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“A smile 1s a curve that
sets everything
straight...”

Phyllis Diller
(American comedienne and actress, born 1917)
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Introduction

We will discuss some of the existing curves associated with their
interpolation techniques. We will start with few of the important

properties which we desire for curves e.g. continuity and affine

invariance. We will introduce transformations for manipulating
curves and then proceed to discuss some of the most popular

curves used in computer graphics. But let’s first introduce the
notion of parametric curves which will be later extended to

define parametric surfaces.



Points in space



* A point, which can be defined as follows:

Definition 1: Rea/ Euxclidean d-space i5 given by R% = {x = (x1, x5, ., xg)| X; € R} where X denotes a
point with d-coordinates.

Example: R! = R is the real line while R?> = {X = (x,y)} is the standard Euclidean plane and
R® = {x = (x,y, 2)} is the three dimensional space.




Line Segment



t=0 X

* A line segment can be defined by its ending points.

* Many ways to define the equation of a line.

* Think about it as a road, we will end up with the parametric t =1 » X4
form of the line.

Think of it as if you started at X, then walk ¢ of the distance between Xg and X;, hence your
current position will be defined as follows;

X(t) =Xo+t(X; —Xg) = Xo+ tX; —tXo = (1 — t)Xo + tX4 (1)

Hence, what we have done now is representing any point on the line connecting X, and X, by a

weighted average of the two ending points, this average is parameterized by one parameter .



(=0 X

’ X(f):(/-/) X0+f Xi

t=1 g X
We can re-wnte (1) as:
x(t) = fo(t)xo + f1(t)x4 2
Where fo(t) =1 —tand f,(t) = t.
Since we are representing a line, the degree of fj (t) for k = 0,11is one (i.e. linear functions), hence

we only need two points to represent a line segment.

Eq(2) can be thought of as representing a line segment with confro/ points Xg and X, being
interpolated with basis functions fi, (t). This equation is usually referred to as the parametric equation of a
line, let’s now generalize this notion to curves and later to surfaces, where curves are represented by

non-linear basis functions and hence we need more control points.



Affine Transformations



What is a transform?

Definition 2: 4 transform/ warp on R% s any mapping W: R% - RE. That s, each point X € R2 s mapped
to excactly one point W (X) also in R?.
¥ 4

Definition 3: Lez W: R — R2 ke g transform. W is said to be a linear transform/warp if and only if:

(a) Foralla € R and all X € R we have W (ax) = aW (X).
(b) Forall X,y € R we have W (X +y) = W (X) + W (y).

This implies that W(0) =0 since W(0.x) =0.W(x) =0. An example of a linear
transform/warp is the identity transform given by W(x) =x.

Recall ...

Definition : If x,y,zZ,w € Randw # 0, #her (X,, Z, W)T 15 a homogeneous coordinate representation of

T
. X J Z
the point (— L4 —) )

’ ’
w w w




Definition 4: Loz W: R — R Je g transform. W 5 said o be a translation if there exusts t € RE s that

Jor all X € R2 we have W (x) = X + t. A transiation moves all vectors or points by a fixed distance in a fixed
direction.

Definition 5: 4 affine ransform is a transform that can be written as W(X) = T(L(X)) where L(.) is a
linear transform and T (.) is a transiation. This can also be written as W (X) = L(X) + t or W = T, L.

Any linear transform in R? can be represented by a 3x3 matrix of the following form;

311 7£)12 {)13
L= 1£)21 15)22 1£)23
331 15’32 15)33




Scaling

In order to change the size of an object in R2, if we assume that the object 1s centered at the ongin,

then scaling is given by;
s 0 O
S=10 s 0
0 0 s

To scale a point we apply the matrix S to the pointX € R3 where X = {x,y,z} to get

s 0 0\ /x SX
X' =85x=|0 s 0 (y) = (S}')
0 0 s/ ‘z SZ
This is called mzzform sm/z'ﬂg since we change the size of the object in all directions with the same

amount, however, it is not necessary to scale evenly in all directions, in this case we can define the
non-uniform scaling matnx as follows;

s, 0 0
s=10 Sy 0
0 0 s,

Where x, y, Z connotes the three dimensions in a 3D Euclidean space.



Scaling in 2D

* Scaling a coordinate means multiplying each of
its components by a scalar

* Uniform scaling means this scalar is the same
for all components:




Scaling in 2D

* Non-uniform scaling: different scalars per
component:

* How can we represent this in matrix form?



Scaling in 2D

* Scaling operation:

X' ax

V' Loy

* Or, in matrix form: I —
x' a 0

V] L0 b

H_/

scaling matrix



> <

I
_xy21

_
SO O

Scaling in 3D

S O SO

N,



Translation

Translations in R® cannot be written as 3x3 matrices, however to allows a unified representation for
affine transforms, we can use the homogeneous coordinate system which allows us to represent an

affine transform as a matrix. A translation by t = (t,, t;, tZ)T 1s given by a 4x4 matnx defined as:

1 0 0 ¢
T, = 0 1.0 ¢
0 0 1 ¢
0O 0 0 1
Linear transforms can also be represented as transforms on homogeneous coordinate systems as
follows;
{)11 {)12 {’13 0
L = 321 £22 {)23 0
{)31 1?32 {)33 0
0 0 0 1

Affine transforms can be represented as combination of a linear transform and a translation, thus

can be represented by the matrix product W = T, L in the homogeneous coordinate system.

1 0 t,

In the same manner, translation matrices can be defined in the 2D spaceas S = |0 1 ty

0 0 1



Translation in 2D

'—
X=x+I

'

y=y+5

al=g -

i
= N

~ ~—
X



oSO O =

oo = O

Translation in 3D

oS = O O

.|| X
ty . y
||z y
111
(x!,y!,z!)
(x,y,2) | T=(totyt)
» X



Rotation

In R3, the rotation matrix about the z-axis can be written as;

cosa —sina 0
R,,=|sina cosa 0
0 0 1

In the same manner, the rotation matrices about x and y axes are defined as follows;

1 0 0
Ryo =10 cosa —sina
0 sina cosa

And

cosa 0 —sina

sina 0 cosa



Rotation in 2D

x’ = x cos(0) - y sin(0)

() 1y’ = x sin(6) + y cos(0)
Or, in matrix form
(>, ) |
x'| [cos@ —sin@| x

y 'sm@ cosl |y

>



Rotation in 3D

How should we specity rotations?
In 2D, 1t was always counterclockwise in the xy-plane.
In 3D, we have more choices

— xz-plane, yz-plane, an arbitrary plane.

