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Terrain Simplification Simplified: A General
Framework for View-Dependent Out-of-Core

Visualization
Peter Lindstrom and Valerio Pascucci

Abstract—This paper describes a general framework for out-of-core ren-
dering and management of massive terrain surfaces. The two key com-
ponents of this framework are: view-dependent refinement of the terrain
mesh; and a simple scheme for organizing the terrain data to improve co-
herence and reduce the number of paging events from external storage to
main memory. Similar to several previously proposed methods for view-
dependent refinement, we recursively subdivide a triangle mesh defined
over regularly gridded data using longest-edge bisection. As part of this sin-
gle, per-frame refinement pass, we perform triangle stripping, view frustum
culling, and smooth blending of geometry using geomorphing. Meanwhile,
our refinement framework supports a large class of error metrics, is highly
competitive in terms of rendering performance, and is surprisingly simple
to implement.

Independent of our refinement algorithm, we also describe several data
layout techniques for providing coherent access to the terrain data. By re-
ordering the data in a manner that is more consistent with our recursive
access pattern, we show that visualization of gigabyte-size data sets can
be realized even on low-end, commodity PCs without the need for com-
plicated and explicit data paging techniques. Rather, by virtue of dramatic
improvements in multilevel cache coherence, we rely on the built-in paging
mechanisms of the operating system to perform this task. The end result is
a straightforward, simple-to-implement, pointerless indexing scheme that
dramatically improves the data locality and paging performance over con-
ventional matrix-based layouts.

I. INTRODUCTION

View-dependent refinement and out-of-core data manage-
ment are two critical components of large-scale, interactive vi-
sualization of massive terrain surfaces. In recent years sev-
eral effective yet quite complicated, often specialized, and many
times incompatible methods have been proposed for these two
tasks. Whereas large-scale terrain visualization was once syn-
onymous with industrial flight simulation, a plethora of emerg-
ing uses, ranging anywhere from military and scientific appli-
cations to video games and hobby use, suggest that simple-to-
implement yet powerful algorithms for terrain visualization are
becoming increasingly valuable. In part to address this prob-
lem, we recently proposed a general framework for performing
highly interactive view-dependent rendering, as well as a trans-
parent mechanism for improving multilevel cache performance
and enabling efficient paging of gigabyte-size data sets [1]. In
this paper, we provide an extended overview and in-depth dis-
cussion of these algorithms, while taking care to give enough
detail to make end-to-end implementations of our algorithms
reasonably straightforward.

We will first describe an algorithm for efficient view-
dependent refinement. Using the common vertex hierarchy in-
duced by recursive edge/triangle bisection [2–4], we show that it
is possible to (1) construct an adaptive mesh from scratch each
frame, (2) perform fast, hierarchical view frustum culling, (3)
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create smooth transitions in the geometry using geomorphing,
while (4) simultaneously outputting a single generalized triangle
strip for the entire mesh that can be efficiently rendered. More-
over, all of these tasks can be performed without having to main-
tain any state information, except of course for the output being
generated. That is, the traversal can be cast in a purely functional
form, which not only makes efficient implementations possible,
but is also a feature that meshes well with the out-of-core com-
ponent of our framework. Because no state information is as-
sociated with the mesh vertex data, we can access this data in a
read-only fashion. This improves CPU cache performance and
also allows the on-disk data to be efficientlymemory mapped
without the need for frequent write-back of dirty pages. As al-
ready alluded to, the external memory component of our system
is based on associating the on-disk terrain database with a large
region of read-only logical address space, which may greatly ex-
ceed the amount of physical memory. Under Unix, this can be
done using themmapsystem call, while Windows implemen-
tations would useMapViewOfFile . Instead of focusing on
explicit paging mechanisms, we leave this as an open issue and
instead discuss different schemes for rearranging the terrain data
so that it can be accessed in a cache coherent manner. We will
describe the problem of coherent data layouts in the second part
of our paper.

Because our method is stateless, we do not require maintain-
ing dependencies in the vertex hierarchy [2], nor do we make
explicit use of frame-to-frame coherence using mechanisms like
priority queues [3, 5], active cuts [2, 3, 5, 6], or multi-frame
amortized evaluation [6]. We do not mean to imply that such
techniques are not useful, however making successful use of
these concepts considerably complicates implementations, and
we have seen no evidence that our top-down approach cannot
perform as well or even better than more complicated previously
published methods.

Another feature of our framework is that its individual com-
ponents are modular—it is, for example, entirely possible to add,
remove, or even swap out components such as triangle strip-
ping, culling, geomorphing, data indexing, etc., without having
to perform significant code surgery. In addition, adding any one
of these components does not change the required on-disk data
structures. Rather, the per-vertex terrain data is limited to po-
sition (or just elevation), a scalar error term, and a scalar term
to encode a bounding sphere. We anticipate that this modular-
ity will aid in quickly implementing the core feature set of our
refinement algorithm.

Many of the details of our framework were presented in [1].
We here provide a more thorough exposition, but also significant
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new material. The major contributions of this paper over our
previously published research include: (1) An easy-to-integrate
technique for position-based geomorphing. The morphs are
driven by the screen space projected error for a vertex, which
ensures that the terrain geometry is determined entirely by the
camera view, and can be varied smoothly with the viewpoint.
(2) An extended discussion and derivation of alternative error
metrics for use in our framework. (3) Derivations of all index
computations needed for hierarchical traversal. (4) A section
devoted to a discussion of efficient off-line preparation of the on-
disk data. (5) Additional qualitative and quantitative results. We
include experimental performance data and animations showing
the quality of our geomorphs, and analyze and compare differ-
ent error metrics. Finally, we have attempted to further clarify
the steps in our algorithms to facilitate their implementation and
to make the transfer between abstract concepts and actual code
as straightforward as possible.

II. PREVIOUS WORK

In this section we discuss related work in large-scale terrain
visualization. We will focus particularly on algorithms for view-
dependent refinement of terrain, and schemes for out-of-core
paging and memory coherent layout of multiresolution data.

A. View-Dependent Refinement

Over the last several decades, there has been extensive work
done in the area of terrain visualization and level of detail cre-
ation and management. We will here limit our discussion to the
more recent work on view-dependent simplification and refine-
ment of terrain surfaces.

Gross et al. [7] were among the first to propose a method
for adaptive mesh tessellation at near interactive rates. Their
technique is based on a wavelet transform of the gridded data,
from which large detail coefficients are chosen for selective re-
finement. A windowing technique is also described that al-
lows some regions of the mesh to be more refined than others.
Lindstrom et al. [2] describe an algorithm for interactive, view-
dependent refinement of terrain. They represent the terrain as
a mesh with subdivision connectivity that is locally refined us-
ing recursiveedge bisection. The algorithm conceptually works
bottom-up, by recursively merging triangles until a screen space
error tolerance is exceeded. In actuality, the terrain is parti-
tioned into a quadtree of large rectangular blocks of vertices.
Taking advantage of frame-to-frame coherence, the active cut in
this quadtree is visited and updated, after which individual ver-
tices within each block are considered for insertion or removal.
Due to this blocking of the terrain, special care must be taken
to ensure that no cracks form between the blocks. Handling
this problem in the context of asynchronous paging of blocks is
non-trivial, and enforcing dependencies between vertices can be
costly.

Hoppe extended his work onprogressive meshesto allow
view-dependent refinement of arbitrary meshes [6]. This tech-
nique was later specialized for terrain rendering [8]. The run-
time performance reported by Hoppe places his method among
the fastest ones published to date. However, the memory re-
quirements of his method, while lower than in [6], are still con-
siderable. In addition, fully implementing his algorithm is not

an easy task.
Using the same space of meshes as in [2], Duchaineau et

al. [3] proposed several improvements over Lindstrom et al.’s
method in their ROAM algorithm. Instead of organizing the
mesh as an acyclic graph of its vertices, they suggest using a
binary tree over the set of triangles. Using this data structure,
crack prevention is made easier. Another significant contribu-
tion is the idea of maintaining two queues for split and merge
operations, which allows incremental changes to the mesh to
be made in order of importance, while also allowing the refine-
ment to be pre-empted whenever a given time budget is reached.
Unfortunately, robustly implementing the dual-queue algorithm,
not to mention the many other components of their method, has
proven difficult.

Several other algorithms based on edge bisection have since
been published, with different strengths and weaknesses in
terms of visual accuracy and memory and time complexity [4,
5, 9–11]. These authors recognize the inherent complexity of
doing input sensitive bottom-up simplification, and use sim-
ple heuristics for output sensitive top-down refinement. Ger-
stner [11] and Pajarola [4] both discuss how to remove some of
the dependencies in the vertex hierarchy by implicitly coding
them into the object space errors, but do not extend this concept
to view-dependent metrics. Similar to [2], efficient rendering is
achieved in [4] by organizing the set of triangles into a single
generalized triangle strip that follows the Sierpinski space fill-
ing curve. We, too, use a single triangle strip in our refinement
algorithm. R̈ottger [9] presents a memory-efficient solution to
terrain rendering, requiring only two bytes of storage per vertex,
but his approach relies heavily on a particular view-dependent
metric that approximates Euclidean distances with the Manhat-
tan distance. We will revisit some of these methods briefly in
the sections below and contrast them with our own method.

B. Geomorphing

The view-dependent level-of-detail algorithms discussed so
far have the ability to adapt the terrain mesh at the granular-
ity of individual vertices. Even though this allows fine-scale
changes to the mesh to be made from one frame to the next,
these changes, if geometrically large enough, can lead to tem-
poral artifacts known as “popping.”Geomorphing, or justmor-
phing, is a common approach to counter such visually disturbing
phenomena, by interpolating the geometric transitions between
different levels of detail smoothly over time. One downside of
morphing is that vertices may have to be introduced earlier than
otherwise necessary to allow a continuous transition while still
satisfying an error tolerance. However, even without geomor-
phing the error tolerance is not necessarily set to guarantee sub-
pixel accuracy, but is often specified to be just small enough to
eliminate popping. If an error tolerance of several pixels is ac-
ceptable, then geomorphing can substantially improve the tem-
poral quality with only a modest computational overhead.

Morphing was first proposed for terrain surfaces by Ferguson
et al. [12]. Many view-dependent methods have since incorpo-
rated morphing. Cohen-Or et al. [13] proposed using transition
zones, based on the distance to each vertex, to blend the ge-
ometry of Delaunay-triangulated terrain. Such a distance-based
approach was also advocated by Pajarola [4]. Willis and co-
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workers described a similar technique that was used in the pop-
ular IRIS Performer visual simulation toolkit [14]. Hoppe took
a different approach by explicitly animating vertex splits and
edge collapses over time. Because of the inherent dependencies
between vertices in the hierarchy, his time-based geomorphs
imposed somewhat complicated restrictions on when a vertex
could be removed. Duchaineau et al. [3] suggested using a sim-
ilar time-based morphing strategy for their ROAM algorithm.

A slightly simpler and in a sense more disciplined approach
than purely time- or distance-based morphing is to make direct
use of the given error metric to parameterize the morphs. In this
way, the screen space error is used as the parameter that feeds
into the interpolation. In the algorithm by Röttger et al. [9], the
normalized error term that was used to make refinement deci-
sions was also used as a parameter for morphing the geometry.
More recently, Cline and Egbert [15] proposed using a simi-
lar approach to morph a quadtree representation of the terrain.
For each quadtree patch, they determine a continuous, view-
dependent level-of-detail parameter, and use its fractional part to
interpolate between the two closest, discrete level-of-detail rep-
resentations. Our approach to geomorphing is similar in spirit
to [9,15], but we use the actual screen space error as the morph
parameter and blend the geometry when this error falls within a
user-specified range.

C. Out-of-Core Paging and Data Layout

External memory algorithms [16], also known as out-of-core
algorithms, address issues related to the hierarchical nature of
the memory structure of modern computers (fast cache, main
memory, hard disk, etc.). Managing and making the best use
of the memory structure is important when dealing with large
data structures that do not fit in the main memory of a single
computer. New algorithmic techniques and analysis tools have
been developed to address this problem, e.g. for geometric al-
gorithms [17–19] and scientific visualization [20,21].

In most terrain visualization systems [2–4, 8, 22–26] the ex-
ternal memory component is essential for handling real terrain
and GIS databases. Hoppe [8] addresses the problem of con-
structing a progressive mesh of a large terrain using a bottom-
up scheme, by decomposing the terrain into square tiles that are
merged after independent decimation, and which are then fur-
ther simplified. D̈ollner et al. [27] address the issue of exter-
nal memory handling of large textures for terrain visualization.
Reddy et al. [24] implemented a custom VRML browser spe-
cialized for terrain visualization, where efficiency is gained by
combined use of multiresolution tiling, data caching, and predic-
tive pre-fetching. The out-of-core component of the large-scale
terrain system presented by Pajarola [4] is based on a decom-
position of the domain into square tiles, which are stored in a
database that supports fast 2D range queries.

