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Abstract

This paper introduces a data distribution scheme and an alignment algorithm for parallel volume
rendering. The algorithm performs a single wrap-around shear transformation which requires only a
regular inter-processor communication pattern. The alignment can be implemented incrementally con-
sisting of short distance shifts, thus significantly reducing the communication overhead. The alignment
process is a non-destructive transformation, consisting of a single non-scaling shear operation. This is
a unique feature which provides the basis for the incremental algorithm.

Key Words: Volume Rendering, Parallel Algorithms, Parallel Rendering, Distributed Memory,
Ray Casting.

1 Introduction

Volume rendering is a technique for visualizing 3D samples which are assumed to be partially transpar-
ent materials. Volume rendering applications require extensive computational resources to deal with
the typical large sizes of the volumetric datasets. In order to achieve interactive visualization, parallel
computation is inevitable. Several special-purpose architectures have been proposed [1,2], but most
recent efforts have been directed towards implementing volume rendering on general-purpose parallel
machines. These include distributed memory architectures [3,4,5,6] and shared memory architectures
[7,8].

The scalability of a parallel algorithm in both number of processing units and data size is a major
concern when evaluating parallel algorithms. One important factor that influences the performance of
a parallel algorithm is the computation to communication ratio [9]. The larger that ratio, the more
efficient is the algorithm and therefore scalable. A second consideration is that global communication
operations, such as shifts, are much more efficient than point-to-point communications, because they
avoid conflicts on the communication channels. When examining the communication overhead of a
parallel algorithm, the volume of communication is not the only consideration since every communica-
tion operation includes some “start up” phase which yields an overhead that might be equivalent to the
transfer of several thousands bytes of information. Therefore, reducing the number of communication
steps might produce a significant speedup. Another factor for the efficiency of a parallel algorithm is
the balanced distribution of work among the processing units.

The algorithm we are presenting in this paper accounts for these considerations. It requires a
network topology of a ring, where each node have two communication channels to its left and right



adjacent nodes, a topology which can be mapped on virtually every network topology that exists in
today’s parallel machines. The only communication pattern required by the algorithm is a global shift
of data around the ring of the processing units. Moreover, the algorithm strives to shorten the length
of the shift operations by an incremental technique. The algorithm includes a special solution for
rotating the raster data across the 45 degree barrier.

2 Ray Casting on Parallel Architectures

One of the major techniques in volume rendering is ray casting. The rays sample the volume along
the ray passage, evaluating opacity accumulation [10]. There are two prominent approaches to im-
plementing ray casting on a parallel distributed memory scheme. The first approach is to follow the
rays through the volume, moving the rays among the processing units, while the volume data remains
in place. The second approach first transforms the data to be axis-aligned with the ray’s direction.
In a second phase, after the data has been localized, rays are sampled with no inter-processor com-
munication. The first approach imposes the difficult task of maintaining a conflict-free access to the
distributed data, since rays accesses arbitrary data. However, when casting parallel discrete rays using
a 26-connected form, adjacent rays have the same pattern [11], hereafter referred to as the template
property. This property permits simultaneous sampling by parallel rays while using regular inter-
processor communications [5]. However, such methods are not symmetric and works well for angles in
the range of —45° and 45°; otherwise the data has to be flipped (see [12]). Another method uses a
memory skewing scheme that supports the extraction of an arbitrary ray in one parallel access [2,13].

The second approach has been implemented by applying a sequence of three one-dimensional shear
transformations which are a decomposition of a 3D rotation [14]. The rotated data is aligned with
the viewing direction so that the data accessed by a single ray requires either no communication
or regular communication. Usually, the shear transformations include scale and re-sampling which
modifies the dataset [15,6]. Thus, repeated transformations cause a non-reversible destruction of the
original dataset. A non-destructive transformation is, of course, a very attractive feature. A non-
destructive transformation is such that filtering is embedded in the rendering phase and no scaling is
performed on the alignment phase, and there is no lose of data information. The shear transformation
is a net shift of rows, therefor the dataset is is not modified and only re-mapped among the processing
units and within their local memories.

The three-pass shear method is attractive for parallel implementation since a single, one-dimensional
shear requires regular inter-processor communication or just an in-memory re-mapping [4,12]. How-
ever, a minor change of the viewing direction requires a complete rotation from the initial state. No
incremental rotation algorithm is known. In our work we suggest moving the volume data in such a way
that a processing unit holds data that is perpendicular to the viewing direction, using a single wrap-
around shear in an operation we call ray alignment, described in Section 4(recently, a similar approach
has been proposed [16]). Ray alignment is non-destructive and offers incremental rotations (Section
5). To reduce aliasing, we have developed a padding technique which allows an on-line re-sampling of
the data during the ray sampling phase (Section 6).