We could specify these in terms of the vector
perpendicular to the plane of rotation.

— 7 axls, y-axis, X-axis, arbitrary axis



Rotation in 3D — Euler Angles

Cosy —S
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Curves



What are they?

Definition 6: Curves in the standard 2-dimensional Euclidean space R? are called plane curves which can be
described either in an explicit form, Yy = f (x) i.e. as a function graph, or implicitly as a set of points which specify
an equation f (x,y) =0, this equation can be represented in a parametric form as x(t) = (x(t),y(t ))T

however we need to place restrictions on f such that the solution of f(x,y) = O do not fill the entire plane.

Definition 7: Algebraic curves are curves defined by f such that f is a polynomial function in two variables.
Equations of the first degree define straight lines, while equations of the second degree define ellipses, parabolas or

hyperbolas.

Definition 8: Curves in the standard 3-dimensional Euclidean sbace R3 are called space curves which can be
L

defined as intersections of two surfaces defined implicitly by f(x,y,z) = 0 and g(x,y,2) = 0.




Example — Space Curves

Example: the intersection of two surfaces x2 +y2 + z2 =1 (1.e. sphere) and y — % = 0 (i.e. plane)

1s a circle.

— V70

The intersection is a
circle (space curve)

x? +y?+22=1




Parametric Curves

Definition 9: Parametric curves are curves a’eﬁﬂea’ in the standard 3-dimensional Euclidean space R3 /»
terms of some parameter, say t. The curve can then be written as: x(t) = (x (t), y(t), Z(t))T where x(t), y(t)

and z(t) are continuous functions defined on some interval t € [a, b]| where each value of t defines a point on the
curve. The curve is defined to be the set of all such points.

Note that parametric curves can also be defined in the standard 2-dimensional Euclidean space R?,
hence it can be written as X(t) = (x(t), y(t))T.

In most cases, it is assumed that X(t) can be differentiated at least twice, i.e. first and second
derivates are defined for t € [a, b].

Definition 10: L7 {X1,X5, ..., X, } be a set of points in the d-dimensional Euclidean space, a curve can be
defined in terms of these points as:

e %O = LK+ LO%+ -+ fiO%= ) fulx

Where [, (t) are continuous functions defined on the interval t € [0,1]. The points X1,X2,

control point and f}.(t) are called the basis fanctions of the curve C.

e, Xq are called




Parametric Curves

* Some restrictions should be placed on the continuous functions defining the
curve in order not to fill the space, however there are still some parametric
curves that are space filling, e.g. the Peano curve.

Peano curve - 0 Peano curve -1 Peano curve - 2

In 1880 the Italian logician Giuseppe Peano (1858-1932) constructed the Peano curve, a
base motif fractal which uses a line segment as base. The motif is dividing the line
segment in three parts, and making a square up and down the middle part. This leads to a
filled square, so the curve is a space-filling curve.



Affine Invariance

Given a curve defined by Y1i_; fi (t)X) where t € [0,1], we would like to investigate what happens

when an affine transform i1s applied to the curve.

Definition 11: A curve is said o be affine invariant i the affine transform/warp wi(.) applied to the points
generated by the curve, i.e. x(t) = Z;::l fr ()X , produces precisely the same curve as transforming the control

points of the curve, 1.e Xy, and then calculating the curve, that is:

w (Zzzlfk (t)xk) = Z:=1fk ()W (xy)

This will be satisfied if the basis functions fi,(t) of the curve satisfy the property Yi_1 fr () = 1 for t € [0,1].

Theorem 1: Let C be a curve defined by Y3i_ 1 fro (€)X where t € [0,1]. If the basis functions f,(t) are a
partition of umty that is 27}:=1 fi(t) =1 Jor t € [0,1], then C is affine invariant, i.e. for any affine transform

W = TL where L is a linear transform and T is a transiation by W, we have:

% (zzzlfk (%) = Zzzlfk (W (x,.)

Proof left as homework ®




Convex Hull



* Another useful property is that if a curve lies within its convex hull which can
be defined as follows:

Definition 12: L {X4,Xo,...,X,} be a set of points in the d-dimensional Euclidean space R and

QAq,Q5, ..., Apbe real numbers, then:

(1) Yt @;X; = Q1Xq + QX5 + ... + A X, is called a linear combination ¢fX1,X3, ..., Xp.
2) If Yieja; =1, then Y1, ;X; = a4Xq + A2Xp + ... + A, Xy, is5 called an affine combination

0/ X1,X2, ..., Xn-
B)IF Y a;=1anda; =0, then Y1y ;X; = A1Xq + QX5 + ... + A Xy, i5 called a weighted

average o/ X1,X2, ..., Xp.

Definition 13: Ler A be a set of points in R, The set A is convex if and only if for any two points X,y € A,
the line segment joining X and Y is entirely in A.

Convex set Non-convex set



Definition 14: The convex hull of A is the smallest convex set containing A, hence the convex hull of the set A

is the set of points that are weighted averages of points in that set, thus;

n n
Chull(A):{X:X:Z aixi,xiEA,Z ai :l,aiEO}
i=1 i=1

Where A = {X1, X2, v, X0 )

Given a set of pins on a pin board and a rubber band around them. How does the
rubber band look when it snaps tight? We represent the convex hull as the sequence
of points on the convex hull polygon, in counter-clockwise order.




Interpolation



* In numerical analysis, nterpolation 1s a method of constructing new points
within the range of a discrete set of known points.

* TFrom the engineering point of view, we often has a number of points,

obtained by sampling or experimentation, and we wish to construct a
function which closely fits these points, this is called curve fitting where
interpolation is a special case, in which the function must go exactly through
the known points.

* Another way to define interpolation is from its linguistic meaning, zzfer means
between and pol means points or nodes, hence any method of calculating a
new point between two or more known points is called interpolation.



n-degree Interpolation

When we perform s-degree interpolation, we need #+7 known points, hence we will be given a set

of control points, Xg,X1,X2, ..., X, (indexing now starts from O rather than 1 to have #+7 points).

