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The Problem

Align two partially-
overlapping  meshes
orven  inittal  guess
for relative transform




The Problem

Images from: “Geometry and convergence analysis of algorithms
for registration of 3D shapes™ by Pottman



Motivation

Shape inspection
Motion estimation
Appearance analysis
Texture Mapping
Tracking
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http://blog.wired.com/defense/2007/08/danger-room-inb.html



Motivation

* Range images registration




Motivation

* Range images registration
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Range Scanners




Data Types

Point sets

Line segment sets (polylines)
Implicit curves : {(x,y,z) = 0
Parametric curves : (x(u),y(u),z(0))

Triangle sets (meshes)

Implicit surtaces : s(x,y,z) = 0

Parametric surfaces (x(u,v),y(u,v),z(u,v))) w



Mathematical
Preliminaries



Centroid

The centroild of a data (point) set is the
weighted mean of all data points presented in

the set.

For a data set A, having 7 points, each denoted
by 4, , the centroid is given by :-

1 n
H 4 :;;ai



Variance

* A measure of the spread of the data in a data
set A with mean y :

S (@, — w1, )

=1

(n=1)

* Variance 1s claimed to be the original statistical

2
GA_

measure of spread of data.



Covariance

* Covariance matrix gives a measure of similarity
between 2 data sets to be matched.

* If u, and py are the centroids of the data sets
A and B respectively then, the covariance matrix
between the two sets 1s given by:-

n

;(Cli —Hy )(bi _/UB)
ZAB: (n _1)




Inner Product

Let a and b be two vectors defined as: a = [al,...,an]Tand, b=[b,....b,]"
Inner (dot) product: a-b= a'b= Z ab,
i=1

Length (Eucledian norm) of a vector a 1s normalized iff | |a| |[=1

=" a= S0’ »

The angle between two n-dimesional vectors cosf = || ” ” 5 ”
a

An 1nner product is a measure of collinearity:
— aand b are orthogonal iff g -H = ()

— a and b are collinear iff da b :” a |||| b ||

A set of vectors is lnearly independent 1t no vector 1s a linear
combination of other vectors.



Transformation Matrices

* Consider the following:
2 3| [3] [12 3]
X =4 x

2 1] |2] |8 2]

* The square (transformation) matrix scales (3,2)

* Now assume we take a multiple of (3,2)

2 X —
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Transformation Matrices

* Scale vector (3,2) by a value 2 to get (6,4)

* Multiply by the square transformation matrix

* And we see that the result 1s still scaled by 4.
WHY?

A vector consists of both length and direction. Scaling a
vector only changes its length and not its direction. This 1s
an important observation in the transformation of matrices
leading to formation of eigenvectors and eigenvalues.

Irrespective of how much we scale (3,2) by, the solution
(under the given transformation matrix) is always a multiple

of 4.



Eigenvalue Problem

* The eigenvalue problem is any problem having the
following form:

A.v=\.v
A: m X m matrix
v: 7 X 1 non-zero vector
A: scalar

* Any value of A for which this equation has a
solution 1s called the eigenvalue of A and the vector
v which corresponds to this value is called the
eigenvector of A.



Eigenvalue Problem

* Going back to our example:

2 3] [3] [12 3
2 1| (2] |8 2

A . \Y = A. V

* Therefore, (3,2) is an eigenvector of the square matrix A
and 4 1s an eigenvalue of A

* The question is:

Given matrix A, how can we calculate the eigenvector
and eigenvalues for A?

19



Calculating Eigenvectors & Eigenvalues

* Simple matrix algebra shows that:
A.v=LA.v
= A.v-A.1.v=0
— A-A.I).v=0

* Finding the roots of |A - A . I| will give the eigenvalues
and for each of these eigenvalues there will be an
elgenvector

Example ...



Calculating Eigenvectors & Eigenvalues

=2

—3-1

=(-Ax(-3-2))-(-2x1)=A +32+2

* Let ~ _
0 1
A=
toThens om0 o 174 0
A-A1|= ~A = -
-2 -3 |0 1| ||-2 -3| |0 A
ST

* And setting the determinant to 0, we obtain 2 eigenvalues:

A, = -1land h,= -2



Calculating Eigenvectors & Eigenvalues

* For A, the eigenvector is:

(4—2,.1)v, =0

-2 =2||vy,
v, +v,=0 and —-2v,—-2v,=0
Vin = V2
* Therefore the first eigenvector is any column vector in

which the two elements have equal magnitude and opposite
sign.



Calculating Eigenvectors & Eigenvalues

* Therefore eigenvector v is

where k, 1s some constant.

* Similarly we find that eigenvector v,

v, =k,

where k, 1s some constant. — =



Properties of Eigenvectors and
Eigenvalues

Eigenvectors can only be found for square matrices and
not every square matrix has eigenvectors.

Given an » x » matrix (with eigenvectors), we can find
71 €1genvectors.

All  eigenvectors of a symmetric’ matrix are
perpendicular to each other, no matter how many
dimensions we have.

In practice eigenvectors are normalized to have unit

length.

*Note: covariance matrices are symmetric!



Mean Square Error

* In statistics, the mean squared error or MSE
of an estimator is one of many ways to quantity
the amount by which an estimator differs from
the true value of the quantity being estimated.

* The Mean Square error (MSE) between 2 data
sets A and B having 7 points each is given by :-

MSE:li a. —b, i

/
n -

where ||.|| denotes the L2-Norm/Euclidean
Norm between two data points.