Whereas the prevailing strategy for terrain paging has been to
split the terrain up into large rectangular tiles of varying reso-
lution that are paged in on demand, and to optimize the size of
these tiles and the I/O path from disk to memory, our approach
is instead to optimize the data layout to improve the memory
coherency—both in-core and out-of-core—for a given access
pattern. This approach is in a sense orthogonal to the manner
in which the data is paged in. For simplicity, we leave it to the

operating system to perform this task.
For accessing large data sets, data layouts based on space fill-

ing curves [28] are often used to guarantee good geometric lo-
cality [29–31]. To this end, the most popular curve is the Hilbert
curve [32], which guarantees the best geometric locality proper-
ties [33]. The pseudo-Hilbert scanning order [34,35] generalizes
this scheme to rectilinear grids that have a different number of
samples along each coordinate axis.

Recently Lawder [36] explored the use of different kinds of
space filling curves to develop indexing schemes for data stor-
age layout and fast retrieval in multi-dimensional databases.
Balmelli [37] uses the Z-order space filling curve to efficiently
navigate a quadtree data structure without using pointers. He
uses simple expressions for computing neighbor relations and
nearest common ancestors between nodes, allowing fast gener-
ation of adaptive edge bisection triangulations. The use of the
Z-order space filling curve for traversal of quadtrees [38] (also
called Morton-order) has also proven useful in the speedup of
matrix operations, allowing better use of the memory cache hi-
erarchies [39–41].

Recently Pascucci [42] introduced a simple address transfor-
mation that turns a single-resolution indexing scheme into a
multiresolution version, which is optimized for coarse-to-fine
breadth-first traversal. This technique has been proven effective
for visualizing very large 3D rectilinear grids [43]. The down-
side of this scheme is the need to apply the address transforma-
tion for each data access. The data layout schemes developed
in this paper are inspired by this technique, but have more strin-
gent performance requirements. In particular, to achieve high
performance, we cannot afford to perform the full address trans-
formation for each data access, and show how to speed the ad-
dress computation up based on context. Another hierarchical
address computation for gridded data was introduced by Gerst-
ner [11]. In this work the bintree hierarchy of triangles induced
by the Sierpinski space filling curve is used to fairly efficiently
compute the vertex indices during run-time traversal of the data.
The locality of the index is inherited from the Sierpinski curve.
The application of this address to our case does not seem ap-
propriate because of the scattered set of unused addresses that
results from duplicating vertex addresses.

In this paper, we present three different pointerless hierarchi-
cal data layouts that have shown to improve the cache and pag-
ing efficiency by orders of magnitude over more naive layouts.
We draw upon previous work on quadtree and space filling curve
layouts, but leverage the fact that the data access pattern is given
by a top-down recursive traversal of the height field vertices. We
will begin by explaining how this recursive traversal is used for
constructing adaptive meshes at run-time.

III. VIEW-DEPENDENT REFINEMENT

The goal of view-dependent level-of-detail algorithms is to
construct a mesh with a small number of triangles that for a
given view is a good approximation of the original, full-detail
mesh. This construction is done continuously at run-time, and
whenever the viewpoint changes the mesh is updated to reflect
the change. To measure how well the coarse mesh approximates
the original, it is common to measure theobject-spaceerror ε
between the original mesh and its approximation, e.g. as the
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Fig. 1. The split edgee = {vl, vr} and diamondT = {tb, tt} of a vertexv.

vertical deviation between corresponding points, and to project
this error onto the screen, e.g. using perspective projection, to
obtain a view-dependent measure of errorρ(ε). Depending on
whether the mesh issimplifiedbottom-up (fine-to-coarse) orre-
finedtop-down (coarse-to-fine), triangles are merged or split to
ensure that the projected errors meet some tolerance or the mesh
meets a given triangle budget.

As is common in terrain visualization, we assume that the in-
put to our refinement algorithm is a terrain surface represented
as a uniformly sampled height field, i.e. a rectangular grid of
elevations. Formally the height field can be represented as a
function z(x, y) over the 2D domain(x, y) ∈ R

2. To form
a continuous surface, we use linear interpolation of the height
field, which results in a piece-wise linear triangle mesh. By se-
lecting only a subset of the points from the height field, a coarser
mesh is obtained. It is this selection in particular that we will be
concerned with below.

In this section, we present a framework for performing top-
down, view-dependent refinement of the terrain surface. We
show how a single procedure can be used to efficiently perform
refinement of the connectivity, blend transitions in the geometry
using geomorphing, cull the mesh against the view volume, and
simultaneously build a single (generalized) triangle strip for the
entire mesh. This procedure makes no use of frame-to-frame
coherence, but rather builds the mesh from scratch for each in-
dividual frame. We first describe our main approach to refine-
ment, and follow with details of how to implement each of its
components.

A. Longest Edge Bisection

There are two important classes of meshes used for view-
dependent refinement: general, unstructured meshes (some-
times called triangulated irregular networks, or TINs) [8,13,44–
46], and regular (or semi-regular) meshes with subdivision con-
nectivity [1–5, 9, 11]. Whereas TINs have the potential to rep-
resent a surface with fewer triangles for a given error tolerance
(see, for example, [5] for a quantitative analysis), the simplicity
of regular subdivision hierarchies makes them more appropriate
for our purpose.

In our refinement algorithm, we use a particular type of sub-
division based onlongest edge bisection[2, 3, 9, 11]. The
meshes produced by this subdivision scheme, also called 4-k
meshes [47], right-triangulated irregular networks [5], and re-
stricted quadtree triangulations [4], have the property that they
can be refined locally without having to maintain the entire mesh
at the same resolution (see Fig. 3, for example). In the edge bi-

(a) (b) (c) (d)

Fig. 2. Edge bisection hierarchy. The arrows correspond to parent-child rela-
tionships in the directed acyclic graph of mesh vertices.

section scheme, an isosceles right triangle is refined by bisecting
its hypotenuse, thus creating two smaller right triangles (Fig. 1).
For the vertexv inserted in this refinement step, we call the bi-
sected edge thesplit edgeev of v. The two triangles (or single
triangle in the case of split edges on the boundary) that share
ev are called thediamondTv of v [3]. The split edge and dia-
mond are illustrated in Fig. 1. Starting with a coarse base mesh
(typically two or four triangles), an adaptive, recursive refine-
ment of the mesh is made (Fig. 2). The refinement criterion,
i.e. whether to split an edge by inserting a vertex, is generally
based on whether the vertex’s diamond approximates the cor-
responding part of the full-resolution mesh well enough. For
view-dependentrefinement, this criterion also depends on fac-
tors such as the position of the viewer relative to the vertex.

As is evident from Fig. 2, the vertices introduced in the subdi-
vision map directly to points on a regular, rectilinear grid. Thus
it is natural to use the edge bisection hierarchy as a multires-
olution representation for approximating height fields and ter-
rain surfaces. As in other methods based on edge bisection, the
dimensions of the underlying grid are constrained to2n/2 + 1
vertices in each direction, wheren is the (even) number of re-
finement levels.

It is also possible to perform the inverse of refinement—
simplification—by starting with the highest resolution mesh and
recursively merging pairs of triangles that satisfy a simplifica-
tion criterion. Simplification often results in a larger reduction in
mesh complexity than refinement for any given error tolerance.
This is because, as a result of processing the mesh from fine to
coarse resolution, the decisions as to where and when to simplify
it can be made using the most detailed and accurate information
available. In contrast, each refinement decision is necessarily
based upon a brief summary of a large amount of information,
and generally involves conservative error estimates. A signifi-
cant disadvantage of simplification versus refinement, however,
is that its computational complexity depends on the size of the
highest resolution mesh, whereas the refinement complexity is
linear in the size of the approximating mesh. Therefore, run-
time simplification of very large data sets can be prohibitively
slow.

The mesh produced by edge bisection can be represented as
a directed acyclic graph(DAG) [48] of its vertices. A directed
edge(i, j) from i to one of its childrenj in the DAG corresponds
to a triangle bisection, in whichj is inserted on the hypotenuse
and connected toi at the apex of the triangle (Fig. 2). Thus,
all non-leaf vertices not on the boundary of the mesh are con-
nected to four children in the DAG and have two parent vertices.
Boundary vertices have two children and one parent. For a given
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Fig. 3. Example of adaptively refined mesh. In order to avoid cracks in the
mesh, the dotted edges must be added.

refinementM of a mesh, we say that a vertex isactiveif it is in-
cluded inM . Furthermore,M is valid if it forms a continuous
surface without any T-junctions and cracks. Whether produced
by simplification or refinement, forM to be valid it must satisfy
the following property:

j ∈M =⇒ i ∈M j ∈ Ci (1)

whereCi is the set of children ofi in the DAG. That is, for
a vertexj to be active, its parents (and by induction all of its
ancestors) must be active. Fig. 3 illustrates this property, where
the dotted edges must be added to form a valid mesh. Even when
the DAG traversal is top-down, ensuring this property is not as
easy as it may seem, since it is possible to reachj in the DAG
without visiting both of its two parents.

One solution to enforcing the validity of the mesh is to main-
tain explicit dependencies between each child and its parents;
whenever a vertex is activated, the chain of dependencies is fol-
lowed and all ancestor vertices are activated [2]. However, this
approach is inefficient both in terms of computation and stor-
age. Our approach, instead, is to satisfy Property 1 by ensuring
that the error terms used in the refinement criterion are nested,
thereby implicitly forcing all parent vertices to be activated with
their descendants.

B. Refinement Criterion

The idea of using nested errors is not new. Pajarola [4]
and Gerstner [11] discuss nested object space errors, and refer
to the nesting condition as “saturating” the errors. However,
neither describe how to guarantee that the errors after projec-
tion to screen space remain nested, which as we shall see re-
quires that special care be taken in formulating the error metric.
The ROAM algorithm [3] uses nested errors in both object and
screen space to order triangles in a priority queue. However,
their screen space metric applies only to a restricted class of ob-
ject space metrics, and assumes that perspective projection is
used. In addition, their metric appears considerably more com-
plicated to evaluate than the ones presented in this paper, which
in our case is important since we must compute the screen space
error for every potentially active vertex in every single frame.

Perhaps the most closely related refinement algorithm to ours
is the one proposed by Blow [10]. His method, like ours, is
based on a nested sphere hierarchy. Each sphere is centered on
the positionpi of a mesh vertexi, and represents the isocontour

of i’s projected screen space errorρi = ρ(εi,pi, e), whereεi

is an object (or world) space error term fori ande is the view-
point.1 That is,ρi is constant for all viewpoints on the sphere’s
surface. For a fixed screen space error toleranceτ , the isocon-
tour for whichρi = τ divides space into two halves;i is active
when the viewpoint is inside the sphere (ρi > τ ), and inac-
tive for viewpoints outside it (ρi < τ ). Using these spherical
isosurfaces, Blow constructs a forest of nested sphere hierar-
chies, in which each parent sphere contains its child spheres.
The vertices associated with these spheres need not be related in
the refinement—as long as the viewpoint is outside a particular
sphere, none of the vertices in the sphere’s subtree can be active,
which allows large groups of vertices to be eliminated quickly.

While theoretically simple, Blow’s method has a number of
drawbacks. First, to ensure the nesting,τ must be fixed up-front.
Second, the method is tied to a particular error metric; a met-
ric based on distance alone. A metric that varies with direction
from the vertex to the viewer, such as the one in [2], does not
necessarily lead to isosurfaces that have good nesting proper-
ties. Third, without maintaining explicit dependencies between
vertices, or artificially inflating the spheres wherever necessary,
Property 1 will generally not be satisfied, resulting in cracks in
the mesh. Finally, every tree in the sphere forest must be vis-
ited during refinement. Since this forest can be arbitrarily large,
further clustering of the trees may be necessary.

Our approach bears some resemblance to Blow’s, but avoids
many of these shortcomings. We, too, use a nested DAG of
spheres, but for a different purpose, and its structure is given by
the relationship between vertices in the refinement. In the dis-
cussion below, it is unimportant how the error termsε andρ are
measured—we will discuss possible error metrics later in Sec-
tion III-C. However, we require thatρ(ε,p, e) increases mono-
tonically with ε whenp ande are fixed. This is a reasonable
requirement; asε increases, we would expect its projectionρ
for a given viewpoint to increase as well (or at least remain the
same). Using these definitions, a sufficient condition for satis-
fying Property 1 is

ρ(εi,pi, e) ≥ ρ(εj ,pj , e) ∀j ∈ Ci

This is the view-dependent version of the saturation condition
mentioned in [49]. To guarantee this property, we could com-
pute an adjusted projected error fori by taking the maximum of
ρi andρj for all childrenj. However, we need this relationship
to be transitive, meaning that it would have to hold not only for
i and its children, but also for all ofi’s descendants. Visiting
every descendant of each active vertex at run-time is clearly im-
practical for large terrains, since the set of descendants increases
exponentially in size. Instead, we compute a conservative bound
onρi by making use of our sphere hierarchy.