According to Definition 10, a curve can be defined as or generated by Y.p_; fx (t)Xy where fi(t)

are the basis functions of the curve, hence different basis functions will lead to different curves.

Curve generation can be thought of as an interpolation process where the control points are

interpolated to generate points whose locus 1s the curve.

The simplest form of interpolation is Lagrange interpolation which is defined as follows:



Lagrange Interpolation

Definition 15: ¢ Xo,X1,X2, ..., Xy, be a set of control points, Lagrange interpolation of these points is
given by :

XO=) " LOx

With

e (t) = ntk —t;
]:tk

Where t; are the parameter values at which the point Xy, should be interpolated and t € [to, t,,]

Joseph-Louis Lagrange, Italian-born mathematician and astronomer, who lived
most of his life in Prussia and France, making significant contributions to all fields

of analysis, to number theory, and to classical and celestial mechanics.



Example: Uniform Lagrange Interpolation

The coordinates for interpolation are given by the following controlling points, parameter values at
which the control points should be interpolated are chosen to be t; = j, this is called uniform

Lagrange interpolation:

Xo = (1,1)T to =10
x; = (2,3)7T t, =1
X, = (4,-1)7T t, =2

X3 - (4-6,1-5)T t3 - 3



Now, let’s define the Lagrange basis functions with n = 3 (degree of interpolation) and k = 0,1,2,3

L3(t) = ﬁ

j=0
j£0

3

L3(0) = l_[

j=0
j#3

t—t

(t -1 —-2)(-3)

(t_tl
- tO_tl

)(t_tz
tO_tZ

t—DE-2)(t—-3) =

)G=%)

11
——t3+t?——t+1
6 6

-0 —-2)(t-3)
T (1-0(1-2)(1-3)

to — t; ~0-1(0-2)(0-3)

1
6

— (=) =) =)
tl_t‘ tl_to tl_tz tl_t3

1
= Et(t -2)(t—-3) =

1 5
—t3——t%+ 3¢
2 2

t—t  (t—to\(t—t;\ t—tz\ (t—0)(t—1(t—-3)

t,—t (t2 —~ to) (t2 - tl) (t2 - t3) T 2-002-12-3)

=—%t(t—1)(t—3)=—%t3+2t2—§t

t—t (t—to\(t—ti\ [ t—t\ (t—-0)(t—1D(t-2)

ty — Zj B (t3 - to) (t3 - tl) (t3 - tz) S 3-03B-1)3B-2)
1 1, 1,1

=gt(t—1)(t—2)=gt —Et +3t




1 11 1 3
L3(t) =—gt3+t2——t+1 L(t)=—zt*+2t2— <t

6 2 2
1 5 1 1 1
3 — _§3 _ _ 42 L3 t) = _t3__t2+_t
Li(t) =5t3—5t%+3t 3(t) St St? 3
3 3 3 3
LO L1 L2 L3
1.5- L L C L C
1
o7 0.5 -
0
_0.5' r r r r r
0 0.5 1 1.5 2 2.5 3

Basis functions for uniform Lagrange interpolation of degree 3.



Let’s check for the affine invariance, that is if Z’,:zo ﬁ(t) =1

L3(t) + L3(t) + L3(t) + L3(¢t)

1 11 1 5 1 3
= ——t3+t2——t+1)+(—t3——t2+3t)+(——t3+2t2——t)
( 6 6 2 2 2 2

1 1 1
+ —t3——t2+—t)=1
(6 2 3

Hence the functions LT,; (t) are a partition of unity, thus curves produced by Lagrange interpolation
are affine invarant.

The curve will be defined by;

C: x(t)=L3(t)xo + L3 (t)x, + L3(t)x, + L3(t)X5

1, , 1 1, 5,
=(—gt +t —?t+1)x0+(§t —Et +3t)X1
1 3 1 1 1
+ ——t3+2t2——t) +(—t3——t2+—t)
( 2 27)%2 gt T2t T3




S Conve§ hull of the

N— T 77

(\S]
]
-
Il
-+
w
H
O3

> 1- %

X0
t=t,=0
0- i
-1 Convex hull of the control poInts b
|
t=t, =2 "~
X r r r r L
0 1 2 3 4 5

X
Uniform Lagrange interpolation of four points, control points are shown in read, the convex

hull of the control points is shown in dashed-red line while the convex hull of the generated
curve (shown in dashed-blue) is much larger than the convex hull of the control points, hence
Lagrange curve does not satisfy the convex hull property.



%% our variables

% parameter

syms t;

% controlling points (four points)

syms x0 x1 x2 x3;

%% basis functions (cubic)

L30 = expand((-1/6) *{t-1) *{t-2)*({t-3)):;

L31 = expand((1/2)*(t-0) *(t-2)*(t-3)):

L32 = expand((-1/2)*%({t-0)*{t-1)*(t-3)):

L33 = expand((1/6) *({t-0)*{t-1)*({t-2));
L30 + L31 + L32 + L33:;

sumlL =

%% the equation of the curve

x = L30*x0 + L31*%*x1 + L32%*x2 + L33%x3;

%% the actual values of the controlling points

x0 = [1 1]1':
x1 = [2 3]1':
X2 = [4 -1]';
X3 = [4.6 1.5]"';

control pts = [x0 x1 xZ x3]:

%% generating the curve

Z=11:
i=0;
for £t =0 0.01

%3 evaluating

3

the current point

cur_x = eval(x):’

=1+ 1;
Xi:,1)

% evaluating

basisL30(i)=

bhasisL31(i)=

basisL3Z (i) =

basisL33 (i) =
end

= cur

X7

individual ba
eval (L30) ;
eval (L31);
eval (L32);
eval (L33);

the

sis functions



Next ...

* However Lagrange interpolation does not satisfy the convex hull
property.

* Typically, we would like the curve to be more confined, 1.e. the
area of the convex hull of the curve should not be much greater
than the area of the convex hull of the control points.

* Next we will discuss some of the more popular curves and how
they may be used to interpolate points.



Bézier Curves

Bézier curves are one of the most
popular representations for curves.