Rigid Transformations

* Rigid transformations can be classified into:
— Scaling
— Rotation

— Translation



Transformations — Scaling in 2D

* Scaling a coordinate means multiplying each of
its components by a scalar

* Uniform scaling means this scalar is the same
for all components:




Transformations - Scaling in 2D

* Non-uniform scaling: different scalars per
component:

* How can we represent this in matrix form?



Transformations - Scaling in 2D

* Scaling operation:

X' ax
V' Loy
* Or, in matrix form: R ——
x' a 0] x
i y'_ _O b_ P
H_/

scaling matrix



Transformations — Rotation in 2D

x’ = x cos(0) - y sin(0)

() 1y’ = x sin(6) + y cos(0)
Or, in matrix form
(>, ) |
x'| [cos@ —sin@| x

0 y'| |sm@ cosO |y

>



Transformations — Translation in 2D

'—
X=x+I

'

y:y+g

& = O
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Transformations — Scaling in 3D

N,



Transformations — Translation in 3D

X' 1 0 0 7 |]|x
V' O 1 0 ¢ ||y
21710 0 1 ]|z ,
1] |0 0 0 1][1 I
(Xy",Z')
xy.2) .//T='('tx,ty,tz)> X




Transformations — Rotation in 3D

* How should we specity rotations?

* In 2D, 1t was always counterclockwise in the xy-
plane.

* In 3D, we have more choices
— xz-plane, yz-plane, an arbitrary plane.

* We could specity these in terms ot the vector
perpendicular to the plane of rotation.

— 7 axis, y-axis, X-axis, arbitrary axis



Rotation in 3D — Euler Angles
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Quaternions

* A quaternion q can be thought of as:
— A vector with four components: q = [qy,q,,9,9,] -

— A composite of a scalar and an ordinary vector: q =

[qO> q] :

— A complex number with three different imaginary

parts: ¢ = qy T #q,t7q, 49,



Products of Quaternions

Multiplication of quaternions can be defined in terms
of products of their components.

Suppose that we let: # = 7 = £ = -1

y=kjk=1ki=]

and sz = -k, k= -1, ik =

Then if £= 1, + ir, e +r, |
we get;
The product gr has a similar form

with six of the signs changed.

rg =\r,qy-r.9. - 7.9, -1.9.)
+1 (f”oqx +rq,+r.q. — quy)
+jlng, —ra. +r,q,+r.q.)

+klng. +r.q, -r,q, + 1.4, )|




Products of Quaternions

* The product of two quaternions can also be expressed in terms
of the product of an orthogonal 4x4 matrix and a vector with
four components.

* One may choose to expand either the first or the second
quaternion in a product into an orthogonal 4x4 matrix as

follows: - 7
e e N
e Note that R differs from R v, 7, -, 7
= 4 4 7 —r 4=Rq
in that the lower-right-hand ¥ z 0 X
. rz o ry rx rO
3x3 sub-matrix is transposed. - -
h —rho —rn, —FL
4 v 4 —7r _
] Tx 0 z y .
qr = q=Rq
r, —r, 7, v,
. r, —r Ty




Dot Product of Quaternions

* Considering a quaternion as a vector of four
components, the dot product of two quaternions is the
sum of products of corresponding components:

rq=r,q,+rq.+r4q,+rq.

* The square of the magnitude of a quaternion 1s the dot
product of the quaternion with itself.

ld =¢q=q; +@*+@* + ¢’

* A unit quaternion 1s a quaternion whose magnitude
equals 1.

q.q9 =1




Conjugate of Quaternions

* Taking the conjugate of a quaternion negates its
imaginary part, thus: ¢° = q,— 4q, — jq, — £&q,-

* The 4x4 matrix associated with the conjugate of
a quaternion is just the transpose of the matrix
associated with the quaternion itself, i.e. Q!

where 4% —4. -4, —q.

qx qO o QZ q);
Qy qZ qo o QX
qZ o Qy Qx QO




Conjugate of Quaternions

Since Q 1s an orthogonal matrix, thus the product with
its transpose is a diagonal matrix, that is: QQ' = (q.q)1,
where I is the 4x4 identity matrix.

Correspondingly, the product of g and q” is real, that
15 99 =95+ +4, 9. =44

We immediately conclude that a non-zero quaternion

has an inverse: q*
-1
g =

q4-9

In case of a unit quaternion (q.q = 1), the inverse 1s
just the conjugate



Usetul Properties of Products

Since the matrices associated with quaternions are
orthogonal, hence dot products are preserved, that is:

(qv).(qr) = (q.9) (v.1)

Proof: (gv)(gr)-(Qv}Qr)-(Qv) (@r)
=v'Q'Qr=v"(q.q)Ir =(g.q)(v.r)

In the case of a unit quaternion : (qv).(qr)=(v.1)

A special case follows immediately:

(q1).(q1) = (q.q) (£.1)

that 1s the magnitude of a product 1s just the product of the magnitudes.



Vectors

* Vectors can be represented by purely imaginary
quaternions. If r = (x, y, 2)!, we can use the
quaternion: r=0 +:/x+ /y + k2.

 Similarly, scalars can be represented by using real
quaternions.

* Note that the matrices R and R associated with
a purely imaginary quaternion and its conjugate
are skew symmetric, that is

T —T
R =—R and R =-R



Unit Quaternions and Rotation

* Since the length of a vector is not changed by rotation
nor is the angle between vectors, thus rotation
preserves dot product. (note that a.b = |a| |b|cosb).

* Now, we have already established that multiplication by
a unit quaternion preserves dot products between two

quaternions, that 1s (qv).(qr) = (q.q) (v.t) = v.r

* And since a vector can be represented as a purely
imaginary quaternion, thus we can represent rotation by
using unit quaternions if we can find a way of mapping
purely 1maginary quaternions into purely imaginary
quaternions in such a way that preserves dot products.