First observe thatρi is made up of two distinct components:
an object space error termεi; and a view-dependent term that
relatespi ande. Our approach is to separate the two and guar-

1In the remainder of this paper, we assume that the generic screen space error
ρi is a function of the position ofi and the viewpoint. Some error metrics
may measure error at points other than the vertex positions (e.g. over entire
triangles [3, 8]), and may depend on additional view information (e.g. gaze
direction [3]). It should be straightforward to generalize our definitions to such
error metrics.
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antee a nesting for each term. Let

εi =

{
ε̂i if i is a leaf node

max{ε̂i,max
j∈Ci

{εj}} otherwise (2)

where ε̂i is the actual (not necessarily nested) geometric error
measured by the object space metric. Then clearlyεi ≥ εj

for j ∈ Ci. Due to the monotonic relationship betweenρi and
εi, we must haveρ(εi,pi, e) ≥ ρ(ε̂i,pi, e), which ensures that
there is no loss in visual accuracy. We don’t necessarily have
ρ(εi,pi, e) ≥ ρ(εj ,pj , e) for j ∈ Ci, however, since an error
projected frompj may be arbitrarily larger than an error pro-
jected frompi (e.g. the viewpoint may be close topj but far
from pi). Therefore, it is not sufficient to nest the object space
errors alone, but we must also account for this spatial relation-
ship between parent and child vertices. A naive approach would
be to compute the projection ofεi not only frompi but from the
position of each of its descendants, and then letρi be the largest
projection. That is, we would compute the projection from a set
of pointsPi, where

Pi = {pi} ∪
⋃

j∈Ci

Pj

For the same reason as above, this is impractical because we
would have to visit all descendants ofi. Instead, we resort to a
more easily expressed superset of points to project from, defined
by a ballBi ⊇ Pi of radiusri centered onpi:

Bi = {x : ‖x− pi‖ ≤ ri}
The radiusri of Bi is then

ri =

{
0 if i is a leaf node

max
j∈Ci

{‖pi − pj‖+ rj} otherwise (3)

ThenBi ⊇ Bj for j ∈ Ci, i.e. the ball hierarchy is nested. A
2D example of this nesting is shown in Fig. 4. Finally, we define
the maximum projected error as

ρi = ρ(εi, Bi, e) = max
x∈Bi

ρ(εi,x, e)

Becauseεi ≥ εj , Bi ⊇ Bj , andρ is monotonic, we must have
ρi ≥ ρj for j ∈ Ci. Consequently, ifj is active, then so is its
parenti, which is what we set out to show.

To computeρi at run-time, we need to perform a constrained
optimization over the ballBi. Because most projection oper-
atorsρ are such that they do not have isolated maxima inR

3,
except possibly at the viewpoint,∇ρ is generally non-zero ev-
erywhere, and the maximum ofρ occurs on the boundary of
Bi. Nevertheless, finding this maximum may seem like an ex-
pensive process. However, it is generally easy to find a simple,
closed form expression for the maximum, and we will see in
Section III-C how two different metrics can be expressed very
concisely. It is interesting to note that this approach to com-
puting conservative error bounds is similar to the strategy used
by Lindstrom et al. [2], in which an optimization over nested
bounding boxes is done for coarse-grained simplification and
refinement of large blocks of vertices.

1

2

3

4

Fig. 4. 2D analogue of the nested sphere hierarchy used for refinement and
view culling. The four triangles are associated with the vertices at their right-
angle corners. Notice that the bounding spheres do not completely contain their
corresponding triangles on the bottom two levels in the DAG, but do contain
them on level 3 and above.

During pre-processing of the data set, we computeε and r
for each vertex, as described in further detail in Section V. In
addition to the vertex’s elevationz (and (x, y) coordinates in
the domain, if so desired), these are the only parameters needed
in our top-down refinement algorithm. We again point out that
we have so far left the choice of object space and screen space
error metric entirely open. Given this general framework for
refinement, we will now briefly discuss how to compute actual
screen space errors for different error metrics.

C. Error Metrics

In this section, we consider possible object space (ε) and
screen space (ρ) error metrics. Typically, the screen space metric
is defined in terms of a projection operator, i.e. the screen space
error equals the projection of the object space error, and it is of-
ten useful to treat the two metrics independently. Our framework
is general enough to accommodate virtually any combination of
error metrics, which will be illustrated in the following sections
by a small set of examples.

C.1 Object Space Error Metrics

Perhaps the most common object space error measure for
height fields is the vertical distance between corresponding
points in the original and the approximating mesh. For simplic-
ity, these errors are often computed at the height field vertices
only [2, 9], but may be computed over triangles or even larger
regions of influence associated with a vertex [3, 8]. Our frame-
work accommodates both of these approaches, since the position
or region over which the object space error is measured can al-
ways be included in a vertex’s bounding sphere by inflating it
wherever necessary.

Object space errors can also be measured incrementally, be-
tween two consecutive levels of refinement [2], or as the max-
imum error with respect to the highest resolution mesh [3, 8].
The incremental error for a vertex is a good indicator of how
much the mesh wouldchangeby removing the vertex, which
may be a useful measure for estimating temporal artifacts due to
“popping” (see Section III-F). The maximum error, on the other
hand, is a bound on how far the mesh would deviate from the
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highest resolution surface if the vertex were removed.
Formally, we write the incremental and maximum vertical er-

rors for a vertexi in terms of the set of trianglesTi in the dia-
mond ofi (Fig. 1), i.e. the triangles that sharei’s split edge. Let
zt(xi, yi) be the elevation of trianglet at the point(xi, yi) in the
domain where vertexi lies. Define the vertical error betweeni
andt as

δ̂i,t = |zi − zt(xi, yi)|
The incremental error can then be written as

ε̂inc
i = max

t∈Ti

{δ̂i,t} =
∣∣∣∣zi − zl + zr

2

∣∣∣∣ (4)

That is, the incremental error is the vertical displacement from
i to the midpoint of its split edge{vl, vr}. The maximum error
can similarly be written by consideringi and all of its descen-
dants:

ε̂max
i = max

{
ε̂inc
i ,max

t∈Ti

max
j∈Di,t

{δ̂j,t}
}

(5)

whereDi,t is the set of all descendants ofi reached via recursive
bisection of trianglet. Thus, the maximum error is the largest
vertical distance betweeni and its descendants to the two tri-
angles ini’s diamond. Note that the measured errorsε̂inc

i and
ε̂max
i are not necessarily nested,2 althougĥεmax

i often is since it
accounts for distances to all descendants ofi. Finally, because
the bounding sphere from Equation 3 already containsDi,t, we
are ensured that the projection ofε̂max

i is a conservative error
bound.

The choice between incremental and maximum errors is or-
thogonal to our refinement method, but should be made up-front
since the errors need to be computed and propagated consis-
tently during pre-processing. We will later present results of
using both incremental and maximum errors.

C.2 Isotropic Error Projection

Given an object space measure of errorε, a view-dependent
algorithm projectsε onto the screen, resulting in a screen space
errorρ(ε). While perspective projection is most commonly used
to render the terrain, it involves problems with singularities and
can be somewhat computationally inefficient. Therefore it is
common in view-dependent algorithms [2,3,8] to substitute the
distance along the view direction with the Euclidean distance

d = ‖e− p‖
between the viewpointe and the vertex positionp. The most
simple metric of this form can be written as

ρ(ε,p, e) = λ
ε

‖e− p‖ = λ
ε

d
(6)

i.e. the projected error decreases with distance from the view-
point. This is anisotropic error measure, in the sense that the
projected error is the same in every direction a fixed distance
d from the vertex. For the usual perspective projection onto a
plane,λ = w

2 tan ϕ/2 , wherew is the number of pixels along the
field of view ϕ. Equation 6 is in actuality a projection onto a

2Because refinement generally changes the mesh geometry, it is possible for
ε̂max to increasefrom one level to the next as a result of inserting a vertex.

sphere and not a plane, so a more appropriate choice isλ = w
ϕ .

We then compareρ against a user-specified screen space error
toleranceτ .

In our refinement procedure, we need to find the maximum
projectionρ(ε, B, e) over a set of pointsB (Section III-B). For
Equation 6 the maximum projection occurs whered = ‖x− e‖
is minimized. For viewpoints insideB, this term is zero, and we
activate the vertex. Ife 6∈ B, then the minimum isd − r, and
our maximum screen space error becomes

ρ(ε, B, e) = max
x∈B

ρ(ε,x, e) = λ
ε

d− r
(7)

Comparingρ againstτ and rearranging and squaring some terms
(to avoid costly square roots), we obtain

active(i)⇐⇒ ρ(εi, Bi, e) > τ

⇐⇒ λ
εi

di − ri
> τ

⇐⇒ λ

τ
εi > di − ri

⇐⇒ (νεi + ri)2 > d2
i (8)

whereν = λ
τ is constant during each refinement. For spherical

projection,κ = 1
ν = τ

λ is the angular error threshold in radi-
ans. The above expression involves only six additions and five
multiplications, and is therefore very efficient to evaluate.

In a strict mathematical sense, the derivation of Equation 8 is
valid only if our assumptione 6∈ Bi holds. However, if we use
the convention thate ∈ Bi =⇒ active(i), then Equation 8 can
correctly be used for all viewpoints, with one caveat: Ifεi = 0,
then its projection ought also be zero, regardless of where the
viewpoint is, and the vertex arguably should be deactivated. Of
course, we could explicitly test for the special caseεi = 0, e ∈
Bi if it is considered important.

C.3 Anisotropic Error Projection

If object space errors are measured vertically, then errors
viewed from above appear relatively smaller than errors viewed
from the side. As a consequence, vertices directly below the
viewer can often be eliminated. Lindstrom et al. [2] describe
ananisotropicmetric~ρ that exploits this fact. While this metric
leads only to marginally fewer triangles, we will here describe
how to incorporate it into our framework for illustrative pur-
poses. This metric fundamentally depends on the horizontal and
vertical componentsa andb, respectively, ofd:

a2 = (ex − px)2 + (ey − py)2

b2 = (ez − pz)2

and we can work with~ρ in two dimensions to simplify matters.
Using these conventions, the anisotropic screen space metric can
be written as:

~ρ(ε,p, e) = λ
ε
√

(ex − px)2 + (ey − py)2

‖e− p‖2
=

(
λ

ε

d

) (a

d

)
= ρ(ε,p, e) cos θ (9)
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(a) Isotropic projection.

a

b

r

νε

p

(b) Anisotropic projection.

Fig. 5. 2D geometric illustration of isotropic and anisotropic error projection. (a) The pointx in the ballB = (p, r) where the projection of the object space error
ε is maximized is the point closest to the viewpoint. Equivalently,x is the intersection between the ball boundary and a line segment from the viewpointe to the
ball centerp. The dashed circle is an isocontourρ(ε,x, e) = τ of the screen space error for fixedε andx. That is, the errorε projected fromx is constant for all
viewpoints on the dashed circle. The shaded region indicates the set of viewpoints for which the vertex atp is active. This set equals the Minkowski sum of the
ball B and the interior of the isocontour. (b) The maximum projection is found as the intersection between the ball boundary and a line segment from the viewpoint
to the point opposite theb-axis where the ball meets thea-axis. The isocontours, indicated by dashed lines, for two error maxima are shown. As in (a), the shaded
activation region is expressed as the Minkowski sum of the ball and the isocontour.

whereθ is the angle ofe−p above the horizon. As the viewpoint
approaches directly abovep, θ approachesπ2 and the projected
error vanishes. If on the other hand the viewpoint is at the same
elevation asp, thenθ is zero and~ρ equals the isotropic errorρ.
Fig. 5(b) shows the isocontours of~ρ in 2D as being two abutting
circles of radius1

2νε. The 3D isocontours are tori formed by
spinning the circles around their vertical axis of symmetry.

We must now find the maximum~ρ over all pointsx ∈ B. It
is relatively easy to show that ife 6∈ B, then

~ρ(ε, B, e) = max
x∈B

~ρ(ε,x, e) = λ
ε

d− r

a + r

d + r
(10)

The maximum occurs on the boundary ofB at a point shown in
Fig. 5(b). A simple activation condition associated with~ρi can
then be derived as follows:

active(i)⇐⇒ ~ρ(εi, Bi, e) > τ

⇐⇒ λ
εi

di − ri

ai + ri

di + ri
> τ

⇐⇒ εi(ai + ri) >
τ

λ
(d2

i − r2
i )

⇐⇒ εiai > κ(d2
i − r2

i )− εiri

⇐⇒ ε2i a
2
i > max{0, κ(d2

i − r2
i )− εiri}2 (11)

assumingεi > 0 ande 6∈ Bi. As in the isotropic case, how-
ever, this expression can be used unconditionally, and by reusing
subexpressions requires at most nine multiplications, seven ad-
ditions, and one conditional branch.

