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Agenda

* Reconstruction from projections (general)

— projection geometry and radon transform

* Reconstruction methodology

— Backprojection, (Fourter slice theorem), Filtered
Backprojection.

* Reconstruction examples



Introduction

* Only photography (reflection) and planar x-
ray (attenuation) measure spatial properties
of the imaged object directly.

* Otherwise, measured parameters are some
how related to spatial properties of imaged
object.

— CT, SPECT and PET (integral projections of
parallel rays), MRI (amplitude, frequency and
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* Objective: We want to construct the object
(image) which creates the measured parameters.




Problem Statement

* Given a set of 1-D /\Q %\
projections and the angles at
which  these projections -

were taken.

 How do we reconstruct the

2-D image from which these /Q H v

projections were takenr
e Jets look at the nature of F * ﬁ
those projections ... ®

Y



Parallel Beams Projections




Ray Geometry

* Let x and y be rectilinear
coordinates in a given
plane.

* A line in this plane at a
distance #, from the origin

is the given by:

t=xcosf+ysnd

where 0 is the angle between a unit
normal to the line and the x-axis.

v



Let g(x,y) be a 2-D function.

A line running through
g(x,y) 1s called a ray.

The integral of g(x,y) alo

a ray is called ray integral.

The set of ray integrals

forms a projection defined
as :

P,(1) = J: fwg(x,y)?(x cosd+ ysind —t, )'dxdy
I

Impulse sheath placed at the points constituting the ray

v



Radon Transform

t cosd snf ||| x
sil |—sin@cosd % t

e Radon transform

P (t)= f; f; g(x,y)5(x cosf+ ysinf — t)dxdy

= jg(t,s)ds.



Radon Space

* Projections with different
angles are stored in siogram
(raw data).

e FEach vertical line 1n a

singgram 18 a  projection
with a different angle

: projection rays

t

—

——>3 O : Angles of projections ——
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Since Radon transform is a group of projections which are basically
line integrals, the difference between the projection at 0, and 6 +n
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The Fourier Slice Theorem

* This theorem relates the 1D Fourter Transform of a projection and the 2D
Fourier transform of the object. It relates the Fourier transform of the object

Se(f) =3 {Pe (t)} = j_z Y (t)e_jzwdt
Gu,v)=G(f,6)

A where
‘ fcos@=u

fsinf=v

along a radial line.

G(u,v)

Space Domain



The Fourier Slice Theorem

* This theorem relates the 1D Fourier Transform of a projection and the 2D
Fourier transform of the object. It relates the Fourier transform of the object
along a radial line.

Space Domain



The Fourier Slice Theorem

Frequency Domain
Space Domain S(£,0)




A Problem

* All projections contribute to
low fregencies

Solution:




Projections
(raw data from
the scanner)

— Estimate

Filtered Back-projection

Fourier
Transform of
all Projections

Filter
Projections

Inverse
Fourier
Transform

Back-projection
to uv-space

So(f)e”* 7 df do

=

[ Filter Response
]9 r

—00

([

Oy (1) t=xcosO+ysind



~ Let’sdo it...
Tasks :-

e Scanner simulation
— Phantom Generation

— Projections computation
e Reconstruction from projections
* Analysis:

— Experiment 1: the effect of filter type.

— Experiment 2: the effect of number of projections.

— Experiment 3: the effect of number of rays




Scanner Simulation — Phantom Generation
U G W G GRS G O

* Given the spatial support of our
phantom.

¢ ¢
Intensity

* We assume that our phantom 1s ~
constructed of a set of ellipses, each
has the following parameters: —

— Intensity, ellipse center (X)), ellipse
major and minor axes length (2,4), and
the orientation (y 1.e. rotation angle) -

rection

function phantom img = generate_phantom(ellipse parameters,rows,cols)

% this function generates a 2D synthetic image of ellipses, each ellipse is B E]lipse Centef (X ) —_—
% defined by the following parameters (ellipse parameters) 03}’0
% Column 1: & the additive intensity value of the ellipse
% Column 2: a the length of the horizontal semi-axis of the ellipse e A 2y a (
- 7 p N/
% i.e radius in the x-direction
% Column 3: b the length of the wvertical semi-axis of the ellipse
% i.e radius in the y-direction § §
-(I \ S \ \
% Column 4: x0 the x-coordinate of the center of the ellipse
% Column 5: v0 the y-coordinate of the center of the ellipse
% Column 6: phi the angle (in degrees) between the horizontal semi-axis s ) J )
% of the ellipse and the x-axis of the image -(r h Y Y I

