of the arcs an infinitesimal distance

away from the arc’s end point

Site coincides with circle event

Summary

• Voronoi diagram is a useful planar subdivision
of a discrete point set

• Voronoi diagrams have linear complexity and
can be constructed in O(n log n) time

• Fortune’s algorithm (optimal)