While the expression for this anisotropic metric is fairly sim-
ple, experimental results observed by us and Hoppe [8] indicate
that the reduction in mesh complexity over the isotropic metric
is only a few percent (sse Section VI). This is mainly because
only a small fraction of vertices in a large height field are viewed
from above, while the remaining vertices stay active.

D. Run-Time Refinement

Having derived a criterion for selective refinement, we now
summarize the algorithm for top-down, recursive refinement and
on-the-fly triangle strip construction. Pseudo-code for these
steps is listed in Table I. (We will see later how to incorpo-
rate view culling and geomorphing into this basic framework.)
The refinement procedure builds a generalized triangle strip
V = (v0, v1, v2, . . . , vn) that is represented as sequence of ver-
tex indices.3 A vertexv is appended to the strip using the pro-
ceduretstrip-append. Line 5 is used to “turn corners” in the
triangulation by effectively swapping the two most recent ver-
tices, which results in a degenerate triangle that is discarded by
the graphics system [50]. Swapping is done to ensure that the
parity—whether a vertex is on an even or odd refinement level—
is alternating, which is necessary to form a valid triangle mesh.
To this end, the two-state variableparity(V ) records the parity
of the last vertex inV . Fig. 6 illustrates the sequence of triangles
traversed during refinement.

3An OpenGLimplementation would make repeated calls toglVertex with
this sequence of vertices.
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tstrip-append(V, v, p)
1 if v 6= vn−1 and v 6= vn then
2 if p 6= parity(V ) then
3 parity(V )← p
4 else
5 V ← (V, vn−1)
6 V ← (V, v)

submesh-refine(V, i, j, l)
1 if l > 0 and active(i) then
2 submesh-refine(V, j, cl(i, j), l − 1)
3 tstrip-append(V, i, l mod 2)
4 submesh-refine(V, j, cr(i, j), l − 1)

mesh-refine(V, n)
1 V ← (isw , isw )
2 parity(V )← 0
3 for each (j, k) ∈ (

(is , ise), (ie , ine), (in , inw ), (iw , isw )
)

4 submesh-refine(V, ic , j, n)
5 tstrip-append(V, k, 1)

TABLE I

PSEUDO-CODE FOR RECURSIVE MESH REFINEMENT AND TRIANGLE

STRIPPING.

sw s se

w c e

nw n ne

Fig. 6. Traversal of generalized triangle strip. The marked vertex is an example
of a situation where swapping is needed in order to pivot around the vertex.

The proceduresubmesh-refine corresponds to the innermost
recursive traversal of the mesh hierarchy, wherecl andcr are the
left and right child vertices of the DAG parentj for the current
triangle (Fig. 7). The designations “left” and “right” child do
not necessarily correspond to making left and right turns when
traversing the DAG. Instead, the sense of left and right alternates
between consecutive levels. This is illustrated in Fig. 7, where
we have labeled the left and right triangle children for a few
levels in the binary triangle tree formed by the edge bisection.
This hierarchy extends to DAG vertices by mapping diamonds,
i.e. pairs of triangles, to their corresponding vertices (Fig. 1).
Notice that if we always follow left branches, we end up in the
bottom left corner, whereas following right branches takes us to
the bottom right corner. For now, this geometric definition of
cl andcr is sufficient. We will discuss how to compute these
indices numerically from their DAG ancestorsi andj in Sec-
tion IV.

Notice thatsubmesh-refine in Table I is always called re-
cursively with j as the new parent vertex, and the condition

submesh-refine(V, i, j, l)
1 refine ← l > 1 and active(j)
2 if refine then
3 submesh-refine(V, j, cl(i, j), l − 1)
4 tstrip-append(V, i, l mod 2)
5 if refine then
6 submesh-refine(V, j, cr(i, j), l − 1)

TABLE II

EFFICIENT IMPLEMENTATION OF submesh-refine. THE REFINEMENT

CONDITION HAS BEEN MOVED UP ONE LEVEL TO AVOID DUPLICATION.

on line 1 is subsequently evaluated twice; once in each sub-
tree. Therefore, most per-vertex work, such as testing for re-
finement, culling, morphing, etc., is unnecessarily duplicated.
Because evaluating the refinement condition constitutes a sig-
nificant fraction of the overall refinement time, it is more effi-
cient to move it up one level in the recursion, thereby evaluating
it only once, and then conditionally making the recursive calls
(Table II). For the sake of clarity, however, we will stick to the
more concise way (Table I) of writing our recursive functions
throughout the remainder of this paper.

Finally, the outermost proceduremesh-refine starts with
a base mesh of four triangles (Fig. 2(a)), and calls
submesh-refine once for each triangle. Heren is the num-
ber of refinement levels,ic the vertex at the center of the grid,
{isw , ise , ine , inw} the four grid corners, and{in , ie , is , iw} the
vertices introduced in the first refinement step (Fig. 6). The tri-
angle strip is initialized with two copies of the same vertex to
allow the condition on line 1 intstrip-append to be evaluated.
The first vertex,v0, is then discarded after the triangle strip has
been constructed.

For applications that demand interactive visualization and the
highest possible frame rates, it is common to parallelize the oth-
erwise sequential, interleaved tasks of refinement and rendering
as two asynchronous processes or threads [14,23]. In this model,
the render thread is periodically and asynchronously supplied
with a list of geometry to render by the refinement thread. This
“display list” is then used, and potentially reused over several
frames, until a newly refined mesh is obtained. Our terrain visu-
alization system allows this multi-threaded mode of rendering,
in addition to the traditional sequential mode of processing.

E. View Frustum Culling

The rendering performance of our terrain visualization system
is substantially improved by culling mesh triangles that fall out-
side the view volume. Our view culling, which is done as part of
the recursive refinement, exploits the hierarchical nature of the
subdivision mesh, and culls large chunks of triangles high up in
the mesh hierarchy whenever possible. Our approach is based
on the culling algorithm outlined in [3], but is somewhat more
efficient. In particular, we exploit the nested bounding sphere
hierarchy to perform view culling, similar to [6,51].

Note that the bounding sphere for a vertexi contains the ver-
tices of all descendants ofi. Thus, if the bounding sphere is
not visible, then neitheri nor its descendants will appear on
the screen. It is possible, however, for a piece of a trianglet
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Fig. 7. Binary triangle tree formed by bisection. The arrows indicate the alternating triangle orientation on consecutive levels. The labelsl andr correspond to left
and right children in the tree, respectively.

visible(i, inside)
1 for eachview frustum plane〈n̂k, dk〉
2 if ¬insidek then
3 s← n̂k · pi + dk

4 if s > ri then
5 return false
6 if s < −ri then
7 insidek ← true
8 return true

submesh-refine-visible(V, i, j, l, inside)
1 if insidek ∀k then
2 submesh-refine(V, i, j, l)
3 else ifl > 0 and active(i) and visible(i, inside) then
4 submesh-refine-visible(V, j, cl(i, j), l − 1, inside)
5 tstrip-append(V, i, l mod 2)
6 submesh-refine-visible(V, j, cr(i, j), l − 1, inside)

TABLE III

PSEUDO-CODE FOR VIEW FRUSTUM CULLING.

that hasi or one of its descendants as a vertex to be visible,
even though none of these vertices are visible. By excluding
i, a coarser triangle thant will be rendered. To guarantee that
such false positives in the culling test never occur, the bounding
sphere fori could be expanded wherever necessary to containi’s
incident triangles. Alternatively, the radius of a separate bound-
ing sphere for view culling purposes could be stored with each
vertex. In practice, however, the bounding sphere hierarchy is
already loose enough that, at least in the domain, the incident
triangles are contained above the second finest refinement level
(see Fig. 4). Therefore, we have chosen to use the existing hi-
erarchy for view culling, and have seen no visible artifacts of
culling the mesh.

The pseudo-code in Table III summarizes our view culling
algorithm. The algorithm makes use of the six planes of the
view frustum. The parameters〈n̂k, dk〉 for each implicit plane
equations = n̂k · x + dk = 0 are computed in object space co-
ordinates and are passed along in the refinement. We ensure that
n̂ is a unit length vector so thats is the signed distance to the
plane. As in [3], we maintain one flag for each plane,insidek,
indicating whether the bounding sphere is completely on the in-
terior side of the plane with respect to the view volume. If this
is the case, then all descendants’ bounding spheres must also
be on the interior side, and no further culling tests against this
plane are necessary. If the sphere is on the interior side of all six
planes (line 2 ofsubmesh-refine-visible), then we simply tran-

sition to our regular refinment procedure without view frustum
culling. If on the other hand the sphere is entirely outside any
one of the six planes, the vertex and its descendants are culled,
and the refinement recursion terminates. Thus, view culling is
done only for those spheres that straddle the planes of the view
volume.

Fig. 8 illustrates the advantage of performing view culling.
From this figure, it is also evident that the mesh resolution drops
rather sharply immediately outside the view volume. Still, some
features towards the left edge of the mesh in Fig. 8(b) remain,
as they are too close to the top plane of the view frustum.

Note that because the bounding spheres are nested, the culling
condition is consistent among parents and children, i.e. a child
is visible only if its parents are. As a consequence, view culling
does not introduce any T-junctions or cracks in the mesh—it
always remains a continuous surface everywhere. This is a de-
sirable feature when the refinement and render stages are asyn-
chronous in that, regardless how much the refinement thread
falls behind, the render thread always has a continuous mesh
to display.

F. Geomorphing

Using our adaptive refinement and view frustum culling al-
gorithms, we can generally maintain high frame rates at no per-
ceptible loss in geometric quality. For example, we typically
achieve 60 or more frames per second using a640×480 window
and a two-pixel tolerance. However, for screen resolutions in the
mega-pixel range, the tolerance becomes relatively so small that
the resulting adaptive meshes can easily exceed 100,000 trian-
gles; too complex even for state-of-the-art graphics hardware to
render at these display rates. Increasing the pixel tolerance mit-
igates this problem, but whenτ exceeds a few pixels temporal
artifacts become apparent. This is because each vertex insertion
results in an instantaneous change in the geometry on the order
of τ pixels, and a noticeable and quite disturbing “pop” can be
seen near the new vertex. This problem is exacerbated by using
flat (per-triangle) shading, in which case the temporal discon-
tinuity in geometry, and hence in surface normals, results in a
dramatic change in shading.

A well-known solution to this problem is to usegeomorph-
ing [12] to smooth out the transitions in geometry over several
frames. This is generally done by defining the vertex position as
a parametric functionp(t): Whenever a new vertex is inserted, it
is initially placed on the current surface (t = 0), and is over time
slowly moved to its final position (t = 1). Conversely, removal
of visible vertices is done by reversing the morphing process.

There are two main approaches to geomorphing—time-based
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(a) Without culling; 97,435 triangles. (b) With culling; 25,100 triangles. (c) View culling against rectangle.

Fig. 8. Examples of view frustum culling. The mesh is everywhereC0 continuous, whether culled or not. (a, b) The view frustum is shown in semi-transparent
violet, with the viewer looking across the terrain from the right. This view is the same as in Fig. 14. (c) The mesh resolution drops quickly outside the view frustum
(shown as a violet rectangle).

and position-based morphing—and they differ mainly in how
the parametert is defined. In time-based morphing [3, 8],
the transition occurs over a fixed period of time or number of
frames, and vertex positions are typically linearly interpolated
over time. The time-based approach can be somewhat diffi-
cult to implement, since it requires keeping track of morph start
and/or end times for each vertex, and adds additional constraints
on vertex dependencies, e.g. one may have to wait for a morph,
or even a cascade of morphs, to finish before a vertex can be
removed [8].

As its name suggests, position-based morphing [4, 9, 13, 15,
52] uses the position of the viewer instead of time to define the
morph parametert for each vertex. For example,t could be
a function of the distance between the viewpoint and the ver-
tex [13]. One advantage of the position-based approach is that
both the connectivity and geometry of the adaptive mesh de-
pend only on the position of the viewer, i.e. the mesh always
looks the same from any given viewpoint. If in additiont(e)
varies smoothly with the viewpointe, then the mesh geometry
is a continuous function ofe. Yet another advantage is that, in
general, no state information is required to keep track of when
the morph was initiated.

Because of its many desirable features, we have chosen to
incorporate position-based morphing into our refinement algo-
rithm. We approach this problem by defining a range of pixel
thresholds(τmin , τmax ), and use morphing whenever the screen
space errorρ, which is a function of the viewpoint, falls within
this range. We show how this is done for the isotropic (distance-
based) error metric discussed in Section III-C.2.