Unit Quaternions and Rotation

* However, we can not use simple multiplication to
represent rotation, since the product of a unit
quaternion and a purely imaginary quaternion is
generally not a purely imaginary quaternion.

* What we can use instead is the composite product
defined as follows:

— Let r be a purely imaginary quaternion representing a 3D
point (vector) such that: r=0 +:/x +jy + £z

— Let g be a unit quaternion such that g = q, + /q,+/q,+4q,

— Rotating the vector (point) r by a unit quaternion g can be
defined as r’ = qrq”, where r’ is a purely imaginary
quaternion representing the vector r after rotation by q.



Unit Quaternions and Rotation

Prove that the composite product leads to purely imaginary quaternion, hence

it can be used to represent rotation.

Proof:

* The objective is representing the composite product as a matrix multiplied by

a vector tr. let’s find this matrix in terms of the matrices associated to the unit

quaternion q and its conjugate.

grq" =(Qr)g  =Q (Qr)=(Q Q)r
7 -4, -4, —4q.

where Q=

qx
9y
q.

9
q.

—dq,
9
q,

qy
—q,
9

and (_)z

9o
qx
9y
q.

—q.
9o
—q.
9y

~-q,
qg:
9o

—q.

q,
9

Where Q and Q are the 4x4 matrices corresponding to the unit quaternion q.




Unit Quaternions and Rotation

Proof: cont

| dy

—T _qx
Q Q=

|~ 4,

q.q

0

10

0

where

. 49, 4.
9 —4. 4,
q. 4o — Y,

-9, (4, 90
0

(9 +4, 4, —4.)

29,9, *+4909.)

2(9.9,.—444,)

49=q, +q, +4.+q.

99 —4, —49,

9. 40 9.

g, 4. 9o

4. —49, 4.
0

2(quy _ quz)
(9o —9:+9;—q7)
2(9.9,+904.)

— qz ]
q)/
g
9o
0
2(9.9.+4944,)

2(quz _ QOQX)
(90—9:—9,+9.)

. =T
s.qrq =(Q Q)r is a purely imaginary quaternion if r is a purely imaginary

quaternion.




Unit Quaternions and Rotation

Proof: cont

* Since q is a quaternion, then Q and Q are orthogonal matrices
by definition.

* Since g 1s a unit quaternion, then Q and Q are orthonormal
matrices,.

. . _T
* Hence the lower-right-hand 3x3 sub-matrix of Q Q must also be
orthonormal | hence it i1s the rotation matrix R that take r to 1’
such that r’=Rur.

—T
* The expansion of Q Q provides an explicit method for
computing the orthonormal rotation matrix R from the
components of the unit quaternion q.



Iterative Closest
Point (ICP)
Algorithm




Problem Statement

Given a model shape which maybe
represented as:

— Point Sets, Line Segment Sets, Implicit Curves,
Parametric Curves, Triangle Sets, Implicit Surfaces,
Parametric Surfaces

Given a scene shape which is represented as a
point set, the scene shape may correspond to the

model shape

It is required to estimate the optimal rotation,
translation and scaling that aligns or registers the
scene shape to the model shape

Main Application 1s to register digitize(sensed)
data from un-fixtured rigid objects with an
idealized geometric model prior to shape
inspection.

model

scene



Main Idea of ICP

Begin with initial rotation, translation and scaling (initial value
for registration parameters).

Fix the model shape and start moving the scene shape by
applying the initial registration parameters. 1.e. scale, rotate and
then translate.

Compute the error metric that reflects the dissimilarity of the
scene shape from the model shape.

It the error is minimum, we have correctly aligned the scene
shape to the model shape, return with the aligned scene shape.

Else, calculate the new values for the registration parameters
and go back to step 2 with the new parameter values.



Algorithm Outline

Initialize registration parameters (R,t,s)
and registration error; Error = o0

For each point in the scene shape, find
the corresponding closest point in the
model shape.

Calculate registration parameters given
point correspondences obtained from
step 2.

Apply the alignment to the scene shape.

Calculate the registration error between
the currently aligned scene shape and the
model shape.

If error > threshold, return to step 2,
else return with new scene shape.

Initialize the error to o©

Find point correspondence

Find alighment

Apply alignment

Update error

If error > threshold



Nomenclature

Let the model shape be represented as a set of points, 7, where 7
:=1,2,...N,

— Where N,, is the number of points in the model shape and M = {w,}
denotes the model point set

— Note: m;= [m,, mﬂw@]T in the case of 3D

Let the scene shape be represented as a set of points p, where
i=1,2,.,Np

— Where Nj is the number of points in the scene shape and P = {p,;}
denotes the scene point set.

— Note: p,;= Jp., pﬁp@]T in the case of 3D



Nomenclature

* Registration parameters,

— s:a scalar value which represents the scaling parameter

— 7:avector representing translation parameters. In3D case t= [t t,t,]"

— R()): an operator which applies rotation to its argument (a point).

Note: R(.) will have a different definition according to the way it 1s used
to represent rotation. E.g. Buler angles (©,0,0,), rotation matrix R(3x3
orthogonal matrix) or quaternion q (rotation angle and axis of rotation)



Finding Correspondences

* It correct correspondences are known, we can find
correct relative rotation/translation

—b/\f‘“




Finding Correspondences

* How to find correspondences: User input? Feature
detection? Signatures?

* Alternative: assume closest points correspond




Finding Correspondences

* How to find correspondences: User input? Feature
detection? Signatures?