Pierre Etienne Bézier (September 1, 1910 — November 25, 1999) was a

French engineer and patentor (but not the inventor) of the Bézier curves

and Bézier surfaces that are now used in most computer-aided design and
computer graphics systems.




Definition 16: Lef Xo,X,X5, ..., X, be a sef of control points, a Bézier curve of degree n is given by:
n
x(t) = z B (£)%, t € [0,1]
k=0
where the basis functions B,? (t) are the Bernstein polynomials defined byy
Br(t) = (7 ) tk(1 — t)n*
k ) ~\k o )

where (7]1) = #lk)u

Bézier curves interpolate the end points X and X,, , that is it connects the end points in a fashion
directed by in-between control points, which do not lie on the curve, this 1s called endpoint

interpolation property.



Definition 17: Given two control points X, X1 , a Linear Bézier curve is smply a straight line between those

fwo points, the curve is given by:

X(t) = (1 —t)xo+ tx4 , te[0,1]

oFP,

t=0 oP,

The t in the function for a linear Bézier curve can be thought of as describing how far x(?) is
from P, to P,. For example when ¢=0.25, x(f) is one quarter of the way from point P, to P,. As ¢
varies from 0 to 1, x(7) describes a curved line from P, to P,.




Definition 18: .4 quadratic Bézier curve s the path traced by the function X(t) given three control points
X0,X1,X2’

x(t) = (1 —t)°xo+ 2t(1 —t)x; +t°x, , t€[0,1]

A guadratic Bézier curve is also a parabolic segment.

oP,

P, t=0 oP,

For quadratic Bézier curves one can construct intermediate points Q, and Q, such that as ¢ varies from 0 to 1:
Point Q, varies from P, to P, and describes a linear Bézier curve. Point Q, varies from P, to P, and describes a
linear Bézier curve. Point x(7) varies from Q, to Q, and describes a quadratic Bézier curve.



Definition 19: Four control points Xo,Xq,Xo,Xg in the plane or in three-dimensional space define a cubic
Bézier curve, zhe curve starts at X going foward Xqand arvives at Xg coming from the direction of Xo, usually it

will not pass through X4 or Xo , these points are only there to provide directional information, the parametric form of
the curve is:

(1) = (1 -3t +3t2—t3)xo+ Bt —6t2+3t3)x, + (3t2 —3t3)x, +t3x5; , t€[0,1]

oP,

P t=0 oP, Po t=0 Pa

For higher-order curves one needs correspondingly more intermediate points. For cubic curves one
can construct intermediate points Q0, Q1 & Q2 that describe linear Bézier curves, and points R0 &
R1 that describe quadratic Bézier curves. For fourth-order curves one can construct intermediate
points QO0, Q1, Q2 & Q3 that describe linear Bézier curves, points R0, R1 & R2 that describe
quadratic Bézier curves, and points SO & S1 that describe cubic Bézier curves.



Definition 20: Lef X, Xq,X5, ..., X,, D¢ a set of control points, a Bézier curve of degree n given by:

x(t) = z B ()%, £ € [0,1]

k=0

can be expressed recursively as follows: Let Xy x  x (t) denote the Bégier curve denoted by the control points

XO,Xl,Xz, e ) Xn_o I"bé)’g)

X(t) = xXoX-l...xn(t) - (1 - t)XXOX-l...Xn_-l (t) + txxlxz...xn(t)

Hence, the Bézier curve of degree n is a linear interpolation between fwo Béier curves of degree n-1.

Definition 21: Lef Xo,Xy,X5,...,X,, 0¢ a set of control points of the Bézier curve, the poljgon formed by
connecting the Bézier points with lines, starting with Xo and finishing with X, , s called the Bézier polygon. The

convex hull of the Be’-{z'erpo_/)gw: contains the Be’-{z'er curve.




Bernstein Polynomials Properties

, . I ~ ., . n n Scons
- . ISTELTT ] 71 2ALS ] LLEOT Hniry, L.ée. _ — 1, WNE7 <7 Hrves
Theorem 2: The Bernstein polynomials are a partition of unity, i.e. )3 _o By (t) = 1, hence Bézier curves are
affine invariant.

Proof left as homework ®

, . . 7 O 7 , , 7 ~ .,
Theorem 3: The Bernstein polynomials By, (t) are defined such that 0 < By (t) < 1 for t € [0,1]. A point
£ o« P - — n n e There L N - £ +] g /
of the Bégier curve X(t) = Yo By (t)Xy #s thus a weighted average of the points Xg,X1,Xg, e, X, - The
convex: hull of the curve X(t) is the set of all weighted averages of Xg,X1,Xg, v, Xy, . The Bézier curve thus lies in
the convex: hull of the points Xo,Xq,X2, v, Xy, , where the convex bull is defined by a polygon created from these
points.




Example

* The most popular Bézier curves are Bézier curves of degree 3. Let the

control points be given as follows: X, = (1,1)T
X; = (2,3)T
X, = (4,-17
X5 = (4.6,1.5)7

Now, let’s define the Bernstein polynomials, i.e. Bézier basis functions withn = 3 and k = 0,1,2,3

B3 = (J)to1—6)*° = = (33' (1 -0 = (1= =[1 -3t +3¢7 —¢°
B3(t) = (i) tli(1—¢t)* 1= G ‘_ D t(1—t)>=3t(1—t)? =3t — 6t%+ 3t3
B;(t) = (3) A= =3 !_2), ‘(A-1)=3t*(1—1t) =[3t* — 3t*

Bit) = (3) e - % 3—3|(33!_ el



Bi(t) =1—-3t+3t2—t3
B3(t) = 3t —6t>+ 3t3
B3(t) = 3t*—3t?

3 _ t3 3 3 3 3
Bi(t)=t B B] B B,
1 T T T T
0.8~
0.6 -
4
an}
0.4
0.2 -
0 f r r
0 0.2 0.4 0.6 0.8

t

Basis functions for Bézier curves of degree 3.