Our goal is to compute the morph parametert. One possible
approach would be to definet as

t =
ρ− τmin

τmax − τmin

Then whenevert ≤ 0, the vertex is inactive, whilet ≥ 1 implies
that the vertex is active and fully morphed. For0 < t < 1, we
set the elevationz of vertexi to

z(t) = tzi + (1− t)
zl + zr

2
(12)

wherezi is the actual, measured elevation ofi, andzl andzr are
the elevations of the endpoints ofi’s split edge (Fig. 1). Thus,
when t = 0, i is at the midpoint of the split edge and the ge-
ometry is locally no different from wheni is absent. Note that
zl andzr may be the elevations resulting from ongoing morphs
for these two vertices, and we may sometimes have a cascading
sequence of morphs. Therefore,zl andzr must be passed along
in the recursion. Fortunately, these vertices have already been
visited and their elevations computed higher up in the recursion
by the time we reachi.

Using the definition fort above, we have for our isotropic
metric

t =
λ ε

d−r − τmin

τmax − τmin

This expression involves two divisions and a square root. We
can find a simpler (although different) expression by making use
of the activation condition in Equation 8. That is, we define a
range(dmin , dmax ) for the distanced from the viewpoint to the
vertex:

dmin =
λ

τmax
ε + r = νminε + r (13)

dmax =
λ

τmin
ε + r = νmax ε + r (14)

Then, sinceρ andd are inversely proportional,ρ = τmin when-
everd = dmax , andρ = τmax wheneverd = dmin . Finally, we
definet as

t =
d2
max − d2

d2
max − d2

min

(15)

where we have squared the distances to avoid square roots. Thus
t, and by extension the vertex position, varies quadratically and
smoothly with the distance to the vertex.

Table IV summarizes our geomorphing algorithm for the
isotropic metric. Because all distances computed are nonneg-
ative, we can compute their squares directly on lines 1, 2, and 4
in morph. To further improve the performance, we can com-
putez directly instead oft to avoid any redundant computations
when t = 0 and t = 1. Note that the triangle stripV is no
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morph(i)
1 d← ‖pi − e‖
2 dmax ← νmax εi + ri

3 if d < dmax then
4 dmin ← νminεi + ri

5 if d > dmin then

6 return d2
max−d2

d2
max−d2

min

7 else
8 return 1
9 else

10 return 0

submesh-morph(V, i, j, l, zl, za, zr)
1 if l > 0 and

(
t← morph(i)

)
> 0 then

2 z ← tzi + (1− t)za

3 submesh-morph(V, j, cl(i, j), l − 1, zl,
zl+zr

2 , z)
4 tstrip-append-point(V, xi, yi, z, l mod 2)
5 submesh-morph(V, j, cr(i, j), l − 1, z, zl+zr

2 , zr)

TABLE IV

PSEUDO-CODE FOR GEOMORPHING.

longer a list of vertex indices. Rather, each vertexi in the strip
is specified directly by its morphedxyz -coordinates〈xi, yi, z〉.

Whereas the computations involved in performing geomorph-
ing add to the refinement time, the improved temporal quality of
the animation often allows a considerably larger pixel tolerance
to be used, which results in far fewer triangles and an overall
shorter refinement time. As observed by Hoppe [8] and others,
errors as large as several pixels may go unnoticed if geomor-
phing is used to mask any temporal artifacts. As is evidenced
by the accompanying video (see Section VI), a lower threshold
τmin as large as six pixels for a640× 480 window can be used.

The temporal quality of the morph generally depends on the
length in time over which the morph takes place. If the morph
time is too short, then not enough temporal continuity is pro-
vided. If on the other hand the morph time is very long, then
eitherτmin must be small, resulting in a high-complexity mesh,
or τmax must be large, resulting in a highly inaccurate mesh
and a large number of costly morph computations. We ex-
perimented with several choices ofτmin andτmax , and found
thatτmax = 3

2τmin generally provided a good tradeoff between
quality and complexity. We used this relationship for the video
sequences and results in Section VI. The morph time also de-
pends on the speed at which the viewer is moving. For high
flight speeds, the morph time is short. On the other hand, the
perceived vertex speed due to viewer motion often outweighs
the vertex speed due to morphing, which tends to reduce the
effects of short morph times.

IV. DATA LAYOUT AND INDEXING

This section addresses the problem of laying out the terrain
data on disk to achieve efficient out-of-core performance. In the
spirit of our overall approach to terrain visualization, our goal
is to have a very simple mechanism for performing out-of-core
paging of the data, while maintaining high performance. In par-
ticular, we take advantage of the paging mechanism of the oper-

ating system by using themmapsystem call.4 mmapassociates a
part of the logical address space of the computer with a specific
disk file. Using this mechanism the external memory part of our
implementation consists simply of a call tommapto associate
the memory address of an array with the terrain information (el-
evation values, precomputed errors, etc.) stored on disk. After
this step the array of terrain vertices is used as if it were allo-
cated in main memory, while the operating system takes care of
paging the data from disk as needed.

The main advantage of this approach is its simplicity. More-
over, since the paging mechanism is not specialized for one par-
ticular out-of-core algorithm, we can perform a fair comparison
among different data layout schemes. In this paper we study the
performance potential intrinsic in different data layouts, without
adding any specialized I/O layer with pre-fetching mechanisms
that might further improve the out-of-core performance of the
terrain traversal.

Given the framework described above, the external memory
processing problem can be reduced to a data layout problem.
That is, we want to find a permutation of the set of mesh ver-
tices such that their layout on disk closely follows the order in
which they are typically accessed during refinement. We know
the structure of the terrain traversal algorithm, and we have a
mechanism that hides the need for data paging from the applica-
tion. Based on this, we need to determine: (1) a way of storing
the raw data that minimizes paging events, and (2) an efficient
procedure for computing the index of the data element in the
given refinement order, so that no significant added cost is intro-
duced in the refinement process.

The following two subsections describe a data layout scheme
that satisfies requirements (1) and (2), and that has a particularly
straightforward implementation.

A. Interleaved Quadtrees

On the basis of the edge bisection refinement algorithm, each
vertex (apart from the four corners of the grid) can be labeled
as white, if introduced at an even level of refinement, or black,
if introduced at an odd level. Fig. 2 shows this classification
for the first four levels of refinement. The top row of Fig. 9
shows how the sequence of white vertices forms a quadtree—
the white quadtree, Qw. Each white node is in fact the center
of a square tile in a quadtree decomposition of the rectilinear
grid. Interestingly the black vertices can also be considered as
part of ablack quadtree, Qb. Fig. 9 shows as crossed circles the
vertices that need to be added outside the rectilinear grid to form
a complete black quadtree. We will refer to these additional
vertices as “ghost vertices.” The black quadtree is rotated 45
degrees with respect to the white quadtree. Note thatQb does
not start at the root but at the first level of refinement. Adding a
virtual root node makesQb one level taller thanQw.

Since the traversal of the DAG (see Section III-A) is per-
formed top-down, starting form the root, good data locality can
be achieved by storing the data from coarse to fine levels. Within
each level, the data should be stored so as to preserve neighbor-
hood properties to the extent possible; vertices that are geomet-
rically close should be stored close together in memory. For a

4The equivalent Windows function is calledMapViewOfFile .



13

Fig. 9. Top row: First three levels of the white quadtree. Bottom row: A
complete black quadtree is obtained by adding the crossed ghost vertices to it.
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Fig. 10. Indices for the first few levels of the interleaved quadtrees. Ghost
vertices are marked in green; the orange corner vertices are not part of either
quadtree.

quadtree, this can be achieved by using the order induced by
the following formula that computes the indexc(p, k) of thekth

child of the parent nodep:

c(p, k) = 4p + k + m with k = 0, 1, 2, 3 (16)

wherem is a constant dependent on the index of the root and the
index distance between consecutive levels of resolution. Using
this data layout, all the vertices on the same level of resolution
are stored together, starting with the coarsest level. The index
distance between two vertices on the same level depends on the
distance to their common ancestor in the quadtree, e.g. any four
siblings are stored in consecutive positions. For this indexing
scheme, we interleave the black and the white quadtree, with
rootsrb = 3 andrw = 4. Sincerb is not used in practice, we
can assign the first four indices (from 0 to 3) to the corners of the
grid (Fig. 10). The first child ofrb is stored immediately after
rw, and we have

c(rb, 0) = 4 · 3 + 0 + m = 5
c(rw, 0) = 4 · 4 + 0 + m = 9

which both implym = −7. Fig. 10 shows the vertex indices for
the first few levels of the interleaved quadtrees.

B. Embedded Quadtrees

Notice in Fig. 9 that the ghost vertices inQb are not used. Be-
cause the data is eventually stored as a single linear array, this

Fig. 11. Illustration of embedding the top two levels of the white quadtree in
the unused parts of the black quadtree.
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Fig. 12. Indices for the first few levels of the embedded quadtrees.

results in unwanted “holes” in the array. It is however possible
to reduce the amount of unused space. First observe that the
total number of ghost vertices is roughly twice as large as the
number of white vertices. As a consequence, instead of using
two interleaved quadtrees, we can use the black quadtree only
and store the white nodes in place of (a subset of) the ghost
nodes. We divideQw into four subtrees, rooted at the chil-
dren ofrw. Fig. 11 shows the insertion of these subtrees into
the unused space ofQb. The use of a single quadtree also af-
fects the value of the constantm. In this case we haverb = 4
(this value is actually used for the white root) andc(rb, 0) = 5,
which impliesm = −11. In addition, since the white quadtree
has been split up into four independent subtrees, these relocated
subtrees will not be reached from the white rootrw (node 4 in
Fig. 12) using Equation 16. Therefore we cannot begin the re-
cursive refinement withrw, but must unroll the recursion one
level and make eight instead of four calls tosubmesh-refine
from mesh-refine.

C. Efficient Index Computation

To avoid any overhead in the refinement process, we need an
efficient method for computing the indices of the vertices visited
in our top-down traversal of the terrain. For data stored in linear
order (standard row major matrix layout), computing the child
indices in the DAG can be made easy by carrying along three
indices in the refinement:(vl, va, vr). These indices make up
the current trianglet in the refinement, and their subscripts cor-
respond to the left, apex, and right corner of the triangle (Fig. 7).
The two child triangles oft in the recursion can then be written
astl = (vl, vm, va) andtr = (va, vm, vr). Herevm corresponds
to the vertex at the midpoint of the split edge{vl, vr}, which can
be computed simply as the index averagevm = (vl + vr)/2.

For the indexing scheme based on the interleaved quadtrees,
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Fig. 13. Quadtree branches taken during DAG traversal. For example, after
going from answ-child pq in the white quadtree to aw-child pg in the black
quadtree, the twograph childrenof pg are thesw andse quadtree childrenof
pq . See Table V for all possible branch combinations. The dashed arcs in the
figure show quadtree sibling relationships.

we make use of the parent-child relationship between vertices in
the quadtrees. Consider one refinement step as shown in Fig. 7.
The new white verticescl (left child) andcr (right child) have
a commongraph parentpg in the refinement DAG (j in the fig-
ure). Moreover the graph parent ofpg is also thequadtree parent
pq of cl andcr (i in the figure). Based on this observation, the in-
dicescl andcr can be computed from the index of their quadtree
parentpq using Equation 16. The relative positions ofpq andpg

determine which two branches (the values of the indexk) need
to be used to reachcl andcr from pq. This relationship is il-
lustrated in Fig. 13 and summarized in Table V. To find what
branchk a given child nodec corresponds to, we simply solve
Equation 16 fork:

k = (c−m) mod 4 (17)

That is, the value ofk can be determined from the lowest two
bits of the vertex index. We can then use Equation 16 and Ta-
ble V to computecl andcr. However, there is considerable re-
dundancy in the transition tables, and by carefully numbering
the four branches in the two quadtrees it is possible to compute
cl andcr using simple arithmetic. We show how this is done
below.

In order to make the transition tables as simple as possible,
we have chosen to number the quadtree branches as follows:
sw = n = 0, se = e = 1, ne = s = 2, nw = w = 3.
That is, the order is counterclockwise in the white quadtree and
clockwise in the black quadtree. Because of this choice, Table V
can be collapsed to a single table, Table VI, that can be used for
both quadtrees. Let us focus on how to encode Table VI using
arithmetic. We will usek(kq, kg, b) to denote bothkl andkr,
with the convention thatb is zero forkl and one forkr. First
observe that rows 0 and 2 are the same, as are rows 1 and 3, thus

k(kq, kg, b) = k(kq mod 2, kg, b)

kl, kr
kg

n e s w

kq

sw se ,ne ne,nw nw,sw sw, se
se nw,sw sw, se se ,ne ne,nw
ne se ,ne ne,nw nw,sw sw, se
nw nw,sw sw, se se ,ne ne,nw

kl, kr
kg

sw se ne nw

kq

n e , s s , w w , n n , e
e w , n n , e e , s s , w
s e , s s , w w , n n , e
w w , n n , e e , s s , w

TABLE V

TRANSITION TABLES USED TO DETERMINE THE LEFT(kl) AND RIGHT (kr )

BRANCH TO BE USED INEQUATION 16 FOR QUADTREE PARENT BRANCHkq

AND GRAPH PARENT BRANCHkg .

kl, kr
kg

0 1 2 3

kq

0 1, 2 2, 3 3, 0 0, 1
1 3, 0 0, 1 1, 2 2, 3
2 1, 2 2, 3 3, 0 0, 1
3 3, 0 0, 1 1, 2 2, 3

TABLE VI

SINGLE TRANSITION TABLE CORRESPONDING TOsw = n = 0,

se = e = 1, ne = s = 2, nw = w = 3 (CF. TABLE V).