' X - direction

O)
NS
Y



Scanner Simulation — Phantom Generation

L 0

'a
N\

%% intialization of our phantom
phantom_img = zeros(rows,cols): O O O O—
% the spatial support (normalized to -1->1
xwid = {(cols-1)/2; —_(> O O D—
vid = (rows-1)/2;
x_range = ((D:cols-1) - xmid)./xmwid:;
y_range = ((rows-1:-1:0) - ymid) ./ymid; %*the origin of the image is the left —0 N O O—
%3lower corner instead of the upper
one
—0 O O O—
% defining the grid points of our phantom
[x,¥] = meshgrid(x_range,y_range):
(\ 0O Ve (
% getting the xy coordinates and the phantom flatten in one wvector I T h g o
X = x(:):
¥ = ?i:]; (\ O O /)_
phantom_img = phantom img(:): I T Y
l l C O O O—
e e N\, e
T T T h h 't

X - direction



Scanner Simulation — Phantom Generation

%% now lets loop over all ellipses to find the corresponding phantom points
for i = 1 : size(ellipse parameters,1l)

% the parameters of current ellipse
A = ellipse parameters(i,1):
a = ellipse parameters(i,2):
b = ellipse parameters(i,3):

%0 = ellipse parameters(i,4):
y0 = ellipse parameters(i,S):
phi = ellipse parameters(i,6):

2,

% lets translate the phantom coordinates to be centered at the ellipe's
% center
cur_x = x - x0;

cur v = ¢ - y0;

% lets rotate the translated phantom coordinates to align the x-axis
% with the ellipse's horizontal semi-axis and the y-axis with the
% ellipse's vertical semi-axis

rotation matrix = [ cosd(phi) sind(phi):
-sind(phi) cosdiphi)]:

% lets see which points in the phantom that will belong to the current

pts = [cur_x' ; cur_y']:

. ; % ellipse
pts = rotation matrix * pts ;

X2 = cur_x."2;
¥Z2 = cur_v."2;
az = a~2;

cur_x = ptsil,:):
ptsiz,:);

cur_y

b2 = b*2;
—
index = (x2./a2) + (y2./b2) <= 1;
phantom_img(index) = phantom_img(index) + A4 ;
end

prhantom img = reshape (phantom img, [rows,cols]):
; L L
e —r



Scanner Simulation — Phantom Generation

ellispes parameters =

1.0000 0.6900 0.9200 0 0 0
-0.3000 0.6624 0.8740 0 -0.0134 0
-0.2000 0.1100 0.3100 0.2z200 0 -15.0000
-0.2000 0.1600 0.4100 -0.2z200 0 15.0000

0.1000 0.2100 0.2500 0 0.3500 0

0.1000 0.0460 0.0460 0 0.1000 0

0.1000 0.0460 0.0460 0 -0.1000 0

0.1000 0.0460 0.0230 -0.0300 -0.6050 0

0.1000 0.0230 0.0230 0 -0.6060 0

0.1000 0.0230 0.0460 0.0600 -0.6050 0




Scanner Simulation — Projections Generation

To be able to study different reconstruction techniques, we first needed
to write a program that take projections of a known image.

Basically, we take the image (which 1s just a matrix of intensities),
rotate it, and sum up the intensities.

In MATLAB this is easily accomplished with the 'imrotate' and 'sum'
commands.

But first, we zero pad the image so we don't lose anything when we
rotate.