* The curve will be defined by;

C: x(t) = B3(t)xy + BE(t)x, + B3(t)x, + B3(t)x5
=(1—-3t+3t?2—t3)x,+ (3t —6t2+ 3t3)x, + (3t? — 3t3)x, + t3x5
4. T T T L

Convex hull of the curve
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Bézier curve of four points and its convex hull , controBpoints are shown in read, the convex hull of the control
points is shown in dashed-red line while the convex hull of the generated curve (shown in dashed-blue) is inside
the convex hull of the control points, hence Bézier curve satisfy the convex hull property.



o

%% our variables

% parameter

syms t;

% controlling points (four points)

syms x0 x1 x2 x3;

%% basis functions (cubic)
B30 = expand( (1l-t)~3):;

B31 = expand(3*t*((1-t)"~2)):
B32 = expand(3*(t*2)*%(1-t))
B33 = t£*3;

suwB = B30 + B31 + B3Z + B33;

%% the equation of the curve
x = B30%*x0 + B31%*x1 + B32%*x2 + B33*x3:;

%% the actual values of the controlling points

x0 = [1 1]
x1 = [2 3]';
X2 = [4 -1]';
X3 = [4.6 1.5]';

control pts = [xX0 x1 %2 x3]:

%% generating the curve

X =
i=
for

end

[1:

0;

t=0:0.01:1

% evaluating the current point

a
cur_x = eval(x):
i=14+1;

ZLi:,1) = cur_x;

% evaluating the individual basi
basisB30(i)= eval (B30);
basisB31(i)= eval (B31);
basisB32 (i)= eval (B32):;
basisB33 (i)= eval (B33):

unctions



Derivatives of Bézier Curves

Theorem 4: The derivative of a Bézier curve is also a Bézier curve, furthermore, we have:

x'(0) =n(x; —Xo) and X'(1) = n(X, = X,-1)

Thus we have immediate form of the derivative at the end points.
These are the tangents to the curve at the end points. This will be
useful in defining curves that are piecewise continuous.

Homework @

Differentiate Bézier curve and prove Theorem 4



Piecewise Continuous Bézier
Curves



* We can construct Bézier curves of arbitrary degree, however it becomes more
difficult to control the curves since the Bézier curve 1s only guaranteed to
interpolate end points. Instead we can create several Bézier segments that are
piecewise continuous.

Definition 22: Piecewise continuous curves are agfined fo be continuous curves, where there is also

ro;zf:'ﬂm'{')' at the points where r‘bg)' 7011
L vy

* There are different kinds of continuity which can be considered.

Definition 23: Let k = 0, a function f is C K continuous if § has the kKt derivative defined and continsous
everywhere in the domain of f. C° continuity is simply the usual definition of continuizy. f is C*® continuous if fis

CR continnous for all k = 0.

Definition 24: et f be a continuous Junction, let t = t(W) be a continuons and strict ly increasing function, let
g) = f(t(w)), i g(u) has a continuous, non-zero first derivative everywhere in its domain, then § is said t

be G continuous.




We can obtain C! continuity between two Bézier curves q(t) and r(t) defined as:
q(t) = Li—o B () and r(t) = Lk—oBi (1

Assuming that q(t) will occur before r(t), by requiring q'(1) = r’(0), using Theorem 4, we will
have:

q'(1) = n(qy — Gu-1) and r'(0) =n(r; — o)
thus we have
Qn = Qu-1 = T1 — T
For G' continuity, we require that:

On —9n-1 = S(rl —1'0) ,s =0

This can be adapted to Bézier curves of different degrees.



Theorem 5: A piecewise smooth curve C* from M Bégier curves, q*(t),1 = 1,2,...,m of degree M by

requiring that:

ab-ai = ai" —aft ;i=12..m
The continsous curve can then be defined by:
1
(a1t te o,
Q) =19°® e b
" -1
La™(t) te [ ,1]
where the control points of Q(t) are simply the control points of qi(t),i = 1,2,...,m with the restriction

wientioned above.




Definition 16: Lef Xo,X,X5, ..., X, be a set of control points, a Bézier curve of degree n is given by:

x(t) = Zzzogg(t)xk t € [0,1]

Recall... where the basis functions B;{1 (t) are the Bernstein polynomials defined by,

BR(t) = () tF (1 — ey

where (Z) = #lk)'

Definition 16 gives the equation of a Bézier curve which starts at £t = 0 and ends at t = 1. It is

useful, especially when fitting together a string of Bézier curves, to allows an arbitrary parameter
interval.

Definition 24: Lef X, X1,X5, ..., X, be a set of control points, a Bézier curve of degree n  defined over an

interval t € [to, ty] is given by:

x(t) = Z:ZOB,’}(t)xk , |t € [ty t]

where the basis functions By, () are the Bernstein polynomials defined over t € [ty, t,] given by

20-()6s) G)

where (Z) = #ik)'




Example

Let the control points of q’ be given as follows
qo = (017
q; = (0.51DT
q; = (10.5)"

q; = (1,0)T

Let the control points of q? be given as follows

q; = (1,0)T
q; =(1,-0.5)T
q; = (2,0)T

q; = (20.5)T

Note that 43 — q; = q; — qg



The curve will be defined as follows:

1
RO te[0,5)
Q) - 1
2
q-(t) tE [5’ 1]
where;
3 . . . . .
q'(©)= ), BE(©ak = BL(0ah + B,(9a} + B, (0)ah + B3 (9}
With:

n—=k

k
n _ (" t_ti—l) ( G —t )
Bk,l (t) (k) (tt _ ti—l ti — ti—l



Let’s find the basis functions for the first Bézier curve, where il = 1,n =3 and t € [O,é), hence

t, ,=to=0andt; =t, ==,

[3¥]

0 1 3-0
3 3\ (t—0 5t 3! 3 _ 3
B0=( N1 |$=| ~ogoop®-20°=1-20

5—0/) \5-0
=1-6t+12t*—8t°

1 1 3—-1

3 _ 3 t—0 f_t 3! 2 2
B2, =(3) ) |1 ] “meop@®a-r=3ent-20
2 2

=6t — 24t2 + 243

3 o 2 %_ : 3-2 .
2 2

=[12t% — 24¢t3

3 1 3—-3

3 _ (3 t—-0 7_t 3! 3 _ 3 _|q+3
2 2




Thus,

q'(t) = B§,1(t)(hl) + B13,1(t)‘ﬁ + 323,1(0‘1% + B33,1(t)Q§
= (1—6t+12t? — 8t3)qqy + (6t — 24t% + 24t3)q7 + (12t% — 24t3)q3
+ (8t)q3

Bs,(t) =1—6t+ 12t*—8t>
B}, (t) = 6t — 24t> + 24¢3
B;,(t) = 12t* — 24¢3

B;,(t) = 8t?