* Alternative: assume closest points correspond

‘\/\f_




Finding Correspondences

* Converges if starting position “close enough™

AN = 7\~



Finding Correspondences

* For every point, p, in the scene shape P ={p,}, /=71,..N,, we

search for the closest point 7 in the model shape M to the scene

point p;using the Euclidean distance.

* Given two points p; and m, the Fuclidean distance can be
computes as follows:

d(piamk) :‘pi _mkH

— \/(pxi — My )2 T (pyi My +(p2i My )2

* Given a scene point p; and the model point set M, the Euclidean
distance between p; and M can be found as:

d(piaM) — k:IPuzlvM d(piamk) — k:III}glVMHpi _mkH



Finding Correspondences
The closest point 7, € M (model point set) satisties the equality:
1.e.
d(pi’mj) = d(pi9M)
In other words, ; 1s the index of the closest point p,
j =argmind(p,,m,)
k=1,..Nps

The closest point in the model set M that yields the minimum
distance will be denoted by y. That is j; = m; such that
dp,y,)=d(p,M). Now p, corresponds to y,

Let Y denote the resulting set of closets points and C be the
closest point operator such that Y =C( P, M)
¥ ¥ ~N



Alignment Calculation

* Given: A set of point correspondences between the
scene shape P and the model shape M, where ¥ < M
denotes the set of closest points to P, such that y, is the
corresponding closest point to p, where /=7,2,..,Np

* Required: Find the optimal registration parameters

(scaling, rotation and translation) which brings the
scene points P to the closest model points Y.

* Approach: Quaternion based method



Alignment Calculation

Let N, be the number of points correspondences.

The measurement coordinates i1n the scene and model
coordinate systems will be denoted by P={p,} and Y={y},
respectively, where 7 ranges from 1 to Np.

We are looking for a transformation of the form:
Y = SR(P)+1 (1)

which registers (aligns) the scene points P to the corresponding
model points Y.

where: 5 1s a scale factor
. 1s the translational offset

R(P) denotes the rotated version of the points P.

Note: At this time we do not use any particular notation for rotation.



Alignment Calculation

* Rotation is a linear operation and it preserves lengths such that:
2 2
IR =]

Where || p|’=p-p is the square of the length of the vector point p.

* Since correspondences are not perfect, we will not be able to
find a scale factor, a translation and a rotation such that the
transformation equation(1) 1s satistied for each point.

* Instead there will be a residual error for each point pair
(correspondence) defined as follows:

e¢=yi—  (R(p)+1) (2)

Transformed version of the scene point P,




Alignment Calculation

We will minimize the total error defined as the sum of squares

of these errots:
Np
E=Y llell
i=1

We will consider the variation of the total error first with
translation, then with scale and finally with respect to rotation.



Finding the Translation

It 1s usetul to refer all points to their centroids which are defined

=—Zp, and iy = —Zyl

Pll le

as follows:

Lets denote the new points by:

pi':pi_:up and yi':yi_:uY

After this transformation, the point sets become zero mean, i.e

—2.p,=0 and —) y =
Npizl pzzl



Finding the Translation

* Now, the error term can be re-written as follows:

e, = y,'~(sR(p," ) +1') (3)
where t'=t—pu, +sR(u,) (4)

¢’'1s the new translational offset after bringing the points to the origin (i.e. zero-mean).

Q: Prove equation (4)



Finding the Translation

Proof:

Set equation (2) equal to equation (3) since the residual errors of
the points before and after bringing the points to the origin are
equal.

Thos  y, = (sR(p,) +1)= yi'(sR(p,) +1)
Since y'=y —u,  and D'=p — 1,
Therefore V; —SR(p,)—t =y, — tty =sR(p, — pp) =1

Since rotation is a linear operator
Vi _SR(pi) —I=Y,—Hy _SR(]?Z-) -I-SR,UP) —t'
t'=1 =ty +sR(4p)



Finding the Translation

Hence the sum of squares of errors becomes:
NP NP
2 ' ' 112
E=>lle’=> Il v,'=sR(p," ) -1
i=1 i=1
Np
' ' 2 ' ' ' 112
= [l v=sR(p,) I =20')l y,'=sR(p, ) ||+ £]F]
=1
Np Ny
' ' 2 ' ' ' '
=Z|I y.'=sR(p,")||” 2t ZII y,'=sR(p,") ||+ N, || £']]” (5)
i=1 i=1
Now the sum in the middle of the expression in (5) is zero since

the points are referred to the centroid (i.e. zero-mean and
rotation and scaling don’t affect the mean.)

Hence, The first and third terms are left:

Np
E=) |l y'=sR(pH ' +N, || 7| (6)

i=1



Finding the Translation

Remember that we are looking for the optimal translational
offset #"which will minimize the total error E.

Since the first term 1n (6) does not depend on the translation and
the second term in (6) can not be negative since:

17’20 and N,>0
Thus the total error is obviously minimized with #’ = 0.

Therefore the translational offset can be found as follows:

ct'=t—p, +sR(u,)=0
St =ty —SR(up) (7)

That is, the translation is just the difference of the model points centroid and
the scaled and rotated scene points centroid.

We return to this equation to find the translational offset once we have found
the scale and rotation.



Finding the Translation

* At this point, we note that the error term can be
written as:

€ =) '_SR(pi')

* Since # = 0, so the total error to be minimized can be
re-written as follows:

Np
E=) |l y'-sR(p"IF (8)
i=1



Finding the Scale

Expanding the total error defined in (8), we will get:
Np
E= Zm yIF =23,"sR(p, )+ | sR(p,) I

—ley I —ZSZy'R(p )+s ZIIR(p HI*

Since rotation preserves length i.e.