We can therefore focus only on rows 0 and 1. Now notice that
if we shift row 1 two columns to the left, then rows 0 and 1 are
the same. That is

k(kq, kg, b) = k(kq mod 2, kg, b)
= k

(
0, (2(kq mod 2) + kg) mod 4, b

)
We are now left with row 0 only, from which we immediately
notice thatkl = (kq + 1) mod 4 andkr = (kl + 1) mod 4, i.e.

k(kq, kg, b) = k
(
0, (2(kq mod 2) + kg) mod 4, b

)
= (2(kq mod 2) + kg + b + 1) mod 4
= (2kq + kg + b + 1) mod 4

Sincekq = (pq − m) mod 4 andkg = (pg − m) mod 4, we
have

kl(pq, pg) = (2(pq −m) + (pg −m) + 1) mod 4
= (2pq + pg − 3m + 1) mod 4
= (2pq + pg + m + 1) mod 4

kr(pq, pg) = (2pq + pg + m + 2) mod 4

Finally, we arrive at the following expressions forcl andcr:

cl(pq, pg) = 4pq + ((2pq + pg + m + 1) mod 4) + m

cr(pq, pg) = 4pq + ((2pq + pg + m + 2) mod 4) + m

These simple equations are used in thesubmesh-refine proce-
dure in Section III-D.
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D. Memory-Efficient Hierarchical Indexing

One drawback of our quadtree-based indexing schemes is that
they use a non-contiguous address space. In the case of inter-
leaved quadtrees, the unused ghost vertices result in a waste in
storage resources of roughly 66% of the input data. This over-
head is reduced to 33% in the storage layout where the white
quadtree is embedded in the black quadtree. This overhead can
be completely eliminated by using a data layout based on a hier-
archical version of theΠ-order space filling curve. Because the
implementation of this scheme is not as straightforward as the
quadtree-based schemes described above, we have deferred the
derivation and discussion of theΠ-order layout to Appendix A.
In Section VI we include empirical results of the performance
achieved both with the quadtree-based schemes discussed here
and with the hierarchicalΠ-order space filling curve.

V. DATA PREPROCESSING

Sections III and IV describe what information needs to be
computed for each vertex and how to organize the information.
These sections do not, however, provide much detail about the
steps involved in preparing the data in this format. We here dis-
cuss possible representations of the data and explain a method
for preparing the data in an off-line preprocessing phase.

A. Vertex Representation

As discussed in Section III-B, in addition to the elevationz
of each vertex, we must store an error termε and a bounding
sphere radiusr. In order to avoid carrying thexy-coordinates
in the domain with us during the recursive refinement, we can
optionally store the full positionp = (x, y, z) with each vertex.
In our visualization system, we have chosen to store all of the
fields as 32-bit floating point numbers. For fixed-length records
〈p, ε, r〉, this means 20 bytes of storage per vertex.

B. Bottom-Up Propagation

Given a representation for the vertex records, we now turn
our attention to how to compute the individual fields of these
records. In particular, we describe how to efficiently compute
the error termε (Equation 2) and the bounding sphere radius
r (Equation 3). Clearly, because of their recursive definitions,
bothε andr must be computed and propagatedbottom-upfrom
DAG children to their parents. To do this, one possible approach
would be to traverse the DAG using the recursive refinement
procedure from Section III-D, and to propagate the computed
values back up the recursion. Unfortunately, using this approach
only two children are visited at a time, and the information is
propagated to only one parent. (Recall that each vertex has up
to four children and two parents in the DAG.) While making re-
peated recursive traversals would eventually guarantee that all
the information is propagated up the DAG, this approach is in-
efficient. Instead, we describe a method that processes the infor-
mation level-by-level and visits each vertex only once.

Notice in Fig. 2 that we can relatively easily identify the
vertices that fall on any given refinement level. In the white
quadtree we always have a single square grid of dimensions
2n × 2n, whereas in the black quadtree we have two overlap-
ping grids, each with2n × (2n + 1) vertices. For example, in

Fig. 2(d) we have a2 × 3 grid and a3 × 2 grid of black ver-
tices, each being the transpose of the other. If the vertex data
is stored in a linear 2D array, then we can traverse the vertices
on each level by simply stepping over the appropriate number of
vertices in each direction. We can also find simple offset rules
to reach the four children from any given vertex, as indicated
by the arrows in Fig. 2. Finally, in order to compute the error
term ε, we may need to identify the split edge associated with
each vertex (the remaining two vertex indices in the diamond
can be derived similarly, if needed). For the refinement levels
containing black vertices, this is easy; the split edges are always
oriented in the direction of the grid that has the smaller number
of vertices. On white levels, the split edges alternate in orienta-
tion from one vertex to the next. Thus, we have a set of simple
rules for traversing the vertices on a level and accessing their
children, split edges, and diamonds.

In Section IV we described several different data layouts.
These layouts do not necessarily lend themselves to the simple
level-by-level traversal just described. Rather, we know only
how to traverse them recursively. Therefore, we have chosen to
perform all preprocessing by first storing the height field in lin-
ear, row major order, and then as a final step rearranging the data
to fit the given layout. In practice, this ends up being consider-
ably more efficient than performing repeated recursive traver-
sals until the information is fully propagated. This rearrange-
ment of the data is done using two parallel recursive traversals.
That is, we simultaneously traverse the linear input array and the
reordered output array in refinement order, using the indexing
rules from Section IV, and copy corresponding vertices to the
output array. We acknowledge that this requires roughly twice
as much memory, and assumes that the processing can be done
in-core. For extremely large terrains, it may be necessary to
memory map the output data, and to work only on small pieces
of the input data at a time.

VI. RESULTS

In this section, we present the results of running an implemen-
tation of our terrain visualization system on several computer ar-
chitectures. We used a two-processor 800 MHz Pentium III PC,
running Red Hat Linux, with 900 MB of RAM and GeForce2
graphics. To push the out-of-core aspect of our system, we ar-
tificially limited the memory configuration of this machine to
64 MB for some of our results. A two-processor 300 MHz
R12000 SGI Octane with Solid Impact graphics and 900 MB
of RAM was also used to measure memory coherency, while we
used a 48-processor 250 MHz R10000 SGI Onyx2 with 15.5 GB
of RAM and InfiniteReality2 graphics to avoid being graphics
and memory limited, and to allow the raw refinement speed to
be measured. For all results, we used a data set over the Puget
Sound area in Washington (see Fig. 14), which is made up of
16, 385 × 16, 385 vertices at 10 meter horizontal and 0.1 meter
vertical resolution.5 Using our data structures, this data set oc-
cupies roughly 5 GB on disk. The quantitative results presented
here were collected during a 2,816-frame fly-over of this data
set. The window size was in all cases640× 480 pixels.

5This data set can be downloaded fromhttp://www.cc.gatech.edu/projects/
large models/ps.html.
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(a)τ = 2 pixels; 79,382 triangles. (b) τ = 2 pixels; 79,382 triangles. (c) τ = 4 pixels; 25,100 triangles.

Fig. 14. View of Mount Rainier, Washington. (b, c) Edge bisection subdivision meshes for two different screen space error thresholdsτ .

A. View-Dependent Refinement

We will first discuss the performance of our view-dependent
refinement algorithm. We used the distance-based error metric
described in Section III-C.2 for the results presented here. To
evaluate the efficiency in mesh complexity for a given accuracy,
we recorded for the 2,816-frame fly-over the number of rendered
triangles obtained using both a bottom-up simplification of the
terrain and our conservative top-down scheme. In the bottom-up
scheme, the object space errors need not be inflated to guaran-
tee nesting, nor do the projected errors have to be inflated by
measuring them over the nested bounding spheres. Instead we
used the actual projected errorρ(ε̂i,pi, e) ≤ ρ(εi, Bi, e) of the
measured error̂εi for each vertex, and then performed a separate
step to patch cracks by activating the ancestors of all active ver-
tices. Using this bottom-up approach, we obtain for any given
metric and tolerance the minimal valid mesh possible,6 which
consequently serves as a good benchmark for evaluating our
refinement method. The results presented here are for meshes
that have been coarsened using view frustum culling, and differ
somewhat from the results presented in [1] where culling was
not used.

Fig. 15 shows for both the incremental (ε̂inc) and maximum
(ε̂max ) object space metrics the number of triangles produced
during the fly-over by bottom-up simplification, as well as the
relative percentages of additional triangles produced by our con-
servative top-down refinement. We used a toleranceτ = 1 pixel
and a coarsened version of the Puget Sound data downsampled
to 1025 × 1025 vertices (to make data collection tractable). As
can be seen from the shaded regions, the maximum errorε̂max

consistently resulted in a small increase in mesh complexity over
usingε̂inc . This is not surprising sincêεmax ≥ ε̂inc (Section III-
C.1). However, as can be seen in the graph, the discrepancy
is often small, suggesting thatε̂inc can be used to approximate
the more compute-intensivêεmax . Because of its simplicity, we
chose to use the incremental error for the remaining results in
this paper.

The two curves in Fig. 15 show on the rightmost vertical axis

6As noted earlier, it is possible that removing a vertex leads to a reduction in
ε̂ (e.g. resulting in a mesh with a better fit), and thus possibly a reduction inρ
from above to belowτ . Whether such a coarsening operation should be allowed
or not depends on the interpretation of the error metric. This choice, however,
clearly has an impact on what constitutes a “minimal mesh.” For consistency and
simplicity, we have chosen to be conservative and not allow such operations.
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Fig. 15. Mesh complexity comparison between top-down refinement and the
optimal, bottom-up simplification scheme. The graph shows for two different
object space metrics the minimal number of triangles (shaded areas) and relative
overhead (solid lines) due to refinement. The data was gathered over 2,816 views
for an error tolerance ofτ = 1 pixel.

the relative increase in number of triangles from using top-down
refinement versus bottom-up simplification. Notice that, when
the overall triangle counts are high (frames 1024–2048), the rel-
ative increase is on the order of 1-2% for both metrics. The
overhead becomes large only when the triangle counts are low,
suggesting that our refinement produces a small, roughly con-
stant increase in number of triangles. However, because the
large peaks occur only at low triangle counts, the net increase
in number of triangles remains low. Over the entire fly-over, the
total number of rendered triangles increased only by 1.63% and
3.76% for the maximum and incremental errors, respectively.
These averages appear in the histograms in Fig. 16, which show
the highly skewed distributions of the mesh complexity over-
head for the two metrics. Becauseε̂max is already close to
nested, using simplification instead of refinement has less po-
tential for improvement than in the case of incremental errors.

For the same flight path as above, over the full-resolution data
set, we also measured the mesh complexity for the isotropic and
anisotropic screen space error metrics, usingε̂inc as the object
space metric. We found that the anisotropic metric on average
led to a 2.5% reduction in mesh complexity over the isotropic
metric, although at the expense of efficiency of evaluation. This
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(a) Incremental error.
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(b) Maximum error.

Fig. 16. Distribution and average (dashed line) of overhead in mesh complexity due to conservative refinement relative to the minimal mesh.

platform
geo- multi- view time rendering refinement

morphing threading culling (s) (Mtri/s) (Mtri/s)

15.5 GB SGI

317.43 0.939 1.435
X 75.50 0.595 1.466

X X 47.63 0.944 1.396
X X X 47.71 0.942 0.990

900 MB PC

170.70 1.683 2.350
X 43.89 0.980 1.860

X X 38.62 1.113 1.777
X X X 38.98 1.103 1.515

TABLE VII

FLIGHT TIME AND AVERAGE PERFORMANCE FOR2816-FRAME FLY-OVER

(SEE ALSOFIG. 17). THE RENDERING PERFORMANCE IS MEASURED AS

THE NUMBER OF RENDERED TRIANGLES OVER THE FRAME TIME(IN

MULTIPLES OF THE MONITOR FRAME TIME), WHICH INCLUDES THE

REFINEMENT TIME IN SINGLE-THREADED MODE.

behavior, which was also observed by Hoppe [8], leads us to
conclude that the simple isotropic metric is to be favored.

