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“A smile is a curve that 
sets everything 
straight…”

Phyllis Diller
(American comedienne and actress, born 1917)  
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Introduction

We will discuss some of the existing curves associated with their
interpolation techniques. We will start with few of the important
properties which we desire for curves e.g. continuity and affine
invariance. We will introduce transformations for manipulating
curves and then proceed to discuss some of the most popular
curves used in computer graphics. But let’s first introduce the
notion of parametric curves which will be later extended to
define parametric surfaces.



Points in space



• A point, which can be defined as follows:



Line Segment



• A line segment can be defined by its ending points.

• Many ways to define the equation of a line.

• Think about it as a road, we will end up with the parametric
form of the line.

x0

x1

t = 0

t = 1

x(t)=(1-t) x0+t x1





Affine Transformations



What is a transform?

Recall …





Scaling



Scaling in 2D

• Scaling a coordinate means multiplying each of
its components by a scalar

• Uniform scaling means this scalar is the same
for all components:

´ 2



Scaling in 2D

• Non-uniform scaling: different scalars per
component:

• How can we represent this in matrix form?

X ´ 2,
Y ´ 0.5



Scaling in 2D

• Scaling operation:

• Or, in matrix form:
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Scaling in 3D
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Translation



Translation in 2D
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Translation in 3D

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

×

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

11000
100
010
001

1
'
'
'

z
y
x

t
t
t

z
y
x

z

y

x

(x’,y’,z’)

(x,y,z) T=(tx,ty,tz)

z

x

y



Rotation



Rotation in 2D

q

(x, y)

(x’, y’)
x’ = x cos(q) - y sin(q)
y’ = x sin(q) + y cos(q)
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Rotation in 3D
• How should we specify rotations?

• In 2D, it was always counterclockwise in the xy-plane.

• In 3D, we have more choices

– xz-plane, yz-plane, an arbitrary plane.

• We could specify these in terms of the vector
perpendicular to the plane of rotation.

– z axis, y-axis, x-axis, arbitrary axis



Rotation in 3D – Euler Angles
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Curves



What are they?



Example – Space Curves

The intersection is a
circle (space curve)

x
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z

1

y -½ =0
x2 + y2 + z2 = 1



Parametric Curves



Parametric Curves
• Some restrictions should be placed on the continuous functions defining the

curve in order not to fill the space, however there are still some parametric
curves that are space filling, e.g. the Peano curve.

In 1880 the Italian logician Giuseppe Peano (1858-1932) constructed the Peano curve, a
base motif fractal which uses a line segment as base. The motif is dividing the line
segment in three parts, and making a square up and down the middle part. This leads to a
filled square, so the curve is a space-filling curve.

Peano curve - 2Peano curve - 1Peano curve - 0



Affine Invariance

Proof  left as homework L



Convex Hull



• Another useful property is that if a curve lies within its convex hull which can
be defined as follows:

x y
x

y

Non-convex setConvex set



Given a set of  pins on a pin board and a rubber band around them. How does the 
rubber band look when it snaps tight? We represent the convex hull as the sequence 
of  points on the convex hull polygon, in counter-clockwise order.



Interpolation



• In numerical analysis, interpolation is a method of constructing new points
within the range of a discrete set of known points.

• From the engineering point of view, we often has a number of points,
obtained by sampling or experimentation, and we wish to construct a
function which closely fits these points, this is called curve fitting where
interpolation is a special case, in which the function must go exactly through
the known points.

• Another way to define interpolation is from its linguistic meaning, inter means
between and pole means points or nodes, hence any method of calculating a
new point between two or more known points is called interpolation.



n-degree Interpolation



Lagrange Interpolation

Joseph-Louis Lagrange, Italian-born mathematician and astronomer, who lived 
most of  his life in Prussia and France, making significant contributions to all fields 
of  analysis, to number theory, and to classical and celestial mechanics.



Example: Uniform Lagrange Interpolation
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Basis functions for uniform Lagrange interpolation of  degree 3.





Uniform Lagrange interpolation of four points, control points are shown in read, the convex
hull of the control points is shown in dashed-red line while the convex hull of the generated
curve (shown in dashed-blue) is much larger than the convex hull of the control points, hence
Lagrange curve does not satisfy the convex hull property.
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In Matlab…



Next …

• However Lagrange interpolation does not satisfy the convex hull
property.

• Typically, we would like the curve to be more confined, i.e. the
area of the convex hull of the curve should not be much greater
than the area of the convex hull of the control points.

• Next we will discuss some of the more popular curves and how
they may be used to interpolate points.