” R(pi') ||2:|| p'i ||2

Therefore we obtain:

NP Np NP
E=115IF =252 3 R(p ) +s2 2| I
i=l1 i=l1 i=l1

lLet

Np Np Np
Sy — ZH yi'||2’ Sp :Z” P, ”2 and D :Zyi'R(pi')
i=1 i=1 i=l1



Finding the Scale

Hence;

E=S,-2sD+s°S, 9)

where §, and §, are the sums of the squates of the points length
relative to their centroids, while D is the sum of the dot products
ot the corresponding points in the model with the rotated points
in the scene.

Since we are looking for the scaling factor 5, complete the square
in (9) with respect to s, we will get:

N2

E:[S\E—%j 2 207D (10)

SP

Lets prove (10) ®...



Finding the Scale

Proof:
Recall : (s — A) =s> —2As + A°
To solve for s,equate the total error to zero.
E=S8,s>-2Ds+S, =0
Move the constant term to the other side :
S,s>—2Ds=-S,
Divide by the coffecient of s° :
o2 2Ds _ —S,
Sy S,
Take half of the coffecient of the s - term and square it :

D [ D?
S, s,

Add this to both sides :

, 2Ds D’ - S, D’
ST — + > | = + >
S, A S, A




Finding the Scale

Proof: cont

Convert the left hand side to the squared form and simplify the right hand side :

pY 1/(D?
s — = -5y
SP SP SP

Mulitply both sides by S,

Np
Since S, = ZH p: I’ =0, Hence, we can take the square root
i=l1

-] {24
[s\/ST)—D;/S»PJ +S, —ZS)—Z—O

P P

Therefore : E—Ls\/» r} Sy S, ~ D"

P SP




Finding the Scale

* The total error can be minimized with respect to the scaling
factor s when the first term in (10) 1s set to zero, since the
second term doesn’t depend on .

2
Therefore : SW/SP—L =0,
\/SP
S SP—LzOthus Sp _ 2
Vs, Vs,

Np

Zyi’R(l?z’)
Hence : s = ":]ép (11)



Symmetry in Scale

It we exchange the roles of the scene and the model points as recommended
by Horn[2], we will be finding the best fit instead of to the transformation:

v, =(sR@p,)+1)

We will find to the inverse transformation:

p,=|s"R'(y)+t

The scale factor equation in this case becomes:




Finding the Rotation

Recall (10): 5 G5 _p?
E: SJ?P_—] 2_|_ y=P
[ JS,

SP

To minimize the error with respect to scaling, we set the first
term to zero, since the second term doesn’t depend on scaling,

R

Hence, the error term can now be re-written as:
S S,-D’
E=— (12)
SP
NP Np NP
where:S, =2 |l /I, S, =2 | pIF and D= 3/ R(p.")

i=1 i=1 i=1
Hence 5,20 and 5, 20, therefore 5,5, 20 and doesn’t depend on
the rotation, i.e. constant with respect to R(), and D? =0 (self

evident) is the only part in the error expression that depends on

R().




Finding the Rotation

 The total error can thus be re-written as:E Sy Sp _p? ;
— SP —

« Thus £=35 yS P —D” s needed to minimized.

e Recall;

N,
D= Zyi’R@?iy
i=1

which is the sum of the dot products of the model points and
the rotated scene points.



Finding the Rotation

This maximization can be interpreted geometrically as follows:

v R(p) =/ lllIR(p;)]|cos &

where 6 is the angle between the model points and the rotated
scene points.

To obtain the optimal rotation, 6 should be zero, therefore cos 6
= 1 which 1s the maximum wvalue obtained by the cosine
function.

Since  |ly/[|=0 and ||R(p,)||>0, having 6 = 0 will lead to the
maximum value of ¥/ R(p)).

Therefore, maximizing D implicitly means minimizing the angle
between the model points and the rotated scene points.



Finding the Rotation

Representation of rotation:

There are many ways to represent rotation, including Euler
angles, axis and angle, orthonormal matrices and Hamilton’s
quaternion's.

Orthonormal matrices have been used most often in
photogrammetry and robotics. However, there are a number of
advantages to the unit-quternion notation.

Also, unit-quaternions are closely allied to the geometrically
intuitive axis and angle notation.

Here we solve the problem of finding the rotation that
maximizes D= Z y,'R(p,") by using unit-quaternions
i=1



Finding the Rotation

* We have to find the unit quaternion q that maximizes:

N, Np
D=3 v.R(p)=> v lar.a")
=1 i=1

= i (apia” )y, = %, (97, )(vq)

i=1
* Supposed that
P = [pxiapyiapzi]r and Vi = [yxiayyiayzi]f

* Then while
qr; = Pq r4q=Yq
0 -p, —Py —P 0 =y, =V; —Va
. pxz' O pzi _pyi yxi O _yzi yyi
— ‘ ' o q = \ \ g
pyi _pzi O pxi yyi yzi O _yxi
_pzi pyi _pxi O B _yzi _yyi yxi O B




Finding the Rotation

* Note that P;and Y, are skew symmetric as well as orthogonal

since they are associated to purely imaginary quaternions.