_15' r r r r
0 . . .



Now, let’s find the basis functions for the second Bézier curve, where i = 2,n =3 and t € [%, 1],

hence t;_y = t; = % andt; =t, = 1,

1 0 3—0
t—5 1—t 3!
3 _ (3 _ 2 - 3 _ 3
B, = (5)| —5 1| oo @2’ =e-2)
1—->/ \1—-=
2 2
=|8 — 24t + 24t?* — 8t?3
1 1 3—1
t—= 1—t 3!
3
B&@%=Q)——%- —3 =1W3_nﬂﬂ—1X2—%Y=3QP—D@—ZGZ
1-5/ \1-5 : :
=112+ 48t — 60t% + 24¢3
1 2 3—-2
B3, (t A I k (2t—1)2(2-26) = 32t — 1)*(2 - 2¢
2 2
=6 — 30t+48t2 24t3
1 3 3—-3
t—5 1—t 3!
3 (3 __ 2 _13\3 — 3

1-2

1-2

=|—1+ 6t —12t% + 8t3




Thus,

q°(t) = 303,2 (t)Q(z) + B13,2 (t)‘ﬁ + 323,2 (t)q% + Beiz (t)qg

3 3 3 3
Bo,z B1,2 Bz,z B3,2

B;,(t) = 8 — 24t + 24t* — 8t3
B},(t) = —12+ 48t — 60t” + 24t>
B;,(t) = 6 — 30t + 48t% — 24¢3

B;,(t) = —1 + 6t — 12t + 8t3

0.2 0.4 0.6 0.8 1
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Piecewise Bézier curve with two pieces, control points are shown in red, the generate curve is
shown in blue



our variabhles

% parameter

syms t;

% controlling points (four points)
% first piece

syms ol0 ogll gl2 gl3;

ce

% second pi

™o

e
syms 20 g2l g22 o

T .
I

%% basis functions (cubic)
% for the first piece

B30_1 = expand({1-2%t)"3):

B31 1 = expand(3*(2*%t)*(1-2%t)"2);
B32 1 = expand(3*((2*t)"2)*(1-27%¢L));
B33_1 = expand{{2*t)"3):

% for the second piece

B30 _2 = expand((2-2%t)"3);
E31 2 = expand(3*(2%t-1)*({2-2*t)"2));
B32 2 = expand(3*((2*%t-1)"2)*(2-2*%t));
B33_2 = expand{{2*%t-1)"3):

%% the equation of the curve
% the first piece
gl = B30_1*glD + B31 1*gll + B32_1%*glZ + B33_1%qgl3;

% the second piece

g2 = B30 _2%*q20 + B31 2*%g21l + B32_2%q22 + B33_27%q23;



%% the actual values of the controlling points

% the first piece
qlo = [0 11': %% generating the curve
gll = [0.5 1]': Q= []:
ql3 = [1 01': for t =0 : 0.01 : 1
% evaluating the current point
% the second piece if £t < 0.5
q20 = [1 0]': cur_g = eval(gl):
gzl = [1 -0.5]"': else
q22 = [2 o]': cur_g = eval(g2):
23 = [2 0.5]"': end
i=i1i4+1;
control pts = [gl0 gll gl2 ogl3 20 g2l 22 23] Ql:,1i) = cur o;
— .7 -

% evaluating the individual basis functions
basisB30_1(i)= ewval (B30_1):
basisB31 1(i)= eval(B31 1):
basisB32_1(i)= eval(B3Z_1):
basisB33_1(i)= eval (B33_1):

% evaluating the individual basis functions
basisB30_2 (i)= eval (B30_2):
basisB31 2(i)= eval (B3l _2):
basisB32 _Z(i)= eval (B3Z_2):
basisB33_2Z(i)= eval (B33_2):
end



Bézier Curves Rendering

Following the construction of a Bézier curve, the next important task is to find the point X(t) on

the curve for a particular t . A simple way is to plug t into every basis function, compute the

product of each basis function and its corresponding control point, and finally add them together.

Hence, to render a Bézier curve X(t) we can simply choose a number of values tj € [0,1],j =
0,1,...,m, such that t; < t;;; and render line segments from X(tj) to X(tj_l_l), where {; are usually

selected equally spaced. asm — o0, we get closer to the correct Bézier curve.

While this works fine, it 1s not numerically stable (i.e., could introduce numerical errors during the
course of evaluating the Bernstein polynomials). In what follows, we will discuss two main
approaches whichare commonly used to increase the speed at which points on Bézier curves can be

evaluated and produce numerically stable results.



de Casteljau's Method



de Casteljau's method allows us to evaluate the points on a Bézier curve by repeated linear
interpolation. If the control pomts of the curve are Xy, for k =0,1,...,n, which define a Bézier
curve of degree N, lets denote them as Xg, fork = 0,1, ...,n, The 0 here indicate the initial or the 0-

th iteration.

The fundamental conceptof de Casteljau's algorithmis to choose a point C in line segment AB such
that C divides the line segment AB in a ratio of t: 1 — t (i.e., the ratio of the distance between A and

C and the distance between A and B 1s {). Let us find a way to determuine the pomt C.

The vector from A to B is B - A. Since t is a ratio in the range of 0 and 1, point C is located att (B -

A). Taking the position of A into consideration, point Cis A +t B - A) = (1 -t)A + t B.
Therefore, given a t, (1 - t)A + t B is the point C between A and B that divides AB in a ratio of t:1-
t.

The idea of de Casteljau's algorithm goes as follows. Suppose we want to find X(t), where t is in
[0,1]. Starting with the first polyline (set of connected line segments), xg — X(l) — . — Xg, use the
above formula to find a poimnt X11< on the leg (i.e. ine segment) from xg to Xg+1 that divides the line

segment connecting Xg and Xg_,_l in a ratio of t:1 —t. In this way, we will obtain » points

X%,X%, ,X,11_1,. They define a new polyline of #- 1 legs.