Bézier Curves
Bézier curves are one of  the most 
popular representations for curves.

Pierre Étienne Bézier (September 1, 1910 – November 25, 1999) was a 
French engineer and patentor (but not the inventor) of  the Bézier curves 
and Bézier surfaces that are now used in most computer-aided design and 
computer graphics systems. 





The t in the function for a linear Bézier curve can be thought of as describing how far x(t) is
from P0 to P1. For example when t=0.25, x(t) is one quarter of the way from point P0 to P1. As t
varies from 0 to 1, x(t) describes a curved line from P0 to P1.



For quadratic Bézier curves one can construct intermediate points Q0 and Q1 such that as t varies from 0 to 1:
Point Q0 varies from P0 to P1 and describes a linear Bézier curve. Point Q1 varies from P1 to P2 and describes a
linear Bézier curve. Point x(t) varies from Q0 to Q1 and describes a quadratic Bézier curve.



For higher-order curves one needs correspondingly more intermediate points. For cubic curves one
can construct intermediate points Q0, Q1 & Q2 that describe linear Bézier curves, and points R0 &
R1 that describe quadratic Bézier curves. For fourth-order curves one can construct intermediate
points Q0, Q1, Q2 & Q3 that describe linear Bézier curves, points R0, R1 & R2 that describe
quadratic Bézier curves, and points S0 & S1 that describe cubic Bézier curves.





Bernstein Polynomials Properties

Proof  left as homework L



Example
• The most popular Bézier curves are Bézier curves of degree 3. Let the

control points be given as follows:
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Basis functions for Bézier curves of  degree 3.



• The curve will be defined by;
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Bézier curve of  four points and its convex hull , control points are shown in read, the convex hull of  the control 
points is shown in dashed-red line while the convex hull of  the generated curve (shown in dashed-blue) is inside 
the convex hull of  the control points, hence Bézier curve satisfy the convex hull property.



In Matlab…



Derivatives of  Bézier Curves

Homework L

Differentiate Bézier curve and prove Theorem 4

Thus we have immediate form of the derivative at the end points.
These are the tangents to the curve at the end points. This will be
useful in defining curves that are piecewise continuous.



Piecewise Continuous Bézier
Curves



• We can construct Bézier curves of arbitrary degree, however it becomes more
difficult to control the curves since the Bézier curve is only guaranteed to
interpolate end points. Instead we can create several Bézier segments that are
piecewise continuous.

• There are different kinds of continuity which can be considered.







Recall…



Example
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In Matlab…



In Matlab…



Bézier Curves Rendering



de Casteljau's Method
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Recursive Subdivision

Although de Casteljau's method can be numerically stable, we still do not
know how many points the Bézier curve needs to be evaluated to obtain
acceptable results. Next we will discuss how Bézier curves can be
subdivided until a desired level of accuracy is obtained.
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Rational Bézier Curves 
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Surfaces





Tensor Product Surfaces



Tensor Product Bézier Surfaces



• Using the normals, we can define
piece-wise continuous Bézier surfaces,
where de Casteljau’s algorithm can be
applied to efficiently render these
surfaces. (refer to the reading material)

Piecewise Continuous Bézier Surfaces



Triangular Bézier Surfaces

Instead of arranging the initial configuration of the control
points in a rectangular fashion as with tensor product Bézier
surfaces, we can arrange the control points in a triangle (see
the following figure). If the degree of the Bézier surface is n,
then there are n+1 control points on each side.
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The Bézier triangles are affine invariant, the surface interpolates the three corner control points
and the surface lies within the convex hull of the control points.



Rational Bézier Surfaces



Subdivision Surfaces
We saw before how to subdivide a Bézier curve using de Casteljau’s method.
With sufficient subdivision, the Bézier curve segments can be approximated
by lines.

If we proceed to subdivide an infinite number of times, the limit curve is the
Bézier curve.

However, this is not the only way to subdivide a curve, we can recursively
introduce new control points as a function of the given control points to
produce smoother curves, different subdivision methods apply different
subdivision rules, i.e. how to obtain new points in terms of the points at the
current iteration.

In the same way that curves can be recursively subdivided, we can subdivide a
surface control mesh. The tensor product Bézier surface can be modeled in
this manner, but subdivision is not limited to rectangular meshes, triangular
ones can also be subdivided.





Loop Subdivision

Loop’s subdivision scheme works on triangular meshes. The surface is an
approximating surface, that is it doesn’t interpolate (passes through) its control
points. A new vertex is added for each edge, at each subdivision step.
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Edge mask
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Vertex mask



Thank You!!!