* The sum that we have to maximize can now be written as:

Np

Dzinj:(qp,'-)( ) =Z( zq)(Yq) Z( lq)T(Yq)



Finding the Rotation

N =P Y
0 p;ci p;/i p'zi 0 - y;ci - y;/i — y'zi
Py 0O —=p, P, | Ve O =y, Y,
_pyi pzi O _pxi yyi yzi 0 _yxl'
P Py Pu 0 Ve " Vu YV 0

DYDY De  DiVamPay Pl t DY DYDY,
| R tD mn—mnamm Dbyt Dby Dbt Dby
DV D) mm+mm Dy PVi=Pdy  Dbathad,
DIty PVt Dd PV tPYs  PaVam Py Dby




Finding the Rotation

NP
N=> N,
i=1
'sm+gy+gz S. -8, ~-S_+S_ S, =S,
-5.,+8,.  S.-S5.-§, S+, S.+S..
| S-S S.+S, S,—S.-S. S.+S,
-8, +S, S _+S_ S, +S,. S.-S, -8,

Np Np Np
where S, :Zp;ciy;ci , Oy :Zp;ciy;/i , Oy :Zp)’ciy'zi .o €l
i=1 i=1 i=1




Finding the Rotation

* Hence we can define the S-matrix whose elements are
sums of products of coordinates measured in the scene

shape with coordinates measured in the model shape,
such that:

Se S, S.
S =58, S, S,
Szx Szy SZZ

* Note that the scene and model points were brought to
the origin by subtracting their centroids.



Finding the Rotation

Eigenvector Maximizes Matrix Product:

* It can be shown that the unit quaternion that maximizes g'Ngq is
the eigenvector corresponding to the most positive eigenvalue of
the matrix N.

Proof:

* 'To find the rotation that minimizes the sum of squares of erros,
we have to find the quaternion g that maximizes q'Ng subject
to the contraint that g.q = 1 (unit quaternion).

* The symmetric 4x4 matrix N will have four real eigenvalues, say

A Ay A;and A,

* A corresponding set of orthogonal unit eigenvectors v, v, v;
and 2, can constructed such that No, = Av, where i = 1,2,3 4.



Finding the Rotation

Proof: cont

* The eigenvectors span the 4D space, so an arbitrary quaternion
g can be written as a linear combination in the form:

* Since the eigenvectors are orthogonal, we have:
2 2 2 2

e We know that this has to be equal to one since we are looking
for a unit quaternion.

» Now Ng=Ag=a,Av, +a,,v, + o, l,v, +a, AV,
e We conclude that

qTquq.(Nq) all +osh, ol +agl,



Finding the Rotation

Proof: cont

* Now, suppose we have arranged the eigenvalues in order such
that A, A, 2 A4; 2 A,

+ Then we have:
q"Ng=q(Nq)=all +aid, +aii,+al,
< alh+ashrail +all
= (af+a22+a32+aj)/11
(¢-9)4
= 4



Finding the Rotation

Proof: cont

Since we need to maximize q'Ng , but we have ¢'Ngq < 4, ,
hence g'Ngqg is bounded above by A, which is the largest

eigenvalue.
Thus the maximum of g'Ngq is attained when g'Ngq = 4,.
This only happens if o; =1 and «, = a3 = o, = 0, 1.e. :
q=ayv, +0o,v, + oV, +0,V,
=V,

which 1s the eigenvector corresponding to the largest positive
eigenvalue 4,.



Finding Alignment - Summary

* We can now summarize the algorithm of finding the rotation,
scaling factor and the translational offset given pairs of points

correspondences as follows:

1. Find the centroids of the two point sets in the scene and model shapes.

—sz and ——Zyl

Pll le

2. Compute the points coordinates relative to their centroids.
" . d — _
Pi=P —H p an Vi Vi = Hy

3. For each pair of points {p,,y;’}, compute the nine possible products of
the two vectors p;" and y;. Then add them up to obtain S, S, ... S..
These nine totals contain all the information needed to ﬁnd the

solution.

Np Np Np
where S, :Zp;ciy;ci , Oy :Zp;ciy;/i , S, :Zp;ciy'zi .. €l
i= i=1 i=1



Finding Alignment - Summary

4. Compute the ten independent elements of the 4x4 symmetric matrix N
by combining the sums obtained in (3) as follows:

S+ SW +S5_
—Szy +SyZ

SZX _S)CZ
-5, +3,

Syz _Szy
S.—9S.. —Syy
Syx+Sw
SZX-I_SXZ

_SXZ + SZX
A I
S)/_’y _SZZ _Sxx
S, +5,

5. Find the eigenvalues and eigenvectors of N.

Sxy _Syz

S.+5,

Syz +Szy
S.. —Syy -5

6. The quaternion q representing the rotation 1s the eigenvector
Corresponding to the largest positive eigenvalue of N.




Finding Alignment - Summary

7. Compute the scaling factor as follows:
NP . \ NP
S = Z:‘yi (qpiq ) Z_l‘,‘

where qpq’ =(6TQ)p§

2

P,

 q.q 0 0
2 2 2 2
9’0 0 (¢9+9.—9,—9.) 2(q.9,—949.)
0 2(49,9.+909.) (95—9;+9:—q>)
0 2(9.9,—9.4,) 2(9.9,+944,)
where  q.q=q,+q; +q,+q.

8. Compute the translational offset as follows:

t= My —S(qupq* )= Hy = S(Q Q)ﬂp

0

2(9.9. +944,)
2(9,9. - 4949.)

(9o —9: -4, +92)




~ Let’sdo 1it...

Initialization

Find correspondences
Find alignment

Apply alignment

Compute residual error



Function Prototype

function [s, R, t, err,newP]

A L R O A S - LD L™ L L L™ L L L™ ™

AT AT

= icp (M, P)

ICP Iterative Closest Point Algorithm.

[s,R,t,err] = icp(M,P)

ICP fit scene points P to the model points M.

Fit with respect to minimize the sum of sgquare

errors with the closest model points and scene polints.