%% after padding the image, do the following to generate the projections

thetas = 0:180;

no of rays = 300;

projections = zeros(length(thetas),no of rays):

for i = 1 : length(thetas)
rotated phantom = imrotate (padded phantom image, theta(i), 'bilinear',6'crop');
projections(:,i) = (sum(rotated phantom))';

end



Scanner Simulation — Projections Generation
from 0 to

Original Image - rays enter in green and exit in red Current Rotated Image

Projections from 0 to O degrees Projection for angle 0 degrees
80 T . .
50 70t
100 60 -
1}
7 150 ‘_3 50t
= -_—
E-. 200 % A0
o -—
= 250 =
= 2 30¢
300 -
20+
350
10+
400
U it 1 1 I
50 100 150 0 100 200 300 400 500

theta t (ray-index)



Scanner Simulation — Projections Generation
from 0 to 2x

Original Image - rays enter in green and exit in red Current Rotated Image

Projections from 0 to O degrees Projection for angle 0 degrees
80 -
50 70t
100 60
1}
< 150 2 sof
= =
©
; 200 = 40
= 250 £
= 2 30¢
300 -
20+
350
10+
400
U it 1 1 I
50 100 150 200 250 300 350 0 100 200 300 400 500

theta t (ray-index)



Reconstruction From Projections

* Given the projections, we first filter them as shown
below.

% number of rays, which corresponds to nwber of samples in the discretized
% 1D projection
N = size(projections,1):;

% sampling the frequency w = 2%pi*f

w = -pi : (2%*pi)/N : pi-(2*pi)/N; % -pi to pi
% shifting the response to 0 to Z2%pi

filter response = fftshift (abs(w))’

% number of projections
nProjections = size(projections,2):

filtered projections = zeros(size(projections)):

for i = nProjections

al.g
% filter in the fredquency domain
5 _f = fft(projections(:,1)):
fil

% return to t-theta domain

tered 5 £ = 5 f.*filter response';

filtered projections(:,1i) = ifft(filtered 3 £f):
end

% Remove any remaining imaginary parts

filtered projections = real(filtered projections):



Reconstruction From Projections

* Given the angles where the projections were taken, and the filtered
projections, the following will reconstruct an estimate of the original image.

g(x.y)=[| [I£1S,(f)e”*"df do

0| —

J

0 (1)

% find the middle index of the projections

center = (nProjections+1) /2 e

et up X and ¥ matrices

I w

X 1:nProjections;

v 1:nProjections;

[X,¥] = meshgrid(x,v):

% having the origin in the middle of the grid

xproj = ¥ - (nProjections+1)/2;

vproj = Y - (nProjections+1)/2;
reconstructed image = zeros(nProjections,nProjections):
for i = 1l:nProjections

% figure out which projections to add to which spots

cur_points = roundicenter + xproj*cos(thetas(i)) + yproj*sin(thetas(i))): é f
i 3

% if we are "in bounds" then add the point I . .

TR e Ar® (in hounds' them af¢ the poine S oint on the current radial
cur reconstruction = zeros(nProjections,nProjections):
spot = find({cur_ points > 0) & (cur_points <= N)): line Wthh COI’ICSPOl’ldS to
new_points = cur_points(spot]: o
cur reconstruction(spot) = filtered projections(new_pointsi(:),1i):’ the 1D fourler transform Oi
il the current projection

reconstructed image = reconstructed image + cur_reconstruction;

end
reconstructed image = reconstructed image./nProjections;



Experiment One

Studying the etfect of using different
filter types compared to the unfiltered
case.



Reconstruction using unfiltered projections
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t - (ray indesx)
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Reconstruction using Ramp filter
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t - (ray index)

Reconstruction using LPF filter
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t - (ray index)

Reconstruction using Butterworth filter
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t - (ray indesx)

Reconstruction using Sinusoidal filter
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Reconstruction using Ramp filter vs unfiltered case
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Reconstruction using LPF filter vs unfiltered case
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Reconstruction using Butterworth filter vs unfiltered
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Reconstruction using Sinusoidal filter vs unfiltered
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Experiment Two

Studying the effect ot reconstruction
using different number of projections



Reconstruction using different number

of projections

Using sinusoidal filter and number of rays equal to image number columns
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Quantifying the reconstruction error

Mean square error using different number of projections

7L [ [ [ [ [ [ [ [ T
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Experiment Three

Studying the effect ot reconstruction
using different number of rays



Reconstruction using different number

of rays

Using sinusoidal filter and fixed number of projections
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Quantifying the reconstruction
error

Mean square error using different number of rays
180 [ [ [ [ [ [ [ [ T

160 § -
ok f
120 - -
100 i

80 % .

Mean Square Error

60 i¥ 1

0 50 100 150 200 250 300 350 400 450
Number of rays



Thank You