It should be emphasised that this paper does not propose a volume rendering technique but a
parallel memory organization scheme that provides a simplified mechanism for localizing the data for
rendering in a way that reduces communication overhead. The image quality is independent of the
proposed mechanism.

3 Terms and Definitions

We assume a MIMD architecture consisting of p symmetric processing units each of which consists of
a CPU and a local memory. The processing units are interconnected in a ring topology or in some
other topology which can be mapped to a ring.



The volume data is a discrete three dimensional grid of values. A volume v of resolution N is the
following set: v = {(z,y,2)|0 < z,y,z < N}

We define the initial state to be the memory partitioning of the volume data v among the processing
units. In the initial state, processing unit ¢ contains the following set of voxels {(z, y, 2) |t = 1, (z,y,2) € v}.
That is, the volume data is distributed along the major axis.

A shift operation is a global communication routine in which all the processing units send their
data to their adjacent neighbor on one side and receive data from the neighbor on the other side. We
use the term long shift to distance k to denote a sequence of k£ consecutive shifts.

4 Alignment

First let’s examine the alignment process on a two dimensional grid. Suppose we have a square grid
of N x N pixels and that every processing unit contains one column of the pixels grid. We would like
to scan the entire grid using an eight-connected line algorithm (such as Bresenham’s line algorithm)
from an arbitrary angle. The 2D lines are analogs of the rays that traverses the volume in the 3D case.

Let us consider the case when the viewing angle is 0°. In this simple case which is the initial state,
data is distributed among the processing units in such a way that every processing unit scans the
column stored in its local memory. Now we examine the general case of an arbitrary viewing angle in
the range of —45° and 45°. If we were to keep the current distribution of data among the processing
units then we would have to communicate, in a regular form, information while scanning. Instead we
propose an alternative which is executed in two phases. In the first phase which we call alignment, we
perform a “virtual” scanning in which data is moved among the processing units in such a way that
after the alignment, every processing unit holds in its local memory the data required for scanning the
diagonal line. In the second phase, we scan the data in local memory achieving the same effect as the
0° case.

At different viewing angles the grid needs to be scanned by a different number of lines. The number
of lines varies between N at 0° and 2N at 45°, although the amount of data remains the same. Observe
that for every line that ends at the right side of the grid there is a corresponding line that begins at the
left side (wrapped around). Using this property of eight-connected lines we allow every processing unit
to scan one or two rays depending on whether a ray exits at the top side or right side of the pixel grid.
Since the processing units are interconnected in a ring-like topology, the wrap-around alignment is
easily achieved by partitioning the memory in a straightforward column-wise fashion. The distribution
of work among the processing units is such that each of them makes exactly N steps, providing an
inherent load balancing (Figure 1). Figure 2 is a pseudo-code of the alignment process.

The alignment consists only of shifting rows with no filter or other destructive operations. The shift
function is a one to one mapping and is thus reversible. The fact that the alignment is non destructive
is a key point of the incremental alignment, as will be discussed next.

5 Incremental alignment

In a typical interactive volume rendering application, the viewing direction incrementally changes by
small angles for example by sampling the movement of the mouse. An incremental transition from one
angle o to the next a4+ ¢ is desirable. Using the fact that the alignment process is non-destructive and
the template property, the data is already aligned to a therefore only a minimal number of shifts are
required to correct the rows in order to match the a + ¢ direction (see Figure 4). The pseudo code
shown in Figure 3 is a modification of the pseudo code shown in Figure 2 that supports incremental
alignment.

Communication is also reduced by the fact that in short distance shifts, only part of the rows need
to be shifted. See Figure 4 the shifts that need to be done on each row are depicted in (d). Note that
many rows need no shift at all, while others need only a short shift either to the left or to the right.
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Figure 1: The alignment process of an N x N grid. The numbers denote the slice number. The
initial state (a). The rays path at an arbitrary viewing angle (b). The grid aligned with the rays (c).
The aligned data after wrapping (d), observe that some processing units contains one ray, while others
contain two rays. In any case, the number of vozels that are processed by each processing unit is exactly

N.
align(int A[N], Angle 0) {

Pattern P; /* an array of integers where z = p[y]
int 1;
create_pattern(P, 0);
for (1=05i < N;i++)
A7) = shift(A[7], P[i]);

Figure 2: Pseudo-code that aligns a two-dimensional grid. Every row s shifted according to the pattern
of an eight-connected line (the array P).

incremental_align(int A[N],Angle a;,Angle a;41) {
Pattern Pp,Ps;
int 1;
create_pattern(Py,az);
create_pattern(Pa,cve41);
for (1=10i < N; i+ +)
Al7] = shift(A[7], P2[7] — Pi[7]);
}

Figure 3: Pseudo-code that incrementally aligns a two-dimensional grid. Every row is shifted to adjust
the previous alignment to the new angle.
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Figure 4: (a) shows the set of pizels a ray at angle o traverses. This set of pizels is held locally to a
processing unit memory. (b) shows the set of pizels a ray at angle a+¢ traverses, this set of pizels need
to be aligned to a local memory. (c) shows that only a few rows need to be moved among processing
units when changing from angle o to o + €.