Parameters: Jul
F

Return:

1]

err

newpP

3XNm matrix representing the Nm model 3D points
3XNp matrix representing the Np scene 3D points

The scaling factor (uniform sScaling)

The 3x3 rotation matrix

The 3x1 translation vector

Residual error defined as the mean square error
between the model points and the transformed
sScene points.

3XNp matrix representing the Np scene 3D points
after applying the estimated rigid registration
parameters (s,R,t), where newP = s*R*P + ¢




Initializations ...

%% Initialization

Ae

initiate a starting scaling factor, rotation matrix and starting
T

Ae

translational offs
s = 1;

R = eye(size(M,1)):
t = zerosi(size(M,1),1):

m

newP = P;

% setting algorithm parameters
max_iter = 200; % max nuber of icp iterations
thresh = le-5; % threshold to icp iterations

% number of points
Np = size(P,2)
Nm = size(M,2);
dim = size(P,1);

e



ICP Loop: Finding Correspondences

%% start ICP loop
for iter = 1 @ max_ iter
% finding correspondences

[0
m
m
t
lan)
=
-~
m
=
~4
u 1]
(]
'
ct
ct
(]
Q
o
t
t
s
-
m
0
)—a
0
1]
n
m
L

% for each point in the sScene polints
% model point in the model points set H

¥ = zeros(dim,Np) % set of closest points

for i = 1 : HNp

¢ eurrent point \d(p. m, )= \/(pxi — My )2 T (pyi —My ) (pzi _mZk)

pi newP(:,1);

2

et the distance to all model points

d = zeros(l,Nm):

for k= 1 : Nm
wk = Mi:,k):;
d (k) sgrt(sum((pi - mk).”2)); % euclidean distance

end

ct

point will he

% the closes

[minD, j] = min(d):; . .

Y(:,4) = M(:,3); ]:argmlnd(pi,mk)
e kzl,..NM

Loop to be continued ...



ICP Loop: Finding/Applying Alignment

end

= finding alignment

Explanation to follow

|[s, R, t, err] = find_alignment[newP,Y];l

> apply alignment and compute residual error

for 1 = 1:Np

newP(:,1i) = s*R*newP(:,1) + t;
e = Y(:,1) - newPi(:,1):

err = err + e'!¥%e;

end
err = err/Np:

if err < thresh
hreak:;

end




~ Let’sdo 1t...

Finding Alighment
* Zero mean point sets.
* Quaternion computation.
* Rotation matrix computation.
* Scaling factor computation.
* Translational offset computation.

* Residual error computation.



Function Prototype

function [s, R, t, err] = find alignment (P, Y)

% Computes the scaling factor, rotation and translational offset factor)
% for the transformation between two corresponding 3D point sets Pi

% and Yi such as they are related by:

>

% ¥Yi = sR*Pi + ¢

%

% Parameters: P 3XN matrix representing the N scene 3D points
% ' 3XN matrix representing the N model 3D points
% which correspond to the scene points P

28

% Return: S The scaling factor (uniform scaling)

% R The 3xX3 rotation matrix

% t The 3xX1 translation vector

% err Residual error defined as err = sum(¥Yi-(sR*Pi+t))
>

% Notes: Minimum 3D point number is N > 4




Test Given Point Sets

%% Test the size of point sets
[dim p Np] = size(P);
[dim ¥ Ny] = size(Y):;

if (Np ~= Ny)

error ('Point sets need to have same number of points.'):;
end
if(dim p ~= 3 || dim gy ~= 3]
error ('Need points of dimension 3');
end
if (Np<4)

[

error ('Need at least 4 point pairs'):;
end

sNumber of polnts
N = Np:;



Z.ero Mean Point Sets

%% Compute the centroid of each point set

- 1 NP
Mu p = mean(P,2): > _
Hp = El,pi

N P i=l
P
Mu v mean(¥,2):; _

> 1y = Vi

% Remove the centrold: points measured relative Lo thelr centroids

p'=Dp;—H,

Pprine P - repmat (Mu p,1,N);

Yprime = Y - repmat(Mu v,1,N);

yi':yi — Hy



Quaternion Computation

%% Compute the optimal gquaternion
of the points,

1]

%2 matrix of sums of product

Px = Pprime(l,:): ¥x = Yprime(l,:):
Py = Pprime(2,:): Yy = Yprime(2,:):
Pz = Pprime(3,:): Yz = Yprime(3,:):

SxXx = sum(Px.*¥x):
SXy = sum(Px.*Yvy)
Sxz = sum(Px.*Yz)

AT

ALl

3¥x = sum(Py.*¥x)
59y = sum(Py.*Yy)
Syz = sum(Py.*Yz)

AL T

AT

Szx = sum(Pz.*YxX)
Szy = sum(Pz.*Yy)
Szz = sum(Pz.*Yz):;

AL

N

Nmatrix = [ 3xxXx + 3¢y + Sz=z Syvz-5Szy
-Szvy + Sy=z Sxx - Szz - Syvy

S¥x + SXv

3zx + Sxz

Szx - Sx=z
-3¥X + 3X¥y

% Compute eigenvalues

[V,D] = eig(Nmatrix):;

t

he optimal quaterion is the one corresponding

i

o

Il
< Q

en value which is Di(4,4).
!