Apply the procedure to this new polylne, 1e. x(1, — x} — e — x,ll_l and we shall get a second
polyline of # - 1 points xg,xi, e Xi_z and # - 2 legs. Starting with this polyline, we can construct a

third one of # - 2 points xg,xi, ,x,3,_3 and # - 3 legs. Repeating this process # times yields a smgle

point Xg. De Casteljau proved that this is the point X(t) on the curve that corresponds to t.



Hence we can formally define:

Xi(8) = (1= )x " (8) + tx551 ()

wthr=12,...n, k=01,...,n—71 and Xg = Xy. The Bézier curve is then given by x(t) =
Xg(t). Xg




Recursive Subdivision

Although de Casteljau's method can be numerically stable, we still do not
know how many points the Bézier curve needs to be evaluated to obtain
acceptable results. Next we will discuss how Bézier curves can be
subdivided until a desired level of accuracy is obtained.



We now investigate a technique that allows us to break Bézier curves down into sub-portions until

we have a curve that can be approximated by a line for the desired level of accuracy.

If we have a Bézier curve X(t) of degree n, then X41(t) =X (2) and X,(t) =X (%) are both

Bézier curves of degree n. We have then successfully divided the curve into two curves.

Drawing a Bézier curve can now be achieved by recursively subdividing the Bézier curve into two

until the portions of the Bézier curves are as close to a straight line as we need.

One way to determine if the curve is close to a straight line, is to define an error value §. If

<0

(2)- om0

Then we assume the distance from the curve to the line joining the curve endpoints will be less than
8, and can thus be approximated by a straight line segment. This test may fail on occasion, another
test can be used 1s to determine how far the interior points of the control polygon are from the line

connecting the first and last control points.



Theorem 6: L X4(t) = X(tot) and X2(t) = x(to + (1 — to)t), where ty € [0,1] determines the
7 . , 777 7e, ~ 1 , X . 7o, o+ , > X L,

parameter value at which the curve should be split. If ty = > then the curve is split in two in such a way that the

parameter values are divided equally between the curves. If the curve is defined over t € [0,1)], then the subdivided

curve X1 (t) will be X(t) defined overt € [0,t] and X5 (t) will be X(t) defined overt € [to,1].

(a) The curve X4 (t) is equal to the degree N Bézier curve with control points Xg, X(l), X(Z), ) Xg, that is

X0 =x(t) = ) BROR(t)

(b) The curveXo (t) is equal to the degree N Bézier curve with control points Xy, X'f_l,xtzl—z, o, X, that
15

Xa(6) = x(to + (1= t)) = ) BEOXE ()

Where
xp(t) = (1 — Ox; (D) + tx[51(0)

withr=12,...,n, k=01,...,.n—r.
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Rational Bézier Curves



A Bézier curve 1s rational if its control points are specified by homogeneous coordinates. To do so

we embed the vector space R3 in the vector space R?* to create the homogeneous coordinate
system.

Definition 25: If x,y,z,w € Randw # 0, #hex (x,Y, 2, W)T 15 a homogeneous coordinate representation of

T
. ~ J Z
the point (—,3— —) )

’
w w w

Definition 26: If we define the Bézier curve in termis of homogeneous coordinates, then each control point Xy

becomes (W Xy Wk)T. The Bézier is then given by:

n
x(t) = Z B () (Wixie wi)'
k=0
The point X(t) is also a homagenous coordinate. The point that X(t) represented is given by;

Lie=o Wi B ()X
k=0 WieBy (t)




The wy, terms act as weighting factors, and specify how much influence a point has on the curve.
These extra weighting factors allow us to draw conic sections which cannot be drawn using

conventional Bézier curves.

X, = (291)
1

Wl = 5

x, =(0,1)

WO =

Section of a circle, drawn with a rational Bézier curve



Surfaces



Definition 39: .4 surface is a st of points, usually in R3, such that the surface can be deseribed by a smooth
Sfunction. A surface in R? /s called a plane surface, while a surface in R3 /s simply denoted a surface, we call a

surface in R® where d > 3 a hypersurface. The function that we use to describe surfaces in R2 is often of the
Jform,

x(u, v)

f(u,v) =| y(u,v)
z(u,v)

The surface is thus described by two parameters W and U, we thus call the surface a parametric surface.

An example of such parametric surface is the {D/yere where

Sin U COSV
f(u,v) = sinusinv
cosu

With)0 <= u<mand 0 < v < 27. Another example of a parametric surface is the Zorus where

(r, + 1, cosv)cosu
f(u,v) =| (1, + 1, cosv)sinu
7, SIn v

VWith0=u=2n,0=sv<2mandn, >n

Definition 40: Isocurves are curves on aparame:’riz smfa(e with constant W or V.




Tensor Product Surfaces

Definition 41: Suppose we define a parametric curve with control points Xy, such that,

aw =) frwx,

Where f,;'(v) are the basis functions of the curve, now suppose that we have defined M such curves q j (v),j =

1,2, ...,m such that Q;(v) is defined by control points X y.. Then each curve can be defined as,

Q@)=Y X

If we choose a particular value for v on each of these curves, then we end up with m point which we can use them to

create another curve P. The curve P is then defined by
m m n .
pav) =) e @) =) W) )N,
] = ] — =

The surface defined by all such curves is known as a tensor product surface and the curve of constant v s

known as an isocurve. So we can simply write the surface as:

p(u‘ v) _ zm n }“jm(u)f}gl(v)xj,k

j=1bmdk=1




Tensor Product Bézier Surfaces

Definition 42: T)e tensor product Bézier surface (Bézier patch) s given b,

m n
j=0 k=0

771 n . , .
Where B, are the Bernstein polynomials,

Br(w) = () vF(1 —v)n "

Definition 43: T/¢ normal 7o 7he Be’;@er m‘fjizce 5 gz';-'eﬂ q)

dp(u,v) adp(u,v)
du % dv

n(u,v) =

Where X denotes the cross product and the derivatives are given by,

a m—-1 n 1
. m-— ne.
5 Pwv) =m E Zk:o B (W)B (v) (X416 — Xjk)

j=0

dJ m n-1 1
P =n) D BB ) (ks ~ %)




Piecewise Continuous Bézier Surfaces

Using the normals, we can define
piece-wise continuous Bézier surfaces,
where de Casteljau’s algorithm can be
applied to efficiently render these
surfaces. (refer to the reading material)




Triangular Bézier Surfaces

Instead of arranging the initial configuration of the control
points in a rectangular fashion as with tensor product Bézier
surfaces, we can arrange the control points in a triangle (see
the following figure). If the degree of the Bézier surtace is #,
then there are #+7 control points on each side.