When the increments are of small angles the set of shifts are short distance shifts. On most
topologies short shifts are executed faster and are proportional to the distance. This, in addition to
the fact that small changes of the viewing direction do not require every row to be shifted, provides a
very fast mechanism for ray alignment (see Table 1).

Table 1: Average number of regular shifts to adjacent neighbors for 1283 and 256% volume when the
volume s rotated from 0° to 45° at different steps of angles.

Agngle Average number of Long distance shifts

(degrees) | shifts to distance | Average number | Maximum distance
of 1/step of shifts/step of a shifts

N 128 256 128 256 128 256

1 89 356 75 203 3 5

2 172 684 99 222 5 8

5 409 1648 106 222 11 21

10 678 2739 98 201 16 33

The incremental algorithm presented so far is limited to angles in the range of —45° and 45°.
Clearly, extending the range of rotations is necessary for viewing from an arbitrary angle. One method
of moving from the 45° — € angle to the 45° 4 € angle is to take the original data with “slices” parallel
to the Z-Y plane, perform a 90° flip and then align to 45° + ¢ [12]. Adapting such a method violates
the incremental property of our algorithm. Instead we can change the viewing angle from 45° — € to
45° 4 ¢ (and similarly at 135°, 225° and 315° angles) in a cheap function that does not conflict with
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Figure 5: Figures (a), (b) and (c) shows a series of rotations from 90° to 45°, where z is the major
azis. Figures (d), (e) and (f) shows a series of rotations from 0° to 45°, where z is the major azis.
The numbers denote the pizel’s address within a processing unit local memory. One can see that the
difference between Figure e and Figure f is the internal order of the data within a processing unit.

the speed of the incremental alignment for any other angle.

To explain the transition from 45° — € to 45° 4 € let us look at two occurrences, in the first the x-axis
is the major axis, we rotate the grid counterclockwise towards 45°. In the other, the major axis is the
z-axis, again we rotate the grid toward 45° but clockwise this time. When both reach the angle of 45°
each scene has its own partitioning of the volume-data. By carefully examining this partitioning we
observe that every processing unit holds exactly the same set of pixels, although in a different order.
This difference is caused by the choice of major axis (see Figure 5). Therefore, all we need is a switch
of the major axis and to continue aligning beyond 45°.

Observe Figure 5, the row in (a) is rotated counterclockwise through (b) until (¢) where it is
rotated to 45°. Now, observe the column in (d) which is rotated clockwise through (e) to 45° in (f).
The difference between (c) and (f) is merely the internal order of the data within the local processing
units memory. Changing the internal order is done locally either by a reordering of the data or by
using look up tables.

6 Alignment and Volume Rendering

Alignment is a non-destructive mechanism that maintains the property that all the data a processing
unit needs for rendering from an arbitrary direction resides in its local memory. The extension of the
2D alignment to three dimensions treats the volume as a set of two dimensional grids piled one on top
of the other (Figure 6). Each processing unit holds a vertical slice of the volume the counter-part of
the 2D row. The volume alignment is thus a sequence of the two dimensional alignments. However,
since the alignments of each volume layers are of the same form it is possible to replace the outer loop
which runs over all the layers by a shift of the entire column instead of a single volume element, saving
an order of magnitude in communication steps while shifting the same amount of data.
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Figure 6: Piling two-dimensional grid, forms a volume. The dark vozels are the vozels held by one of
the processing elements at the initial state.

The above data partitioning permits rotations around the X-axis by casting diagonal rays into the
local slice without a need for alignment since the vertical slice is invariant under a horizontal rotation.
This of course avoids the communication time when rotating only around the X-axis. A single axis
rotation is a very powerful interactive tool for observing a 3D object. An arbitrary rotation is thus
composed of two rotations of which only one requires alignment. A rotation around the z-axis can
be avoided or delayed until after rendering by rotating the projected image. It should be noted that
a Z-axis rotation is uncommon in practice, a fact that suggested partitioning the volume data non
symmetrically to the three axes.