= £42):

ct

—-9xz + S=zx

Sxy + S¢x
Sy — Szz - 9SxXX
Szy + Syz
o the largest p

0]

Sz

Sxy — Syx:
Sxz + Szx:
3Svz + Szvy:

a2

Iil

SYY -

Sxx]



Rotation Matrix Computation

%% Compute

the rotation matrix

individual components

0 = ca(l):

> matrices
Qbar = [gO0
cql
2
3

% The rotation matrix will he:
R = Qbar'*Q;

% Retrieve

R = R(2:4,2:4);

gl = g(2); g2 = gi{3); g3 = g(4):

associlated to the found gquaternion

-l -qgq2 -3 ;
g0 o3 -g2
-3 g0 ol ; —_
gz -gql og0]:; Q =

-l -2 -3 ;

-q, —q,
qO qZ
o QZ qO

gl -3 o2
g3 o0 -gl ;
-2 ol g0]:; )I

the 3x3 rotation matrix (2-—

-4, —4,
40 4.
qg. 9o

-4, 4,




Scaling Factor Computation

%% Compute the scaling factor

Sp = 0;
D = 0;
for i=1:N
D =D+ Yprime(:,1)' * Yprime(:,1)

Sp = Sp + Pprime(:,1i)' * Pprime(:,1i):
end
8 = sqrt (D/Sp):;




Translation Offset Computation

%% Compute the translational offset
t = Mu v - 3*R*Mu p;

—7
L=ty _S(Q Q),UP =ty — SRy,




Residual Error

%% Compute the residual error

err = 0;

for 1 = 1:N
gl = e, I = s ERER RN
Brr = err + d'*d;

end
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Prove that quaternion multiplication preserves
dot product, i.e. (qv).(gr) = (q.q) (v.r). What

happen in case g is a unit quaternion?

e Proof:

(9v)(gr)=(Qv)(Qr)=(Qv) (Qr)
=vQ'Qr=v’' (q. q)Ir = (q. q).(v.r)

* In the case of a unit quaternion : (qv).(qr)=(v.1)

* A special case follows immediately:

(qn).(q1) = (q.9) (r.1)

that 1s the magnitude of a product 1s just the product of the magnitudes.



Prove that the composite product leads to purely imaginary quaternion,

hence it can be used to represent rotation, i.e. Rotating the vector (point) r by
a unit quaternion g can be defined as r’ = grq”, where r’ is a purely imaginary

quaternion

Proof:

representing

the

vector r after

rotation

by

q.

* The objective is representing the composite product as a matrix multiplied by

a vector r. let’s find this matrix in terms of the matrices associated to the unit

quaternion q and its conjugate.

grg" =(Qr)g" =Q (Qr)=(Q Qr

where Q=

9o
qx
9y
9.

-4, —4, —4.
9 —4. 4,
q. 90 4,
-4, 4. 4

and (_):

9o
qx
9y
qg.

-4, —4, —dq.
9o g4. —4,
—q. Y qx
g9, —4. {4,

Where Q and Q are the 4x4 matrices corresponding to the unit quaternion q.




Proof: cont

9% 4. 4, 4.
—T o qx q o QZ q
Q Q= : ’
_ Qy qz QO o qx
__ qz o Qy Qx %
4.9 0
10 (etai-q,-4)
O 2(qux + qOQz)
0 2q.9,-94,)

where  q.q=q, +q,+q.+q.

9 —4., —49,

9. 490 4.

g, 4. 9o

4. —49, 4.
0

2(quy o QOQZ)
(9o -9, +9,-9.)
2(9.9, +904.)

— qz ]
q,
g
9o
0
2(9.9.+4944,)

2(9,9. —904.)
(9o—9: -9, +94.)

. =T
sqrq =(Q Q)r is a purely imaginary quaternion if r is a purely imaginary

quaternion.




Proof: cont

* Since q is a quaternion, then Q and Q are orthogonal matrices
by definition.

* Since g 1s a unit quaternion, then Q and Q are orthonormal
matrices,.

. . _T
* Hence the lower-right-hand 3x3 sub-matrix of Q Q must also be
orthonormal | hence it i1s the rotation matrix R that take r to 1’
such that r’=Rur.

—T
e The expansion of Q Q provides an explicit method for
computing the orthonormal rotation matrix R from the
components of the unit quaternion q.



Prove that that the unit quaternion that maximizes q'Ng is
the eigenvector corresponding to the most positive eigenvalue
of the matrix N.

Proof:

* 'To find the rotation that minimizes the sum of squares of erros,
we have to find the quaternion g that maximizes g'Nq subject
to the contraint that g.q = 1 (unit quaternion).

* The symmetric 4x4 matrix N will have four real eigenvalues, say

A Ay A;and A,

* A corresponding set of orthogonal unit eigenvectors v, v, v;
and », can constructed such that Nu, = A, where i = 1,2,3,4.



Proof: cont

* The eigenvectors span the 4D space, so an arbitrary quaternion
g can be written as a linear combination in the form:

* Since the eigenvectors are orthogonal, we have:
2 2 2 2

e We know that this has to be equal to one since we are looking
for a unit quaternion.

+ Now Ng=Ag=a,4v, +a,,v, + o, ,,v, +a,A,v,
e We conclude that

qTquq.(Nq) all+osh, ol +agl,



Proof: cont

* Now, suppose we have arranged the eigenvalues in order such
that A, A, 2 A4; 2 A,

+ Then we have:
q"Ng=q(Nq)=all +aii, +aii,+al,
< alh+asl+aii +agl
= (P +ai+a+al),
(¢-9)4
= A



Proof: cont

Since we need to maximize q'Ng , but we have ¢'Ngq < 4, ,
hence g'Ngqg is bounded above by A, which is the largest

eigenvalue.
Thus the maximum of g'Ngq is attained when g'Ngq = 4,.
This only happens if o; =1 and «, = a3 = o, = 0, 1.e. :
q=ayv +0o,v, +t v, +co,V,
=V,

which 1s the eigenvector corresponding to the largest positive
eigenvalue 4,.
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