We next evaluate the performance increase due to the use of
culling and multi-threading (one thread each for rendering and
refinement). These results, which are summarized in Table VII
and plotted in Fig. 17, demonstrate a clear advantage of using
both culling and multi-threading. We were able to sustain up to
40,000 rendered triangles at 60 frames per second on the SGI
Onyx2 during the fly-over. When the number of rendered tri-
angles exceeded 40,000, however, the frame rate slowed briefly.
We generally obtained even higher frame rates on the PC (over
72 Hz on average), but the rates were more varied. In both cases,
we synchronized our rendering rate with the monitor display rate
(60 Hz on the SGI, 75 Hz on the PC), which in many cases re-
sulted in significant idle time. This idle time is part of the overall
frame time used to measure the rendering speed in Table VII.

Fig. 17(b) highlights the refinement performance, with and
without culling, measured in number of rendered triangles di-
vided by the wall clock refinement time. For low triangle counts,
the refinement runs faster when view culling is disabled, as ex-
pected. Notice, however, that as the mesh complexity increases
towards the middle of the graph, the lack of view culling leads

to a significant decrease in performance. Conversely, the use
of view culling results in a relative speedup. We attribute this
result to caching behavior—as the triangle strip grows, an in-
creasing number of cache misses are made, which slows down
the method that did not use culling. Meanwhile, when a large
fraction of triangles are culled, the overhead of making recur-
sive function calls dominates, as evidenced by the sharp drop in
performance near frame #512.

In order to show the qualitative performance of our geo-
morphs, we have prepared a number of MPEG animations
that can be downloadeded fromhttp://www.cc.gatech.edu/
∼lindstro/papers/tvcg2002/. These animations indicate that
by using geomorphing the screen space error tolerance can be
increased considerably without any appreciable loss in rendered
quality. Objectionable temporal artifact like geometric popping
and shading discontinuities are virtually eliminated by smoothly
morphing the geometry. Without geomorphing, popping arti-
facts can be visually disturbing if the tolerance is larger than
two pixels. Using geomorphing, the lower error toleranceτmin

can be doubled or even tripled before the smooth motion caused
by the geomorphs can even be detected.

Table VII and Fig. 17(b) show some quantitative results of us-
ing geomorphing. Usingτmax = 3

2τmin and a variety of choices
for τmin , we found that roughly 20–25% of the vertices were
morphing at any one time. As expected, the additional work
required to continuously morph the mesh geometry results in a
drop in the refinement performance. However, as our animations
show, the increase in acceptable tolerance due to improvements
in temporal quality more than offsets the comparatively small
increase in refinement time.

Finally, we evaluated the efficiency of using a single trian-
gle strip. We found that the ratio of triangle strip vertices
to the number of non-degenerate triangles averaged 1.56 ver-
tices/triangle with virtually no variance. This number should be
compared to 3 vertices/triangle for a list of independent trian-
gles.
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Fig. 17. In-core rendering and refinement performance on SGI Onyx2 over several thousand frames of the Puget Sound fly-over. The curves correspond to the
use of single-threading—with and without culling—and multi-threading with culling—with and without geomorphing. The hierarchical indexing scheme was used
in all four runs. (a) Using multi-threading a steady 60 Hz is maintained during nearly the entire fly-over. The number of triangles for the three schemesthat used
culling coincide, therefore the graph for only one of them is shown. Similarly, the frame rates with and without geomorphing were roughly the same. (b)The
vertical axis corresponds to the number of non-degenerate triangles in the triangle strip divided by the (wall clock) refinement/culling/geomorphing time.
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Fig. 18. Total number of page faults vs. screen space error toleranceτ on
900 MB SGI.

B. Data Layout

In this section, we compare the memory performance of four
different indexing schemes: the single quadtree scheme from
Section IV-B, where the “white” tree is embedded in the “black”
tree; theΠ-order indexing scheme; a blocking scheme based on
32 × 32 tiles from the highest resolution data; and a standard
matrix layout in row major form. For all these methods, we
stored the fields〈p, ε, r〉, which together occupy 20 bytes, with
each vertex (see Section III). Our focus here is not on the stor-
age efficiency of the vertex records—it is entirely possible to
compress or even eliminate some fields in this record (see Sec-
tion VII-B). Rather, we assume fixed-length records and focus
on how efficient the different indexing schemes are at accessing
them.

Fig. 18 shows for the Puget Sound fly-over the total number of
page faults for varying values of the error toleranceτ . Smaller
values ofτ result in larger meshes being rendered and more

data being paged in. Clearly, the hierarchical indexing schemes
(quadtree-based andΠ-order) greatly outperformed the linear
and block-based schemes, and often lead to drastically improved
paging speeds (Fig. 20). Perhaps surprisingly, the block-based
scheme, which is often used for terrains, performs the worst of
them all. This is because the refined mesh rarely consists of
groups of many vertices at the highest resolution. Instead, a
handful of vertices are needed from each block, requiring virtu-
ally the entire terrain to be paged in during each refinement pass.
A more reasonable block-based indexing scheme would be to
subsample the data and create a multiresolution pyramid, allow-
ing more coherent access to different resolutions of data. How-
ever, such an indexing scheme uses multiple indices for each
vertex, which would arguably make for an unfair comparison
with our other indexing schemes.

We also investigated the paging behavior over time. Results
for the SGI Octane are shown in Fig. 19(a), while the PC results
are shown (on a log-log scale) in Fig. 19(b). These graphs show
that there is a significant hit at startup, when no data is mem-
ory resident, after which pages often stay in user memory or can
be reclaimed quickly from the operating system’s cache. These
results also indicate that the hierarchical indexing schemes con-
sistently result in one to two orders of magnitude improvement
in paging performance over the non-hierarchical layouts.

Finally, we measured the raw in-core refinement speed of all
indexing schemes. Due to better cache locality, the quadtree
scheme, while involving a few more operations, is still twice as
fast as the linear scheme, and is also twice as fast as the more
complexΠ-order scheme. This suggests that the linear scheme
is inferior in all aspects to quadtree-based indexing, with the ex-
ception of memory overhead. We plan to investigate alternative
indexing schemes that have the same desirable properties as the
quadtree scheme, but with higher memory efficiency.
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Fig. 19. Cumulative number of page faults over time on two different platforms.

(a) Frame #1000. (b) Frame #1180. (c) Frame #1360. (d) Frame #1540.

(e) Frame #1720. (f) Frame #1900. (g) Frame #2080. (h) Frame #2260.

Fig. 20. Frames taken every three seconds from two multi-threaded fly-over sequences using linear, row major indexing (top half of each frame) and quadtree-based
indexing (bottom half). The flight paths for the two sequences are the same. The improved cache performance of the quadtree-based scheme results in more detail
being paged in more quickly.

VII. DISCUSSION

At this point, we would like to discuss ongoing research and
other topics relevant to our visualization algorithms, as well as
directions for future work.

A. General Terrain Data

The height fields representable by edge bisection are neces-
sarily restricted to be of dimensions2n + 1 squared. For height
fields that do not fit these dimensions, we currently expand them
to the next larger square power of two. Because we store the full
xyz -coordinates of each vertex, we can preserve the areal extent
of the height field by clamping the coordinates of the vertices
that fall outside the input region and initializing their errors and
radii to zero. Perhaps a better solution to this problem is to parti-

tion the terrain up into smaller square blocks, while propagating
the error and radius information between blocks during prepro-
cessing to ensure that no cracks between them are created.

Another constraint in our current system is that the input data
be a single grid sampled at a uniform resolution. In many ap-
plications, multiple, possibly nested data sets at varying resolu-
tion need to be georeferenced and integrated into a single data
set [23, 24]. Using our current approach, we would need to re-
sample all data sets to a common highest resolution, which is
impractical. Instead, we suggest partitioning the terrain both
spatially and in resolution using a meta-hierarchy of blocks,
such as a quadtree, to organize the data. Our algorithms would
then be used in their current form within each block in the meta-
hierarchy.

Not all height fields are represented as regular grids. In fact,
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more general representations, such as TINs, exist for a good rea-
son; the amount of spatial complexity often varies over a sur-
face. While our adaptive refinement capitalizes on this fact, the
source data is still stored as a uniform grid. In addition, be-
cause the mesh is made up of a fixed pattern of right isosce-
les triangles, preserving sharp geometric features, such as ridge
lines, and image features, such as roads and rivers, is difficult.
As demonstrated in [47], there is no need for the refinement
to insert vertices at edge midpoints. Using our current data
structures, which store thexyz -coordinates with each vertex, we
could perform a data-dependent triangulation that still has the
same subdivision connectivity. The key research problem lies in
how to efficiently and optimally construct a good triangulation
with subdivision connectivity.

B. Compression

Based on the data structures discussed in Section V, we re-
quire twenty bytes of storage per vertex. Using the quadtree
layouts from Section IV, this number effectively increases by
one or two thirds. While our memory and disk footprints are not
nearly as large as some competing methods, e.g. [8], storage ef-
ficiency is still a concern. If space is at a premium, it is possible
to compress the per-vertex information considerably. Without
going into great detail, we here sketch a possible scheme for
encoding each vertex using only 16 bits (assuming the original
height field can be represented using 16 bits).

As already mentioned, thexy-coordinates of each vertex can
be computed on-the-fly. Thus we are concerned only with
encoding〈z, ε, r〉. Because most height fields are relatively
smooth, we expect the elevation to be highly correlated at all
scales. That is, we can use the existing hierarchy as a linear pre-
dictor forz by using the midpoint of the associated split edge as
the estimate. We would then store only the signed differenceδ
from the estimate. This is in a sense similar to a linear wavelet
transform of the data. We would expect the magnitude ofδ on
average to be much smaller thanz, and therefore require fewer
bits to store.

Note that for any reasonable object space metric, we haveε ≥
|δ|, i.e. the error ought to be at least as large as the deviation
between the mesh before and after removing the vertex. Also,
we know thatε decreases monotonically with each refinement
level. Based on these facts, a variant of zerotree coding [53] can
be used to progressively eliminate redundant bits. That is, if we
know thatεi for vertexi is smaller than some threshold, then|δi|
must also be smaller, as areεj and|δj | for all descendantsj of
i. In particular, if the most significant bit (or bits) ofεi is zero,
then we do not have to encode this bit (bits) for eitherεj or |δj |
on the remaining levels. Thus, asε grows smaller level by level,
progressively fewer bits are needed to representε and δ, and
more bits become available for encodingr. Note that when|δ| is
large, we already expect the vertex to be active, and representing
ε andr less accurately may in this case be acceptable. The only
caveat here is that the number of significant bits used to encode
ε andδ for a particular vertex must be independent of how we
reached the vertex. Thus, both DAG parents of a vertex must
agree on how many bits to use for their common child.

To ensure that the height field is represented losslessly (to
the given 16-bit precision), we suggest encoding all significant

bits of δ and using any remaining bits for a lossy, conservative
encoding ofε andr, i.e. the least significant bits that are not
encoded are all assumed to be ones. To encode the bounding
sphere radiusr, we note thatr is highly correlated on any given
level, and is bounded below by the smallest radius needed for
nesting circles in 2D. Thus, we can encode the excess of the
radii using small per-level lookup tables.

For efficiency reasons, we must avoid having to uncompress
the vertex information every time a vertex is touched. There-
fore, we advocate using a fast caching mechanism, similar to
the low-level caches used in modern CPUs, to reuse previously
uncompressed vertices. The size of this cache should be cho-
sen to be roughly proportional to the size of the largest adaptive
mesh.

Whereas the compression scheme described above reduces
the storage requirements by a factor of ten, the largest poten-
tial for compression comes from using variable-length coding,
which would allow large regions of the height field to be com-
pressed using only a few bits. For example, large subtrees of
unused ghost vertices (Section IV-A) could be eliminated this
way. Similarly, for composite data sets that vary in resolution,
and for data sets that do not fit the size requirements imposed by
hierarchical bisection, large unused portions of the vertex data
could virtually be eliminated using variable-length compression.

VIII. SUMMARY

We have presented algorithms for two important components
of large-scale terrain rendering: a method for efficient view-
dependent refinement; and an indexing scheme for organizing
the data in a memory-friendly manner. The refinement and ren-
dering components of our algorithm have been shown to be very
efficient, and in spite of their simplicity compete with the state
of the art in terrain visualization. Indeed, the core components
of our view-dependent refinement and hierarchical indexing can
be implemented in as little as a few dozen lines of C code.
An implementation of our algorithms can be downloaded from
http://www.cc.gatech.edu/∼lindstro/software/soar/.