The discussion has so far assumed that the number of processing units is N while the volume
dimensions are N3. The alignment algorithm with minor modifications works when p the number
of processing units is less than N. By modifying the initial state is such that every processing unit
contains a “slab” of the volume. A slab is a set of adjacent slices and the slab thickness is N/p slices.
A second alternative is a cyclic partitioning, where processing unit ¢ holds the following set of slices
{slice;|0 < j < N and (j mod p) = i}, where p is the number of processing units in the system. The
cyclic data partitioning yields better load-balancing due to its randomized nature. However, the slab
data partitioning is preferable for two reasons. First, the amount of communication required is smaller
than of the cyclic partitioning since small changes of the viewing angle might keep more data within
a processing unit. The second reason is the lesser amount of data duplication that is required by the
padding technique described below.

The implementation of a volume rendering algorithm should include some form of anti-aliasing.
The aliasing is caused by low sampling rates relative to the inherent frequencies of the data. Assume
that we sample and render the image by ray casting. One possible solution is super-sampling the
volume by accelerating the sampling rate along the ray and by casting more rays from one image pixel.
Another solution improves the single sample by use of some 3D filter. A common and simple filter is
a trilinear interpolation of the voxel at the sampling point [7]. Trilinear interpolation requires access
to the eight corners of the voxels which contains the sample. We wish to support this access without
sacrificing the locality of the rendering phase. For this purpose each slab is padded by an adjacent
slices that otherwise would have to be brought in from adjacent processing unit(s). (see Figure 7). If
the samples occur only at voxels walls a bilinear interpolation of the four corners of the voxel walls
will require only a single padding slice. However, if the samples occur arbitrarily along the ray, a
trilinear interpolation will require a double pad of two slices. The padded slices overlap between the
adjacent slices which means some extra space. This suggests that larger slabs are more attractive as
the addition of slices becomes relatively smaller. But on the other hand, our alignment mechanism
offers almost linear speed up and a large number of processing units means smaller slabs.
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Figure 7: A ray samples along a slab of two slices (painted in black). The ray grazes the slab. The
sample points are interpolated with the value of the pad slice (painted in gray).

7 Performance Analysis

In order to evaluate a parallel algorithm in general and our alignment algorithm in particular we have
to analyze its communication overhead, which defines the speed-up provided by the algorithm. The
communication overhead consists of the data transfer time and the latency time associated with each
communication operation. However, since we are interested in hardware independent values, we are
assuming that the communication throughput and its latency are given, and we account only for the
volume of the transferred data and the number of communication operations. An efficient parallel
algorithm minimizes on both criteria. In this way we also avoid biased results due to the efficiency of
the software implementation.

Plain numbers such as the ones in Table 1 are not of much interest unless they are compared
to other algorithms. We have implemented two algorithms that represent the two basic approaches
used in parallel volume rendering. The first is a three-pass shear based algorithm [15] which can be
implemented on a parallel machine with a ring topology in such a way that only one shear out of the
three requires inter-processor communication. A second algorithm is the line-drawing algorithm [5]
described in Section 2.

Figures 8 and 9 show the amount of data that is communicated and the number of communication
operations required by the three algorithms. The incremental alignment algorithm performs well on
both criteria and it shifts small amount of data uniformly over different angles when rotating the
volume from 0° to 45°, while the other two algorithms perform significantly better at 0° than at
45°. Note in Table 10 that the number of voxels that are transferred by the alignment algorithm is
independent to the viewing angle yielding a stable communication load.

Both the three-pass shear and the alignment algorithm separates the communication phase from
the rendering phase, resulting in two significant benefits. One benefit is that no communication is
required for rendering if any viewing parameters other than the rotation angles are changed. The other
advantage is that when the communication is interleaved with computation, the processing unit must
operate in synchronous lock-steps losing many computation cycles. Separating the communication and
computation into two different phases reduces the number of the synchronous lock steps.
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Figure 8: Average number of vozels that is communicated at a step, when rotating a volume from the
0° to 45°.
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Figure 10: The number of vozels that are communicated at each viewing angle when rotating the volume
from 0° to 45° by steps of 1°.

8 Conclusion

We have presented an incremental alignment algorithm for parallel ray casting. The efficiency of the
algorithm stems from its low communication overhead. In our analysis we avoided measuring efficiency
in terms of speed-up because this criteria can be biased by the computation time spent in the rendering
process or other parameters irrelevant to the alignment itself. If the computation time is increased
while the communication time is kept constant, the speed-up factor seems to indicate better results. We
have presented results which are independent of the computation time. The communication overhead
is measured by the amount of transferred data and the number of communication operations. Yet, the
alignment algorithm is well-balanced and requires a regular inter-processor communication pattern,
which avoids conflicts or complicated routings.

The alignment process is a non-destructive transformation, consisting of a single non-scaling shear
operation. This is a unique feature which provides the basis for the incremental algorithm presented in
this paper. Filtering is delayed until the rendering phase. This is in contrast to shear-based algorithms
which include scaling and filtering of the original data.
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