The control points X; ;; with i +j +k =n and {,j,k = 0. A surface with degree N has total

number of control points computed as;

n+1 n+1)(n+2
z k=14+2+3++(n—-1D+n+(n+1)= 2( )

k=1
Bézier triangles can be efficiently rendered using a variation of the de Casteljau’s method, however

instead of the usual parameters, we should used barycentric coordinates.

X300

X003 X030

Xo12 X021



Definition 44: _4 tangle in R®  with vertices Xg, Xq and Xg can be described with barycentric

coordinates as,
p(u,v) = X+ u(xy —Xg) + V(X2 — Xg) = (1 —u — v)X¢o + uxq + VX,

Whereu,v =2 0 andu +v < 1.

Definition 45: The Bézier tnangle, in fermis of Bernstein polynomials, can be written as,

n
p(u,v) = Z L7 k=0 Lk (W V)P

i+jt+k=n
With the Bernstein polynomials defined by,
|

ij . . k . . —
i!j!k!uv(l u—v)~ , i+j+k=n

Blr,lj,k (u, U) =

The partial derivatives are then given by,

a n—1
—P\U,7V)= E e U,V )P 1
aup( ) i+ jk=n—1 iLj,k ( )pl+1,],k

0 .
—p(y,v) = Z W V)P e,
ov i+j+k=n—1 Lik LIFLK

The Bézier triangles are affine invariant, the surface interpolates the three corner control points
and the surface lies within the convex hull of the control points.



Rational Bézier Surfaces

Definition 46: The fensor product Bézier surfaces can be extended fo rational Bézier surfaces 7o obiain
further control of the surface which s then given by
m n m n
Yo Lik=0B/" (WB; (V)W X;x
m n m n

p(wv) =

. C oy . T .
Where the control points are specified in the homogenous form as (Wijxj’k W]k) . The W; . weights thus

determine a degree of importance of each control point.




Subdivision Surfaces

We saw before how to subdivide a Bézier curve using de Casteljau’s method.
With sufficient subdivision, the Bézier curve segments can be approximated
by lines.

If we proceed to subdivide an infinite number of times, the limit curve 1s the
Bézier curve.

However, this 1s not the only way to subdivide a curve, we can recursively
introduce new control points as a function of the given control points to
produce smoother curves, different subdivision methods apply different
subdivision rules, i.e. how to obtain new points in terms of the points at the
current iteration.

In the same way that curves can be recursively subdivided, we can subdivide a
surface control mesh. The tensor product Bézier surface can be modeled in
this manner, but subdivision 1s not limited to rectangular meshes, triangular
ones can also be subdivided.



Definition47: Subdivision curves and surfaces /s a 2o phase process. The refinement phase creates

new vertices and new polygons from the control mesh, and the smoothing phase computes new positions for some or
all of the vertices in the new control mesh.

Definition 48: _4 stationary subdivision scheme is the one that uses the same subdivision rules at every
subdivision step. A non-stavionary scheme changes the rules according to the subdivision step. A aniform schewie

uses the same rules for each vertex or edge, while non-uniform one may depend on the valence/ neighborhood of the
vertex.

Definition 49: The valence of a vertexc X on the subdivision surface is the nurmber of neighboring vertices, that is
the number of vertices connected to X by an edge.

Definition 50: _4 vertexc with valence 6 is known as vegular or ordinary vertex, otherwise

it is known as
irregular or extraordinary ozne.




Loop Subdivision

Loop’s subdivision scheme works on triangular meshes. The surface is an
approximating surface, that is it doesn’t interpolate (passes through) its control
points. A new vertex is added for each edge, at each subdivision step.



Loop’s subdivision scheme can be summarized as follows;

(1) At each subdivision step K, the existing point x¥ is updated with the scheme,
k k " k
R T DI
i=

Where yik are the N neighboring vertices and [ is a constant determined by n. Loop suggests

the function,
21\
Bn) = 1[5 (3 +2cos(7))
"l s 64
While there is another alternative definition,
3
Bn) = n(n+2)

In both cases the surface is C? at vertices of regular valence and C! otherwise.



X = (L-n)xE )y

Where yik are the N neighboring vertices and f§ is a constant determined by Nn. Loop suggests
the function,

Current
vertex/point

yf;l yi

Neighborhood/valence of the current point i-th neighbor



(2) For each edge connecting x* to a neighbor, a new vertex is created via,

k| ok k
ekl _ 3x* + 3y +yiiy + Vit

X; 3 ,

The subscripts [ are calculated modulo n.

Current
vertex/point
k
y i+1
A new vertex introduced at the i-th neighbor
New vertex introduced on the edges edge connecting to the i-th

connecting neighboring vertices neighbor



(3) Once the new vertices have been determined, each triangle 1s subdivided into four triangles.




Often a mask or stencil 1s used to visualize the subdivision, the entries in the mask are the weights

for the contributing points. Noting that the sum of the weights is one.

There are two types of masks, the first one is called the vertex mask which holds the weights of the
current point x¥ and its neighboring vertices yik used to update the current point to obtain xk*e,

Y, y

Vertex Mask
k
Y,
Current
vertex/point

yf—l—l yi



The second type of masks is the edge mask, which defines the weights of the four neighboring
vertices used to generate a new vertex Xéﬁl on the edge connecting the current point x¥ and its i-th

neighbor yik .

y: Yi

Edge Mask

Current
vertex/point

_ i-th neighbor
A new vertex introduced at the edge

connecting to the i-th neighbor



The scheme listed so far can work on closed surfaces however it needs some adjustments to handle

open surfaces. Edges and vertices on the boundary of an open surface have different masks

Edge mask Vertex mask



Thank You!!!