We have already discussed some possible directions for fu-
ture work, but briefly mention a few additional ideas. Whereas
the majority of recent work on terrain visualization has been
on view-dependent geometric approximation, perhaps an even
more important component is texturing and texture level-of-
detail management. Few techniques currently exist for transpar-
ently caching and loading textures. To our knowledge, the only
general approach to scalable texture caching is the SGI-specific
extension forclip mapping[54]. Having a general paging mech-
anism such as memory mapping for hierarchical textures would
be tremendously useful. Even in the case of explicit texture pag-
ing, we see a lot of room for improvement. A related problem
is how to perform efficient high-quality shading, which is of-
ten implemented by pre-shading the geometry and storing the
result in a high-resolution texture. Achieving high-quality dy-
namic lighting is still a largely unresolved problem. Another
issue related to view-dependent methods, and in particular those
that incorporate geomorphing, is how to efficiently render the
continuously changing mesh. Current graphics hardware is not
optimized for “immediate mode” rendering of dynamic meshes,
and thus hybrid methods may be neeed that cache larger, static
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pieces of the mesh for more efficient rendering. Finally, we en-
vision that our algorithms for 2D height fields can be general-
ized to higher dimensions. For example, we intend to investi-
gate how to extend our framework to view-dependent rendering
of 3D scalar fields using techniques such as progressive isocon-
touring.
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APPENDIX

I. Π-ORDER SPACE FILLING CURVE DATA LAYOUT.

In this appendix we construct an alternative data layout based
on theΠ-order space-filing curve (a variation of the Z-order
Peano curve [28]). Contrary to the quadtree indexing schemes
in Section IV, this data layout does not require extraneous ghost
vertices, and therefore does not suffer from the 33% storage
overhead associated with those schemes. Unfortunately, the gain
in storage efficiency comes at the expense of a more compli-
cated implementation. Our approach is based upon, and relies
heavily on the related hierarchical Z-order indexing scheme de-
scribed in [42, 43], which applies neatly to grid dimensions of
2n.7 We here derive an extension of this scheme to grids with
2n + 1 vertices by treating the extra row and column as a spe-
cial boundary case. For background information and a more
detailed exposition, we refer the reader to [42,43]. For the sake
of completeness, we here provide only the details necessary for
implementing theΠ-order scheme.

We will first derive a “flat” index for a single-resolution grid.
Then, in Section A-B, we describe how to extend it to a hierar-
chical layout, such that all vertices on a given level have indices
smaller than the vertices on the next finer refinement level.

A. Local Index

Fig. 21 shows the recursive construction of theΠ-order space
filling curve. The basicΠ pattern involving four vertices is
shown in Fig. 21(a). One level of resolution is built by replac-
ing each vertex on the previous level with aΠ shape reduced
in scale by a factor of two. The space filling curve built over
n levels defines a total order on the vertices of a2n × 2n grid.
Fig. 21(c) shows this total order for a grid of8× 8 vertices.

(a) (b) (c)

Fig. 21. Recursive construction of theΠ-order space filling curve. (a) Basic
level formed by a simpleΠ pattern. (b) Second level. Each vertex in the basic
level is replaced by aΠ pattern scaled by 1/2. (c) Third level. Each vertex of the
second level is replaced by aΠ pattern scaled by 1/4.

To make direct use of this data layout we need to align it to
a grid of size(2n + 1) × (2n + 1). Moreover, the hierarchy of
the longest edge bisection refinement must be matched with the
recursive structure of the space filling curve. Fig. 22 shows the
recursive construction of this data layout for a9 × 9 grid (n =
3). The vertices of the base mesh (a) are traversed in clockwise
order, starting from the bottom left corner. In each refinement
every interior (i.e. non-boundary) vertex is replaced with aΠ
pattern that includes one new white vertex (first bisection) and

7We favor theΠ layout over the Z layout because the hierarchicalΠ-order
index is a better match with the order in which vertices are visited during mesh
refinement.

(a) (b) (c) (d)

Fig. 22. Π-order curve with boundary (solid black lines) aligned with the ver-
tices of a rectilinear grid (dashed gray lines). Each new level in theΠ-order
curve corresponds to two levels of edge bisection refinement of the grid. The
first bisection introduces the white vertices while the second bisection intro-
duces the black vertices (see Fig. 2). The vertices in the top row and in the right
column constitute the added boundary that allows a grid of(2n +1)× (2n +1)
vertices to be covered exactly.
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(a)
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0 33 9 39 3 57 15 63 72

(b)

Fig. 23. Indices of the vertices of a9×9 grid. (a) BasicΠ-order with boundary.
(b) Hierarchical version of the same index.

two new black vertices (second bisection). The refinement of
boundary vertices, on the other hand, results in the creation of a
single black vertex. At the end of this construction, each vertex
v of the grid is associated with a unique indexi in the range
0 ≤ i ≤ (22n + 2n+1) = (2n + 1)2 − 1.

Fig. 23(a) shows the index of all the vertices in a9 × 9
grid. During the hierarchical traversal, this index is com-
puted by making simple bitwise modifications to the indices
from the immediately coarser level. We use a function
index-append(i, k, l) = i + 2lk, k ∈ {1, 2, 3}, which sets one
or two bits ofi. Herek corresponds to one of the three “chil-
dren” in the pi-order refinement, that is above (k = 1), above-
right (k = 2), or right of (k = 3) i. As in Section IV we assume
that the vertices at the finest refinement resolution are on level
l = 1, while coarser levels have increasingly higher values ofl.
We focus first on the refinement of a single square in the inte-
rior of the grid. Fig. 24(a) shows this configuration. The coarse
vertices of the square are represented by the indicesi0, i1, i2,
andi3. The grid of nine vertices obtained after the refinement
is represented by the indicesj0, . . . , j8. First of all the indices
of the four corners do not change:j0 ← i0, j2 ← i1, j6 ← i3,
j8 ← i2. The indicesj1, j3 and j4 are computed fromi0 as
follows:

j1 ← index-append(i0, 1, l − 2)

j3 ← index-append(i0, 3, l − 2)

j4 ← index-append(i0, 2, l − 2)
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Fig. 24. One step of refinement of theΠ-order curve in the interior of the grid
(no boundary vertices are present). The shaded regions correspond to the same
area. (a) Vertices before refinement. (b) Vertices after refinement. Note that
i0 = j0, i1 = j2, i2 = j8, andi3 = j6.

Similarly, j5 andj7 are computed fromi1 andi3 as follows:

j5 ← index-append(i1, 3, l − 2)

j7 ← index-append(i3, 1, l − 2)

Exceptions to these rules are the boundary cases, i.e. where
eitheri1 is on the top row ori3 is in the rightmost column. In
these cases we need to revise the last two rules by treating the
top row and the rightmost column as independent 1D versions
of theΠ-order curve. Therefore we have:

j5 ← index-append(i1, 1, (l − 2)/2)

j7 ← index-append(i3, 1, (l − 2)/2)

The first rule is used wheni1 ≥ 22n, while the second rule is
used wheni3 ≥ 22n. Notice that vertexi2 is never used to
compute the index of any child in the hierarchy. Hence, we only
pass alongi0, i1 andi3 in the refinement procedure.

B. Hierarchical Index

To complete our construction we need to turn theΠ-order
with boundary into its hierarchical equivalent, where all the ele-
ments introduced on a level have index lower than any element
introduced on a finer level. For vertices within a single level,
we maintain the same relative order as the originalΠ index. To
build this hierarchical index we use the technique introduced
in [42,43]. Here we useshift-right(i, j) = bi/2jc to denote the
value ofi after a bitwise shift to the right byj bits. Given the
index i of an element in a set of size2k, we can compute the
corresponding hierarchical indexi∗ as follows:

i∗ ← shift-right(2k + i,m + 1)

wherem is the number of trailing (rightmost) zeros in the binary
representation ofi. In our case,k = 2n for the interior vertices,
andk = n on the boundaries. During the hierarchical traversal
we need to compute this indexi∗ for each vertex visited. More
specifically we need to apply this procedure in the block of the
first 22n vertices, as well as locally in the top row and locally
in the right column. For the first block of22n vertices, we can
apply the procedure as is, withk = 2n. Since we need to com-
pute this hierarchical index only for the newly created vertices,
we know in advance the number of trailing zeros ofi. For the
childrenj∗1 , j∗3 , andj∗4 we have:

j∗1 ← shift-right(22n + j1, l − 1)

j∗3 ← shift-right(22n + j3, l − 1)

j∗4 ← shift-right(22n + j4, l)
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Fig. 25. Relationship between edge bisection and the quadtree refinement. Each
triangle (labeled A–D, A′–D′) is associated with its smallest enclosing square
(shaded gray regions) in the quadtree hierarchy. Bisecting triangles of types
A′–D′ does not induce quadtree refinement. Bisecting triangles of type A–D
induces a quadtree refinement and selection of two out of four square tiles.

For non-boundary cases we also have:

j∗5 ← shift-right(22n + j5, l − 1)

j∗7 ← shift-right(22n + j7, l − 1)

Whenj5 ≥ 22n we are on the top row and we need to apply the
following modified boundary rule:

j∗5 ← 22n + shift-right(2n + j5 − 22n, l/2)

Similarly j7 ≥ 22n implies that we are on the right boundary,
and therefore we need to apply the following modified rule:

j∗7 ← 22n + 2n + shift-right(j7 − 22n, l/2)

C. Run-Time Refinement

The rules introduced in the two previous subsections are used
to compute the indices of the vertices in a recursive quadtree
traversal. We match this quadtree refinement with the different
classes of triangles that can be constructed in the edge bisec-
tion refinement. Fig. 25 shows the eight types of triangles that
are generated by the edge bisection refinement. They are la-
beled A–D on even levels of refinement and A′–D′ on odd lev-
els. Each triangle is also associated with its smallest enclosing
square in the corresponding quadtree. The triangles of type A′–
D′ have the same bounding square as their children. Therefore
their edge bisection refinement does not induce any quadtree re-
finement. On the other hand, the triangles of type A–D have a
bounding square that is larger than those of their children. Their
edge bisection refinement induces a subdivision of the bound-
ing square into four squares. Two of them must be selected as
bounding squares of the two children.

Let t denote the type (one of A–D, A′–D′) of the current tri-
angle, and lettl andtr be the triangle types of the left and right
children oft. In our refinement procedure we computetl andtr
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t tl tr ct
lt,k rt,k

0 1 3 0 1 3

0 3 0 3 0 1 3 3 4 6
1 2 3 7 3 4 6 4 5 7
2 1 2 5 4 5 7 1 2 4
3 0 1 1 1 2 4 0 1 3

TABLE VIII

LOOKUP TABLES USED IN PI-ORDER REFINEMENT.

submesh-refine-odd(V, i∗, i0, i1, i3, t, l)
1 if active(i∗) then
2 j∗ ← shift-right(22n + i0, l − 1)
3 submesh-refine-even(V, j∗, i0, i1, i3, tl, l − 1)
4 tstrip-append(V, i∗, l mod 2)
5 submesh-refine-even(V, j∗, i0, i1, i3, tr, l − 1)

submesh-refine-even(V, i∗, i0, i1, i3, t, l)
1 if l > 0 and active(i∗) then
2 j0 ← i0
3 j1 ← index-append(i0, 1, l − 2)
4 j2 ← i1
5 j3 ← index-append(i0, 3, l − 2)
6 j4 ← index-append(i0, 2, l − 2)
7 j5 ← index-append(i1, 3, l − 2)
8 j6 ← i3
9 j7 ← index-append(i3, 1, l − 2)

10 j∗ ← shift-right(22n + jct
, l − 1)

11 submesh-refine-odd(V, j∗, jlt,0 , jlt,1 , jlt,3 , tl, l − 1)
12 tstrip-append(V, i∗, l mod 2)
13 submesh-refine-odd(V, j∗, jrt,0 , jrt,1 , jrt,3 , tr, l − 1)

TABLE IX

PSEUDO-CODE FOR MESH REFINEMENT USINGΠ-ORDER INDEXING.

from t using the following transition tables:

t tl tr

A D′ A′

B C′ D′

C B′ C′

D A′ B′

t tl tr

A′ D A
B′ C D
C′ B C
D′ A B

We encode the types A, B, C, and D as the numbers 0, 1, 2,
and 3, respectively. Since the other triangle types (A′–D′) occur
on alternate levels, there is no possibility of confusion if we use
the same numbers to represent them. With this choice of codes,
the two transition tables are the same, and are summarized as a
single table in Table VIII. In practice this transition table does
not need to be stored sincetl andtr can be computed quickly as
follows:

tl = (3− t) mod 4
tr = (4− t) mod 4

We implement the refinement using two procedures: one for
the even levels (triangles A–D) and one for the odd levels (tri-
angles E–H). Based on the triangle typet, we make use of three
small lookup tablesct, lt,k, andrt,k (Table VIII).

Finally Table IX shows the pseudo-code for the refinement
without the boundary cases, which are handled by two equiva-
lent procedures. As soon asi1 and i3 are both less than22n,
these special case functions call the routines in Table IX, which
process the vast majority of triangles in the mesh.


